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We define some classes of double entire and analytic sequences by means of Orlicz functions. We study some relevant algebraic and
topological properties. Further some inclusion relations among the classes are also examined.

1. Introduction and Preliminaries

Of the definitions of convergence commonly employed for
double series, only that due to Pringsheim permits a series
to converge conditionally. Therefore, in spite of any dis-
advantages which it may possess, this definition is better
adapted than others to the study of many problems in double
sequences and series. Chief among the reasons why the
theory of double sequences, under the Pringsheim definition
of convergence, present difficulties not encountered in the
theory of simple sequences, is the fact that a double sequence
(𝑥
𝑖𝑗
) may converge without 𝑥

𝑖𝑗
being a bounded function

of 𝑖 and 𝑗. Thus it is not surprising that many authors in
dealing with the convergence of double sequences should
have restricted themselves to the class of bounded sequences
or in dealing with the summability of double series to
the class of series for which the function whose limit is
the sum of the series is a bounded function of 𝑖 and 𝑗.
Without such a restriction, peculiar things may sometimes
happen; for example, a double power series may converge
with partial sum (𝑆

𝑖𝑗
) unbounded at a place exterior to

its associated circles of convergence. Nevertheless there are
problems in the theory of double sequences and series where
this restriction of boundedness as it has been applied is
considerably more stringent than need be. The initial works
on double sequences are found in Bromwich [1]. Later on, it
was studied by Hardy [2], Móricz [3], Móricz and Rhoades
[4], Basarir and Sonalcan [5], and many others. Hardy [2]

introduced the notion of regular convergence for double
sequences. Mursaleen and Mohiuddine [6, 7] have charac-
terized four dimensional matrix transformations between
double sequences 𝑥 = (𝑥

𝑚,𝑛
). A good account of the study

of double sequences can be found in most recent monograph
by Mursaleen and Mohiuddine [8]. More recently, Altay and
Başar [9] have defined the spaces BS, BS(𝑡), CS

𝑝
, CS
𝑏𝑝
,

CS
𝑟
, and BV of double sequences consisting of all double

series whose sequence of partial sums is in the spaces M
𝑢
,

M
𝑢
(𝑡),C

𝑝
,C
𝑏𝑝
,C
𝑟
, andL

𝑢
, respectively, and also examined

some properties of these sequence spaces and determined the
𝛼-duals of the spacesBS,BV, andCS

𝑏𝑝
and the𝛽(V)-duals

of the spaces CS
𝑏𝑝

and CS
𝑟
of double series. Now, recently,

Başar and Sever [10] have introduced the Banach space L
𝑞

of double sequences corresponding to the well-known space
ℓ
𝑞
of single sequences and examined some properties of the

spaceL
𝑞
. By the convergence of a double sequence we mean

the convergence in the Pringsheim sense; that is, a double
sequence 𝑥 = (𝑥

𝑘,𝑙
) has Pringsheim limit 𝐿 (denoted by

𝑃 − lim𝑥 = 𝐿) provided that given 𝜖 > 0 there exists 𝑛 ∈ 𝑁

such that |𝑥
𝑘,𝑙
− 𝐿| < 𝜖 whenever 𝑘, 𝑙 > 𝑛; see [11]. We

will write more briefly as 𝑃-convergent.The double sequence
𝑥 = (𝑥

𝑘,𝑙
) is bounded if there exists a positive number𝑀 such

that |𝑥
𝑘,𝑙
| < 𝑀 for all 𝑘 and 𝑙.

An Orlicz function 𝑀 : [0,∞) → [0,∞) is a contin-
uous, nondecreasing, and convex function such that𝑀(0) =

0, 𝑀(𝑥) > 0 for 𝑥 > 0 and 𝑀(𝑥) → ∞ as 𝑥 →
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∞. Lindenstrauss and Tzafriri [12] used the idea of Orlicz
function to define the following sequence space. Let 𝑤 be the
space of all real or complex sequences 𝑥 = (𝑥

𝑘
); then

𝑙
𝑀
= {𝑥 ∈ 𝑤 :

∞

∑
𝑘=1

𝑀(

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝜌
) < ∞, for some 𝜌 > 0} (1)

which is called as an Orlicz sequence space. Also 𝑙
𝑀

is a
Banach space with the norm

‖𝑥‖ = inf {𝜌 > 0 :
∞

∑
𝑘=1

𝑀(

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝜌
) ≤ 1} . (2)

Also, it was shown in [13] that every Orlicz sequence space
𝑙
𝑀

contains a subspace isomorphic to 𝑙
𝑝
(𝑝 ≥ 1). The Δ

2
-

condition is equivalent to 𝑀(𝐿𝑥) ≤ 𝐿𝑀(𝑥), for all 𝐿 with
0 < 𝐿 < 1. An Orlicz function𝑀 can always be represented
in the following integral form:

𝑀(𝑥) = ∫
𝑥

0

𝜂 (𝑡) 𝑑𝑡, (3)

where 𝜂 is known as the kernel of𝑀 and is right differentiable
for 𝑡 ≥ 0, 𝜂(0) = 0, and 𝜂(𝑡) > 0; 𝜂 is nondecreasing and
𝜂(𝑡) → ∞ as 𝑡 → ∞.

Let 𝑋 be a linear metric space. A function 𝑝 : 𝑋 → R is
called paranorm, if

(1) 𝑝(𝑥) ≥ 0, for all 𝑥 ∈ 𝑋,
(2) 𝑝(−𝑥) = 𝑝(𝑥), for all 𝑥 ∈ 𝑋,
(3) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦), for all 𝑥, 𝑦 ∈ 𝑋,
(4) if (𝜆

𝑛
) is a sequence of scalars with 𝜆

𝑛
→ 𝜆 as 𝑛 →

∞ and (𝑥
𝑛
) is a sequence of vectors with 𝑝(𝑥

𝑛
−𝑥) →

0 as 𝑛 → ∞, then 𝑝(𝜆
𝑛
𝑥
𝑛
− 𝜆𝑥) → 0 as 𝑛 →

∞.

A paranorm 𝑝 for which 𝑝(𝑥) = 0 implies 𝑥 = 0 is
called total paranorm and the pair (𝑋, 𝑝) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see
[14],Theorem 10.4.2, p.183). For more details about sequence
spaces see [13, 15–21].

A complex sequence, whose 𝑘th term is 𝑥
𝑘
, is denoted by

{𝑥
𝑘
}. Let 𝜑 be the set of all finite sequences. A sequence 𝑥 =

{𝑥
𝑘
} is said to be analytic if sup

𝑘
|𝑥
𝑘
|1/𝑘 < ∞.The vector space

of all analytic sequences will be denoted by Λ. A sequence 𝑥
is called entire sequence if lim

𝑘→∞
|𝑥
𝑘
|1/𝑘 = 0. The vector

space of all entire sequences will be denoted by Γ.
The notion of difference sequence spaces was introduced

by Kızmaz [22], who studied the difference sequence spaces
𝑙
∞
(Δ), 𝑐(Δ), and 𝑐

𝑜
(Δ). The notion was further generalized by

Et and Çolak [23] by introducing the spaces 𝑙
∞
(Δ𝑛), 𝑐(Δ𝑛),

and 𝑐
𝑜
(Δ𝑛).

Let 𝑟, 𝑠 be nonnegative integers; then for 𝑍 = 𝑙
∞
, 𝑐, 𝑐
𝑜
we

have sequence spaces

𝑍 (Δ
𝑟

𝑠
) = {𝑥 = (𝑥

𝑘
) ∈ 𝑤 : (Δ

𝑟

𝑠
𝑥
𝑘
) ∈ 𝑍} , (4)

where Δ𝑟
𝑠
𝑥 = (Δ𝑟

𝑠
𝑥
𝑘
) = (Δ𝑟−1

𝑠
𝑥
𝑘
− Δ𝑟−1
𝑠
𝑥
𝑘+1

) and Δ0
𝑠
𝑥
𝑘
= 𝑥
𝑘

for all 𝑘 ∈ N, which is equivalent to the following binomial
representation:

Δ
𝑟

𝑠
𝑥
𝑘
=

𝑟

∑
V=0
(−1)

V
(
𝑟

V)𝑥𝑘+𝑠V. (5)

Taking 𝑠 = 1, we get the spaces which were studied by Et and
Çolak [23]. Taking 𝑟 = 𝑠 = 1, we get the spaces which were
introduced and studied by Kızmaz [22].

Let 𝑤󸀠󸀠 denote the space of all complex double sequences
𝑥 = (𝑥

𝑘,𝑙
). The space consisting of all those sequences 𝑥 in

𝑤󸀠󸀠 such that𝑀
𝑘,𝑙
(|𝑥
𝑘,𝑙
|
1/𝑘+𝑙

/𝜌) → 0 as 𝑘, 𝑙 → ∞ for some
arbitrary fixed 𝜌 > 0 is denoted by Γ2M and is known as double
Orlicz space of entire sequences. The space Γ2M is a metric
space with the metric 𝑑(𝑥, 𝑦) = sup

𝑘,𝑙
𝑀
𝑘,𝑙
(|𝑥
𝑘,𝑙
− 𝑦
𝑘,𝑙
|
1/𝑘+𝑙

/𝜌)

for all 𝑥 = {𝑥
𝑘,𝑙
} and 𝑦 = {𝑦

𝑘,𝑙
} in Γ2M.

The space consisting of all those sequences 𝑥 in 𝑤󸀠󸀠 such
that (sup

𝑘,𝑙
(𝑀
𝑘,𝑙
(|𝑥
𝑘,𝑙
|
1/𝑘+𝑙

/𝜌))) < ∞ for some arbitrarily
fixed 𝜌 > 0 is denoted by Λ2M and is known as double Orlicz
space of analytic sequences.

A double sequence space 𝐸 is said to be solid or normal
if (𝛼
𝑘,𝑙
𝑥
𝑘,𝑙
) ∈ 𝐸 whenever (𝑥

𝑘,𝑙
) ∈ 𝐸 and for all sequences of

scalars (𝛼
𝑘,𝑙
) with |𝛼

𝑘,𝑙
| ≤ 1 (see [18]).

The following inequality will be used throughout the
paper. Let 𝑝 = (𝑝

𝑘,𝑙
) be a double sequence of positive real

numbers with 0 < 𝑝
𝑘,𝑙

≤ sup
𝑘,𝑙

= 𝐻 and let 𝐾 =

max{1, 2𝐻−1}. Then for the factorable sequences {𝑎
𝑘,𝑙
} and

{𝑏
𝑘,𝑙
} in the complex plane, we have

󵄨󵄨󵄨󵄨𝑎𝑘,𝑙 + 𝑏𝑘,𝑙
󵄨󵄨󵄨󵄨
𝑝𝑘,𝑙 ≤ 𝐾 (

󵄨󵄨󵄨󵄨𝑎𝑘,𝑙
󵄨󵄨󵄨󵄨
𝑝𝑘,𝑙 +

󵄨󵄨󵄨󵄨𝑏𝑘,𝑙
󵄨󵄨󵄨󵄨
𝑝𝑘,𝑙) . (6)

Let M = (𝑀
𝑘,𝑙
) be a sequence of Orlicz functions, let 𝑝 =

(𝑝
𝑘,𝑙
) be a bounded sequence of positive real numbers, let 𝑢 =

(𝑢
𝑘,𝑙
) be a sequence of strictly positive real numbers, and let

𝑋 be locally convex Hausdorff topological linear space whose
topology is determined by a set of continuous seminorms 𝑞.
The symbols Λ2(𝑋), Γ2(𝑋) denote the space of all double
analytic and double entire sequences, respectively, defined
over𝑋. In this paper we define the following sequence spaces:

Λ
2

M (Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞)

=
{

{

{

𝑥 ∈ Λ
2
(𝑋) : sup

𝑚,𝑛

1

𝑚𝑛

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/𝑘+𝑙

𝜌
))]

𝑝𝑘,𝑙

< ∞, for some 𝜌 > 0
}

}

}

,

(7)
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Γ
2

M (Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞)

=
{

{

{

𝑥 ∈ Γ
2
(𝑋) :

1

𝑚𝑛

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/𝑘+𝑙

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 → ∞, for some 𝜌 > 0
}

}

}

.

(8)

The main aim of this paper is to introduce some double
entire sequence spaces Λ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞) and Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞)

defined by a sequence of Orlicz functions and study some
topological properties and inclusion relation between these
spaces.

2. Main Results

Theorem 1. LetM = (𝑀
𝑘,𝑙
) be a sequence of Orlicz functions,

let 𝑝 = (𝑝
𝑘,𝑙
) be a bounded sequence of positive real numbers,

and let 𝑢 = (𝑢
𝑘,𝑙
) be a sequence of strictly positive real numbers;

then the spaces Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) and Λ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞) are linear

spaces over the field of complex numbers C.

Proof. Let 𝑥, 𝑦 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) and 𝛼, 𝛽 ∈ C. In order to

prove the result, we need to find some 𝜌
3
> 0 such that

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
(𝛼𝑥
𝑘,𝑙
+ 𝛽𝑦
𝑘,𝑙
)
󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
3

))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(9)

Since 𝑥, 𝑦 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞), there exist some positive 𝜌

1
and

𝜌
2
such that

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞,

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(10)

Since M = (𝑀
𝑘,𝑙
) is a nondecreasing convex function, 𝑞 is a

seminorm and Δ𝑟
𝑠
is linear and so, by using inequality (6), we

have

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
(𝛼𝑥
𝑘,𝑙
+ 𝛽𝑦
𝑘,𝑙
)
󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
3

))]

𝑝𝑘,𝑙

≤
1

(𝑚𝑛)

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

𝛼1/(𝑘+𝑙)
󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
3

+
𝛽1/(𝑘+𝑙)

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
3

))]

𝑝𝑘,𝑙

.

(11)

Take 𝜌
3
> 0 such that 1/𝜌

3
= min{1/𝛼𝜌

1
, 1/𝛽𝜌

2
}:

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
(𝛼𝑥
𝑘,𝑙
+ 𝛽𝑦
𝑘,𝑙
)
󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
3

))]

𝑝𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

+

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))

𝑝𝑘,𝑙

+ 𝑢
𝑘,𝑙
𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))

𝑝𝑘,𝑙

]

]

≤ 𝐾
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

+ 𝐾
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(12)

Hence

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨𝛼Δ
𝑟

𝑠
𝑥
𝑘,𝑙
+ 𝛽Δ𝑟
𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
3

))]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 → ∞.

(13)

This proves that Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) is a linear space. Similarly, we

can prove Λ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) is a linear space.
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Theorem 2. LetM = (𝑀
𝑘,𝑙
) be a sequence of Orlicz functions,

let 𝑝 = (𝑝
𝑘,𝑙
) be a bounded sequence of positive real numbers,

and let 𝑢 = (𝑢
𝑘,𝑙
) be a sequence of strictly positive real numbers;

then the space Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) is a paranormed space with

paranorm defined by

𝑔
Δ (𝑥) = inf

{

{

{

𝜌
𝑝𝑚,𝑛/𝐻 :

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤ 1; 𝜌 > 0
}

}

}

,

(14)
where𝐻 = max(1, sup

𝑘,𝑙
𝑝
𝑘,𝑙
).

Proof. Clearly 𝑔
Δ
(𝑥) ≥ 0, 𝑔

Δ
(𝑥) = 𝑔

Δ
(−𝑥) and 𝑔

Δ
(𝜃) =

0, where 𝜃 is the zero sequence of 𝑋. For (𝑥
𝑘,𝑙
), (𝑦
𝑘,𝑙
) ∈

Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞), there exist 𝜌

1
, 𝜌
2
> 0 such that

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

≤ 1,

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

≤ 1.

(15)

Suppose that 𝜌 = 𝜌
1
+ 𝜌
2
; then

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
(𝑥
𝑘,𝑙
+ 𝑦
𝑘,𝑙
)
󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤ (
𝜌
1

𝜌
1
+ 𝜌
2

) sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

+ (
𝜌
2

𝜌
1
+ 𝜌
2

)

× sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

≤ 1.

(16)
Hence

𝑔
Δ
(𝑥 + 𝑦)

≤ inf
{

{

{

(𝜌
1
+ 𝜌
2
)
𝑝𝑚,𝑛/𝐻 :

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1
+ 𝜌
2

))]

𝑝𝑘,𝑙

≤ 1, 𝜌
1
, 𝜌
2
> 0, 𝑚, 𝑛 ∈ N

}

}

}

≤ inf
{

{

{

(𝜌
1
)
𝑝𝑚,𝑛/𝐻 :

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

≤ 1, 𝜌
1
> 0, 𝑚, 𝑛 ∈ N

}

}

}

+ inf
{

{

{

(𝜌
2
)
𝑝𝑚,𝑛/𝐻 :

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑦
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

≤ 1, 𝜌
2
> 0, 𝑚, 𝑛 ∈ N

}

}

}

.

(17)

Thus we have 𝑔
Δ
(𝑥 + 𝑦) ≤ 𝑔

Δ
(𝑥) + 𝑔

Δ
(𝑦). Hence 𝑔

Δ
satisfies

the triangle inequality. Now,

𝑔
Δ (𝜆𝑥) = inf

{

{

{

(𝜌)
𝑝𝑚,𝑛/𝐻 :

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨𝜆Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤ 1, 𝜌 > 0, 𝑚, 𝑛 ∈ N
}

}

}

= inf
{

{

{

(𝑟 |𝜆|)
𝑝𝑚,𝑛/𝐻 :

sup
𝑘,𝑙≥1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝑟
))]

𝑝𝑘,𝑙

≤ 1, 𝑟 > 0, 𝑚, 𝑛 ∈ N
}

}

}

,

(18)

where 𝑟 = 𝜌/|𝜆|. HenceΓ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) is a paranormed space.

Theorem 3. IfM󸀠 = (𝑀󸀠
𝑘,𝑙
) andM󸀠󸀠 = (𝑀󸀠󸀠

𝑘,𝑙
) are two sequen-

ces of Orlicz functions, then

Γ
2

M󸀠 (Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) ∩ Γ

2

M󸀠󸀠 (Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) ⊆ Γ

2

M󸀠+M󸀠󸀠 (Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) .

(19)



Abstract and Applied Analysis 5

Proof. Let 𝑥 ∈ Γ2
M󸀠
(Δ𝑟
𝑠
, 𝑢, 𝑝, 𝑞) ∩ Γ2

M󸀠󸀠
(Δ𝑟
𝑠
, 𝑢, 𝑝, 𝑞). Then there

exist 𝜌
1
and 𝜌
2
such that

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
󸀠

𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞,

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
󸀠󸀠

𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(20)

Let 𝜌 = min(1/𝜌
1
, 1/𝜌
2
). Then we have

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[(𝑀
󸀠

𝑘,𝑙
+𝑀
󸀠󸀠

𝑘,𝑙
)(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤ 𝐾[

[

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
󸀠

𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
1

))]

𝑝𝑘,𝑙

]

]

+ 𝐾[

[

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
󸀠󸀠

𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
2

))]

𝑝𝑘,𝑙

]

]

,

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞

(21)

by (20). Therefore, 𝑥 ∈ Γ2
M󸀠+M󸀠󸀠

(Δ𝑟
𝑠
, 𝑢, 𝑝, 𝑞).

Theorem 4. Let 𝑟 ≥ 1. Then we have the following inclusions:

(i) Γ2M(Δ
𝑟−1

𝑠
, 𝑢, 𝑝, 𝑞) ⊆ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞),

(ii) Λ2M(Δ
𝑟−1

𝑠
, 𝑢, 𝑝, 𝑞) ⊆ Λ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Proof. Let 𝑥 ∈ Γ2M(Δ
𝑟−1

𝑠
, 𝑢, 𝑝, 𝑞). Then we have

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨󵄨
Δ𝑟−1
𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨

1/(𝑘+𝑙)

𝜌
))]

]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 󳨀→ ∞, for some 𝜌 > 0.
(22)

SinceM = (𝑀
𝑘,𝑙
) is nondecreasing convex function and 𝑞 is

a seminorm, we have

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤
1

𝑚𝑛

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙

× [

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨󵄨
Δ𝑟−1
𝑠
𝑥
𝑘,𝑙
− Δ𝑟−1
𝑠
𝑥
𝑘+1,𝑙+1

󵄨󵄨󵄨󵄨󵄨

1/(𝑘+𝑙)

𝜌
))]

]

𝑝𝑘,𝑙

≤ 𝐾

{{

{{

{

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨󵄨
Δ𝑟−1
𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨󵄨

1/(𝑘+𝑙)

𝜌
))]

]

𝑝𝑘,𝑙

+
1

𝑚𝑛

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙

× [

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨󵄨
Δ𝑟−1
𝑠
𝑥
𝑘+1,𝑙+1

󵄨󵄨󵄨󵄨󵄨

1/(𝑘+𝑙)

𝜌
))]

]

𝑝𝑘,𝑙
}}

}}

}

󳨀→ 0 as 𝑚, 𝑛 → ∞.

(23)

Therefore, (1/𝑚𝑛)∑𝑚,𝑛
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(|Δ𝑟
𝑠
𝑥
𝑘,𝑙
|1/(𝑘+𝑙)/𝜌))]

𝑝𝑘,𝑙

→ 0 as 𝑚, 𝑛 → ∞. Hence, 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞). This

completes the proof of (i). Similarly, we can prove (ii).

Theorem 5. Let 0 ≤ 𝑝
𝑘,𝑙
≤ 𝑡
𝑘,𝑙

and let {𝑡
𝑘,𝑙
/𝑝
𝑘,𝑙
} be bounded.

Then Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑡, 𝑞) ⊂ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Proof. Let 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑡, 𝑞). Then

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑡𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 󳨀→ ∞.

(24)

Let 𝑤
𝑘,𝑙

= (1/𝑚𝑛)∑
𝑚,𝑛

𝑘,𝑙=1,1
𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(|Δ𝑟
𝑠
𝑥
𝑘,𝑙
|1/(𝑘+𝑙)/𝜌))]

𝑞𝑘,𝑙

and 𝜆
𝑘,𝑙

= 𝑝
𝑘,𝑙
/𝑡
𝑘,𝑙

. Since 𝑝
𝑘,𝑙

≤ 𝑡
𝑘,𝑙
, we have 0 ≤ 𝜆

𝑘,𝑙
≤ 1.

Take 0 < 𝜆 < 𝜆
𝑘,𝑙
. Define

𝑢
𝑘,𝑙
= {

𝑤
𝑘,𝑙

if 𝑤
𝑘,𝑙
≥ 1

0 if 𝑤
𝑘,𝑙
< 1,

V
𝑘,𝑙
= {

0 if 𝑤
𝑘,𝑙
≥ 1

𝑤
𝑘,𝑙

if 𝑤
𝑘,𝑙
< 1,

(25)
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where 𝑤
𝑘,𝑙
= 𝑢
𝑘,𝑙
+ V
𝑘,𝑙

and 𝑤𝜆𝑘,𝑙
𝑘,𝑙

= 𝑢
𝜆𝑘,𝑙

𝑘,𝑙
+ V𝜆𝑘,𝑙
𝑘,𝑙

. It follows that
𝑢
𝜆𝑘,𝑙

𝑘,𝑙
≤ 𝑢
𝑘,𝑙
≤ 𝑤
𝑘,𝑙
and V𝜆𝑘,𝑙
𝑘,𝑙

≤ V𝜆
𝑘,𝑙
. Since 𝑤𝜆𝑘

𝑘,𝑙
= 𝑢
𝜆𝑘

𝑘,𝑙
+ V𝜆𝑘
𝑘,𝑙
, then

𝑤
𝜆𝑘,𝑙

𝑘,𝑙
≤ 𝑤
𝑘,𝑙
+ V𝜆
𝑘,𝑙
. Thus,

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))

𝑡𝑘,𝑙

]

]

𝜆𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑡𝑘,𝑙

󳨐⇒
1

𝑚𝑛

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[

[

𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))

𝑡𝑘,𝑙

]

]

𝑝𝑘,𝑙/𝑡𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑚,𝑛

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑡𝑘,𝑙

󳨐⇒
1

𝑚𝑛

×

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑡𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞ (by (24)) .
(26)

Therefore,

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 → ∞.

(27)

Hence 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞). From (24), we get Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑡, 𝑞) ⊂

Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Theorem 6. (i) Let 0 < inf 𝑝
𝑘,𝑙

≤ 𝑝
𝑘,𝑙

≤ 1. Then Γ2M(Δ
𝑟

𝑠
, 𝑢,

𝑝, 𝑞) ⊂ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑞). (ii) Let 1 ≤ 𝑝

𝑘,𝑙
≤ sup𝑝

𝑘,𝑙
< ∞. Then

Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑞) ⊂ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Proof. (i) Let 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞). Then

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 󳨀→ ∞.

(28)

Since 0 < inf 𝑝
𝑘,𝑙
≤ 𝑝
𝑘,𝑙
≤ 1,

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(29)

From (28) and (29) it follows that 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑞). Thus

Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) ⊂ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑞).

(ii) Let 𝑝
𝑘,𝑙

≥ 1 for each 𝑘, 𝑙 and sup𝑝
𝑘,𝑙

< ∞ and let
𝑥 ∈ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑞). Then

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(30)

Since 1 ≤ 𝑝
𝑘,𝑙
≤ sup𝑝

𝑘,𝑙
< ∞, we have

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

󳨀→ 0 as 𝑚, 𝑛 󳨀→ ∞.

(31)

This implies that 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞). Therefore, Γ2M(Δ

𝑟

𝑠
,

𝑢, 𝑞) ⊂ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Theorem 7. Suppose(1/𝑚𝑛)∑𝑚,𝑛
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(|Δ𝑟
𝑠
𝑥
𝑘,𝑙
|
1/(𝑘+𝑙)/

𝜌))]
𝑝𝑘,𝑙 ≤ |𝑥

𝑘,𝑙
|
1/𝑘+𝑙; then Γ2 ⊂ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Proof. Let 𝑥 ∈ Γ2. Then we have
󵄨󵄨󵄨󵄨𝑥𝑘,𝑙

󵄨󵄨󵄨󵄨
1/𝑘+𝑙

󳨀→ 0 as 𝑘, 𝑙 󳨀→ ∞. (32)

But (1/𝑚𝑛)∑𝑚,𝑛
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(|Δ𝑟
𝑠
𝑥
𝑘,𝑙
|1/(𝑘+𝑙)/𝜌))]

𝑝𝑘,𝑙 ≤|𝑥
𝑘,𝑙
|1/𝑘+𝑙,

by our assumption, implies that

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 󳨀→ ∞ by (32) .

(33)

Then 𝑥 ∈ Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) and Γ2 ⊂ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞).

Theorem 8. Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) is solid.

Proof. Let (𝑥
𝑘,𝑙
) ∈ Γ2M(Δ

𝑟

𝑠
, 𝑢, 𝑝, 𝑞); then

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 󳨀→ ∞, for some 𝜌 > 0.

(34)
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Let (𝛼
𝑘,𝑙
) be a double sequence of scalars such that |𝛼

𝑘,𝑙
| ≤ 1

for all 𝑘, 𝑙 ∈ N × N. Then we have

1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝛼
𝑘,𝑙
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

≤
1

𝑚𝑛

𝑚,𝑛

∑
𝑘,𝑙=1,1

𝑢
𝑘,𝑙
[𝑀
𝑘,𝑙
(𝑞(

󵄨󵄨󵄨󵄨Δ
𝑟

𝑠
𝑥
𝑘,𝑙

󵄨󵄨󵄨󵄨
1/(𝑘+𝑙)

𝜌
))]

𝑝𝑘,𝑙

󳨀→ 0

as 𝑚, 𝑛 󳨀→ ∞

(35)

and this completes the proof.

Corollary 9. Γ2M(Δ
𝑟

𝑠
, 𝑢, 𝑝, 𝑞) is monotone.

Proof. It is obvious.
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[9] B. Altay and F. Başar, “Some new spaces of double sequences,”
Journal of Mathematical Analysis and Applications, vol. 309, no.
1, pp. 70–90, 2005.
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