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Option pricing is always one of the critical issues in financial mathematics and economics. Brownianmotion is the basic hypothesis
of option pricing model, which questions the fractional property of stock price. In this paper, under the assumption that the
exchange rate follows the extended Vasicek model, we obtain the closed form of the pricing formulas for two kinds of power
options under fractional Brownian Motion (FBM) jump-diffusion models.

1. Introduction

The pricing of exotic options is often an optimal stochastic
problem, in which the stochastic process sometimes follows
jump-diffusion process. The issue gets more complicated
because the distribution of themaximum is difficult to derive.
There is no doubt that we should use jump-diffusion process
to describe the changing behaviors of financial markets,
instead of diffusion process, but the pricing process is more
complex.Market quotations, trade practices, and information
dissemination are three important factors which effect trade
speed and transaction volume. Therefore, a reasonable pric-
ing is the premise which will active the exchange market.

In recent years, with the exception of European and
American options, a large number of new financial deriva-
tives are derived in the international financial derivative
market. Among them, the power option is one of the new
typical options. The research of the power options has
significant meanings both theoretical and practical. The BS
[1]model has become an indispensable tool for option pricing
and hedging in the finance industry. However, it is well
documented that the Geometric Brownian Motion (GBM)
assumption for the underlying asset’s price dynamics in the
BS model fails to reflect the real facts: market return data
display excess kurtosis (peaked and fat-tailed distributions),
skewness, volatility clustering, long-range dependence and
large, sudden movements, and so forth. These observa-
tions reveal that a simple GBM assumption misses some

important features of the data. Therefore, many different
option valuation models with realistic price dynamics have
been currently proposed and tested. Some of these models
include jump-diffusion model, subordinated processes, pure
jump processes, Lévy processes, stochastic volatility model,
regime-switching model, GARCH model, processes driven
by FBM, and others. Except for FBM, these models give rise
to incomplete market. Hu and Oksendal [2] and Elliott and
van der Hoek [3] have proved that there is no arbitrage in
the FBM market if the wick product is used in the definition
of stochastic integration. Compared with the traditional
efficient market theory, use the fractional market theory to
describe that the movement of the actual market is more
appropriate and accurate. Pricing options with stochastic
interest rate under jump-diffusion models are an important
field in recent years.

In the FBM market, very little work on the options
valuation is considered. Hu and Oksendal [2] have derived
a formula for the price at time 𝑡 = 0 of a European option.
Necula [4] has extended the formula in [2] for every time
𝑡 ∈ [0, 𝑇]. Liu and Yang [5, 6] considered the European
contingent claim and compound option for the ease of a
nonconstant but deterministic volatility using the quasicon-
ditional expectation. Xue and Wang [7] also consider the
pricing of the extremum options for the two risky assets type.
Elliott and Chan [8] have obtained a closed-form solution
for perpetual American options whose maturity goes to
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infinity by applying quadratic approximation. Peng [9] has
also obtained an explicit price of perpetual American put for
a fractional O-U model. Deng and Lin [10] have considered
approximate valuation for the American put option with
finite maturity date using compound option approach.

In this paper, under the assumption that the exchange rate
obeys the expanding Vasicek models, we obtain the pricing
formulas of two kinds of power options under fractional
jump-diffusion models.

2. The Fundamental Theorem and Lemma

In this section, we state several theorems and lemmas pre-
sented in [11].

Theorem 1. Let 𝑋 ∼ 𝑁(0, 1), 𝑌 ∼ 𝑁(0, 1), Cov (𝑋, 𝑌) = 𝜌.
Then, we have

𝐸 [exp (𝑐𝑋 + 𝑑𝑌) 𝜒
𝑎𝑋+𝑏𝑌≥𝑘

]

= exp(1
2
(𝑐
2

+ 𝑑
2

+ 2𝜌𝑐𝑑))

× 𝑁(
𝑎𝑐 + 𝑏𝑑 + 𝜌 (𝑎𝑑 + 𝑏𝑐) − 𝑘

√𝑎
2
+ 𝑏

2
+ 2𝜌𝑎𝑏

) ,

(1)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 ∈ 𝑅.

Lemma 2. Let 𝑋 ∼ 𝑁(0, 𝜎2
𝑋
), 𝑌 ∼ 𝑁(0, 𝜎

2

𝑌
), Cov (𝑋, 𝑌) = 𝜌.

Then, we have

𝐸 [exp (𝑐𝑋 + 𝑑𝑌) 𝜒
𝑎𝑋+𝑏𝑌≥𝑘

]

= exp(1
2
(𝑐
2

𝜎
2

𝑋
+ 𝑑

2

𝜎
2

𝑌
+ 2𝜌𝑐𝑑𝜎

𝑋
𝜎
𝑌
))𝑁 (𝐷) ,

(2)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 ∈ 𝑅 and

𝐷 =
𝑎𝑐𝜎

2

𝑋
+ 𝑏𝑑𝜎

2

𝑌
+ 𝜌 (𝑎𝑑 + 𝑏𝑐) 𝜎

𝑋
𝜎
𝑌
− 𝑘

√𝑎
2
𝜎
2

𝑋
+ 𝑏

2
𝜎
2

𝑌
+ 2𝜌𝑎𝑏𝜎

𝑋
𝜎
𝑌

. (3)

Definition 3. We have some assumptions as follows:

𝐹 (𝑤) = ∑

𝛼∈𝐼

𝑎
𝛼
𝐻
𝛼
(𝑤) ∈ (𝑆)

∗

𝐻
,

𝐺 (𝑤) = ∑

𝛽∈𝐼

𝑏
𝛽
𝐻
𝛽
(𝑤) ∈ (𝑆)

∗

𝐻
.

(4)

We define wick integral as follows:

𝐹 ⬦ 𝐺 (𝑤) = ∑

𝛼,𝛽∈𝐼

𝑎
𝛼
𝑏
𝛽
𝐻
𝛼+𝛽
(𝑤) . (5)

Definition 4. Wedefine the function𝑌 : 𝑅 → (𝑆)
∗

𝐻
, s.t.𝑌(𝑡)⬦

𝑊
𝐻
(𝑡) is integrated in (𝑆)∗

𝐻
.Then we can define the stochastic

integration of 𝑌 about {𝐵
𝐻
(𝑡), 𝑡 ∈ 𝑅,𝐻 ∈ (0, 1)} as follows:

∫

𝑅

𝑌 (𝑡) 𝑑𝐵
𝐻
(𝑡) = ∫

𝑅

𝑌 (𝑡) ⬦𝑊
𝐻
(𝑡) 𝑑𝑡, (6)

where 𝑊
𝐻
(𝑡) means fractional noise and ⬦ means wick

integral.

3. Our Models

3.1. Interest Rate Model. We assume that the interest rate
follows the extended Vasicekmodel in this paper.Thatmeans
it has the following form:

𝑑𝑟 (𝑡) = (𝑎 (𝑡) − 𝑏 (𝑡) 𝑟 (𝑡)) 𝑑𝑡 + 𝜎
𝑟
(𝑡) 𝑑𝐵

𝑄

(𝑡) , (7)

where 𝑎 (𝑡) affects long-term average interest rate; 𝑏 (𝑡) is the
average recovery rate which adjusts the relationship of short-
term and long-term; and 𝜎

𝑟
(𝑡) is fluctuation ratio.

As we all know, if we want to find out the discounted
factor, firstly we need to find out the discount rate ∫𝑇

𝑡

𝑟 (𝑠)𝑑𝑠.
By the It𝑜 theorem, we have

𝑑 (𝑒
𝑛(𝑠)

𝑟 (𝑠)) = 𝑒
𝑛(𝑠)

(𝑎 (𝑠) 𝑑𝑠 + 𝜎
𝑟
(𝑠) 𝑑𝐵

𝑄

(𝑠)) , (8)

where 𝑛 (𝑠) = ∫𝑠
0

𝑏 (𝑢) 𝑑𝑢. Then by the integral both sides of
the equation above on [𝑡, 𝑠], we have

𝑟 (𝑠) = 𝑟 (𝑡) 𝑒
𝑛(𝑡)−𝑛(𝑠)

+ ∫

𝑠

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑎 (𝑢) 𝑑𝑢

+ ∫

𝑠

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝜎
𝑟
(𝑢) 𝑑𝐵

𝑄

(𝑢) .

(9)

Further,

∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠

= 𝑟 (𝑡) ∫

𝑇

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑑𝑠 + ∫

𝑇

𝑡

∫

𝑠

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑎 (𝑢) 𝑑𝑢 𝑑𝑠

+ ∫

𝑇

𝑡

∫

𝑠

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝜎
𝑟
(𝑢) 𝑑𝐵

𝑄

(𝑢)

= 𝑟 (𝑡) ∫

𝑇

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑑𝑠 + ∫

𝑇

𝑡

𝑎 (𝑢) ∫

𝑠

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑑𝑠 𝑑𝑢

+ ∫

𝑇

𝑡

𝜎
𝑟
(𝑢) ∫

𝑠

𝑡

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑑𝑠 𝑑𝐵
𝑄

(𝑢)

= 𝑟 (𝑡)𝑚 (𝑡, 𝑇) + ∫

𝑇

𝑡

𝑎 (𝑢)𝑚 (𝑢, 𝑇) 𝑑𝑢

+ ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢)

= 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢) ,

(10)

where

𝑚(𝑢, V) = ∫
V

𝑢

𝑒
𝑛(𝑡)−𝑛(𝑠)

𝑑𝑠, (11)

𝐺 (𝑡, 𝑇, 𝑟
𝑡
) = 𝑟 (𝑡)𝑚 (𝑡, 𝑇) + ∫

𝑇

𝑡

𝑎 (𝑢)𝑚 (𝑢, 𝑇) 𝑑𝑢. (12)
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3.2. Jump-Diffusion Model. We assume the market is a full
market with continuous time, and there exist two kinds of
continuous trading assets, one of which is risk-free bonds.
The price process of bonds 𝑀(𝑡) satisfies the following
equation:

𝑑𝑀 (𝑡)

𝑀 (𝑡)
= 𝑟 (𝑡) 𝑑𝑡, 𝑀 (0) = 1, (13)

where 𝑟 (𝑡) is a continuous function of time 𝑡. The other
trading asset is the risk asset 𝑆 (𝑡); the price process of 𝑆 (𝑡)
satisfies the following equation:

𝑑𝑆 (𝑡) = 𝑆 (𝑡) [𝜇 (𝑡) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝐵 (𝑡) + (𝑒
𝐽(𝑡)

− 1) 𝑑𝑄
𝑡
] , (14)

where 𝐵 (𝑡) is Brownian motion;𝑄
𝑡
is the number of random

jumps of underlying asset price within [0, 𝑡] and it follows
the Poisson process with the parameter 𝜆; 𝐽(𝑡) is the random
variable which follows the normal distribution𝑁(−𝜎2

𝐽
/2, 𝜎

2

𝐽
);

𝑒
𝐽(𝑡)

− 1 is the height of the stock price jump; 𝜇 (𝑡) is the
expected rate of return; and 𝜎2(𝑡) is the volatility.

Solving (14), we have

𝑆 (𝑡) = 𝑆
0
exp[∫

𝑡

0

(𝜇 (𝑡) −
𝜎
2

(𝑡)

2
) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑡) 𝑑𝐵 (𝑡)

+

𝑄
𝑡

∑

𝑖=1

𝐽 (𝑖)] .

(15)

In addition, jump-diffusion model is independent of the
risk appetite, so risk-free interest rate 𝑟 (𝑡) can be used to take
place of the expected rate of return 𝜇 (𝑡) according to the risk-
neutral valuation principles. Consequently, the formula (15)
can be rewritten as follows:

𝑆 (𝑡) = 𝑆
0
exp[∫

𝑡

0

(𝑟 (𝑡) −
𝜎
2

(𝑡)

2
) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑡) 𝑑𝐵 (𝑡)

+

𝑄
𝑡

∑

𝑖=1

𝐽 (𝑖)] .

(16)

3.3. Fractional Jump-Diffusion Model. Fractional jump-
diffusion model is the extension of jump-diffusion model
because of the replacement of Brownian motion 𝐵(𝑡)

with fractional Brownian motion 𝐵
𝐻
(𝑡) in the model. The

risk-neutral dynamics of the underlying asset is given as

𝑑𝑆 (𝑡) = 𝑆 (𝑡) [(𝑟 (𝑡) − 𝜆𝜃) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝐵
𝐻
(𝑡) + 𝐽 (𝑡) 𝑑𝑄

𝑡
] ,

(17)

where {𝐵
𝐻
(𝑡), 0 ≤ 𝑡 ≤ 𝑇} is the fractional Brownianmotion in

probability space (Ω, 𝐹, 𝑃);𝑄
𝑡
is the number of random jumps

of underlying asset price within [𝑡, 𝑇], which follows Poisson
process with the parameter 𝜆; 𝐽(𝑡) is the height of the jump on
stock price, satisfying ln (1+𝐽(𝑡)) ∼ 𝑁 (ln(1+𝜃)−(𝜎2/2), 𝜎2);
𝑟 (𝑡) is the expected rate of return; and 𝜎2(𝑡) is the volatility.

From (17), we have

𝑑𝑆 (𝑡)

𝑆 (𝑡)
= (𝑟 (𝑡) − 𝜆𝜃) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝐵

𝐻
(𝑡) + 𝐽 (𝑡) 𝑑𝑄

𝑡
. (18)

According to the definitions and properties of stochastic
calculus and function exp⬦ (𝑋), we get

𝑆 (𝑡) = 𝑆
0
exp⬦[∫

𝑡

0

(𝑟 (𝑠) − 𝜆𝜃) 𝑑𝑠

+∫

𝑡

0

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠) +

𝑄
𝑡

∑

𝑖=1

ln (1 + 𝐽 (𝑖))]

= 𝑆
0

𝑄
𝑡

∏

𝑖=1

(1 + 𝐽 (𝑖))

× exp⬦[∫
𝑡

0

(𝑟 (𝑠) − 𝜆𝜃) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)]

= 𝑆
0

𝑄
𝑡

∏

𝑖=1

(1 + 𝐽 (𝑖))

× exp [∫
𝑡

0

(𝑟 (𝑠) − 𝜆𝜃 − 𝐻𝜎
2

(𝑠) 𝑠
2𝐻−1

) 𝑑𝑠

+∫

𝑡

0

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)] .

(19)

4. Pricing of Two Kinds of Power
Options under FBM, Stochastic Rate, and
Jump-Diffusion Models

In this section, we obtain pricing formulas of two kinds of
power options.

4.1. Pricing of the First Kind of Power Option. From (11), we
have

∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 = 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢) , (20)

where𝑚(𝑢, V), 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) are given by (12), (23), respectively.

Suppose that underlying assets jump m times during
[𝑡, 𝑇], then

𝑆
𝑇
= 𝑆

𝑡

𝑚

∏

𝑖=1

(1 + 𝐽 (𝑖))

× exp [∫
𝑇

𝑡

(𝑟 (𝑠) − 𝜆𝜃 − 𝐻𝜎
2

(𝑠) 𝑠
2𝐻−1

) 𝑑𝑠

+∫

𝑇

𝑡

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)] .

(21)

Theorem 5. The formula of the first kind of call power option
with exercise price 𝐾 at exercise date 𝑇 is

𝐶 (𝑡, 𝑟
𝑡
, 𝑆
𝑡
, 𝐾)

=

∞

∑

𝑚=0

[exp (−𝜆 (𝑇 − 𝑡)) (𝜆(𝑇 − 𝑡))
𝑚

𝑚!
(𝐼
𝑐
− 𝐼𝐼

𝑐
)] ,

(22)
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where

𝐼
𝑐
= 𝑆

𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖)) exp (𝑠
1
) ⋅ 𝑁 (𝑑

1
) ,

𝐼𝐼
𝑐
= 𝐾 exp[

𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)] ⋅ 𝑁 (𝑑

2
) ,

𝑠
1
=
(𝑛 − 1)

2

2
𝜎
2

𝑋
+
𝑛
2

− 𝑛

2
𝜎
2

𝑌
+ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

− 𝑛∫

𝑇

𝑡

𝜆𝜃𝑑𝑠,

𝑑
1
= (ln[

[

𝑆
𝑡
⋅
𝑛

√
∏
𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾

]

]

+ 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

𝜆𝜃𝑑𝑠

+ (𝑛 − 1) 𝜎
2

𝑋
+
2𝑛 − 1

2
𝜎
2

𝑌
)(√𝜎

2

𝑋
+ 𝜎

2

𝑌
)

−1

,

𝑑
2
= (ln[

[

𝑆
𝑡
⋅
𝑛

√
∏
𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾

]

]

+ 𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

−∫

𝑇

𝑡

𝜆𝜃𝑑𝑠 − 𝜎
2

𝑋
−
𝜎
2

𝑌

2
)(√𝜎

2

𝑋
+ 𝜎

2

𝑌
)

−1

.

(23)

Proof. According to the No-Arbitrage pricing theory, we get

𝐶 (𝑡, 𝑟
𝑡
, 𝑆
𝑡
, 𝐾)

= 𝐸 [exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) (𝑆
𝑛

𝑇
− 𝐾) 𝜒

𝑆
𝑛

𝑇
>𝐾
]

=

∞

∑

𝑚=0

[exp (−𝜆 (𝑇 − 𝑡)) (𝜆 (𝑇 − 𝑡))
𝑚

𝑚!
𝐼
𝑐
− 𝐼𝐼

𝑐
] .

(24)

Let

𝑋 = ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢) ,

𝑌 = ∫

𝑇

𝑡

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠) ,

(25)

then

𝑋 ∼ 𝑁(0, ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝑢) = 𝑁(0, 𝜎

2

𝑋
) ,

𝑌 ∼ (0, 2𝐻∫

𝑇

𝑡

𝜎
2

(𝑢) 𝑢
2𝐻−1

𝑑𝑢 = 𝑁(0, 𝜎
2

𝑌
)) .

(26)

Then we have

𝐼
𝑐
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑛

𝑇
≥𝐾
] . (27)

Since

exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑇

= exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

⋅ exp [𝑛∫
𝑇

𝑡

(𝑟 (𝑠) − 𝜆𝜃 − 𝐻𝜎
2

(𝑠) 𝑠
2𝐻−1

) 𝑑𝑠

+ 𝑛∫

𝑇

𝑡

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) ∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
] ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{(𝑛 − 1) [𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

+∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢)]

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
} ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
] ⋅ 𝑒

(𝑛−1)𝑋+𝑛𝑌

,

𝑆
𝑛

𝑇
> 𝐾

󳨐⇒ 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{𝑛 ⋅ [∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
]}

⋅ 𝑒
𝑛𝑌

> 𝐾

󳨐⇒ 𝑆
𝑡
⋅
𝑛
√

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

>
𝑛
√𝐾
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󳨐⇒ exp [∫
𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢) + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

>

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

󳨐⇒ 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
+ 𝑋 + 𝑌

> ln[[

[

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]
]

]

󳨐⇒ 𝑋 + 𝑌 > ln[[

[

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]
]

]

− 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 +
𝜎
2

𝑌

2

(28)

which means

𝜒
𝑆
𝑛

𝑇
>𝐾

= 𝜒
𝑋+𝑌>ln[ 𝑛√𝐾/𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

(29)

then we obtain

𝐼
𝑐
= 𝐸[𝑆

𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅𝜒
𝑋+𝑌>ln[ 𝑛√𝐾/𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝐸 [𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅𝜒
𝑋+𝑌>ln[ 𝑛√𝐾/𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ exp(
(𝑛 − 1)

2

𝜎
2

𝑋
+ 𝑛

2

𝜎
2

𝑌

2
) ⋅ 𝑁 (𝑑

1
)

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖)) exp (𝑠
1
) ⋅ 𝑁 (𝑑

1
) ,

𝐼𝐼
𝑐
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑛

𝑇
≥𝐾
] ,

exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)

= exp(−𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢))

= exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
)) ⋅ exp (−𝑋) .

(30)

In the similar way, we have

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑛

𝑇
≥𝐾
]

= 𝐾 ⋅ exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
))

⋅ 𝐸 [exp (−𝑋)

×𝜒
𝑋+𝑌>ln[ 𝑛√𝐾/𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

]

= 𝐾 exp(
𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)) ⋅ 𝑁 (𝑑

2
) .

(31)

Theorem 6. The formula of the first kind of put power option
with exercise price 𝐾 at exercise date 𝑇 is

𝑃 (𝑡, 𝑟
𝑡
, 𝑆
𝑡
, 𝐾)

=

∞

∑

𝑚=0

[exp (−𝜆 (𝑇 − 𝑡)) (𝜆(𝑇 − 𝑡))
𝑚

𝑚!
(𝐼
𝑝
− 𝐼𝐼

𝑝
)] ,

(32)

where

𝐼
𝑝
= 𝐾 exp[

𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)] ⋅ 𝑁 (−𝑑

2
) ,

𝐼𝐼
𝑝
= 𝑆

𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖)) exp (𝑠
1
) ⋅ 𝑁 (−𝑑

1
) ,

(33)

Proof. Similar to the proof procedure in the first kind of call
power option, we have

𝐼
𝑝
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑛

𝑇
<𝐾
] . (34)
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Since

𝑆
𝑛

𝑇
< 𝐾

󳨐⇒ 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{𝑛 ⋅ [∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
]}

⋅ 𝑒
𝑛𝑌

< 𝐾

󳨐⇒ 𝑆
𝑡
⋅
𝑛
√

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

<
𝑛
√𝐾

󳨐⇒ exp [∫
𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢) + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

<

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

󳨐⇒ 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
+ 𝑋 + 𝑌

< ln[[

[

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]
]

]

󳨐⇒ 𝑋 + 𝑌 < ln[[

[

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]
]

]

− 𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

− ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 +
𝜎
2

𝑌

2
,

𝜒
𝑆
𝑛

𝑇
<𝐾

= 𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))/

𝑛
√𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)

= exp(−𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢))

= exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
)) ⋅ exp (−𝑋)

(35)

we obtain

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑛

𝑇
<𝐾
]

= 𝐾 ⋅ exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
))

⋅ 𝐸 [ exp (−𝑋)

× 𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))/

𝑛
√𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

]

= 𝐾 exp(
𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)) ⋅ 𝑁 (−𝑑

2
) .

(36)

Also

𝐼𝐼
𝑝
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑛

𝑇
<𝐾
] . (37)

Since

exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑇

= exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [𝑛∫
𝑇

𝑡

(𝑟 (𝑠) − 𝜆𝜃 − 𝐻𝜎
2

(𝑠) 𝑠
2𝐻−1

) 𝑑𝑠

+ 𝑛∫

𝑇

𝑡

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) ∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠

+𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
] ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{(𝑛 − 1) [𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢)]

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
} ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝑒
(𝑛−1)𝑋+𝑛𝑌

,

𝑆
𝑛

𝑇
< 𝐾
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󳨐⇒ 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{𝑛 ⋅ [∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
]}

⋅ 𝑒
𝑛𝑌

< 𝐾

󳨐⇒ 𝑆
𝑡
⋅
𝑛
√

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

<
𝑛
√𝐾

󳨐⇒ exp [∫
𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢) + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+ ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

<

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

󳨐⇒ 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
+ 𝑋 + 𝑌

< ln[[

[

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]
]

]

󳨐⇒ 𝑋 + 𝑌 < ln[[

[

𝑛
√𝐾

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]
]

]

− 𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

− ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 +
𝜎
2

𝑌

2
,

𝜒
𝑆
𝑛

𝑇
<𝐾

= 𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))/

𝑛
√𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

,

(38)

we obtain

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑛

𝑇
<𝐾
]

= 𝐸[𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))/

𝑛
√𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝐸 [𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅
𝑛
√∏
𝑚

𝑖=1
(1+𝑗(𝑖))/

𝑛
√𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ exp(
(𝑛 − 1)

2

𝜎
2

𝑋
+ 𝑛

2

𝜎
2

𝑌

2
)

⋅ 𝑁
[
[

[

(− ln[[

[

𝑆
𝑡
⋅
𝑛
√∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝑛
√𝐾

]
]

]

− 𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

+ ∫

𝑇

𝑡

(𝜆𝜃) 𝑑𝑠 − (𝑛 − 1) 𝜎
2

𝑋
−
(2𝑛 − 1)

2
𝜎
2

𝑌
)

× (√𝜎
2

𝑋
+ 𝜎

2

𝑌
)

−1

]
]

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[(𝑛 − 1)
2

2
𝜎
2

𝑋
+
𝑛
2

− 𝑛

2
𝜎
2

𝑌
+ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

− 𝑛∫

𝑇

𝑡

𝜆𝜃 𝑑𝑠] ⋅ 𝑁 (−𝑑
1
) .

(39)

4.2. Pricing of the Second Kind Power Option

Theorem 7. The formula of the second kind call power option
with exercise price 𝐾, exercise date 𝑇 is

𝐶 (𝑡, 𝑟
𝑡
, 𝑆
𝑡
, 𝐾)

=

∞

∑

𝑚=0

[exp (−𝜆 (𝑇 − 𝑡)) (𝜆(𝑇 − 𝑡))
𝑚

𝑚!
(𝐼𝐼𝐼

𝑐
− 𝐼𝑉

𝑐
)] ,

(40)
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where

𝐼𝐼𝐼
𝑐

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[(𝑛 − 1)
2

2
𝜎
2

𝑋
+
𝑛
2

− 𝑛

2
𝜎
2

𝑌

+ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − 𝑛∫

𝑇

𝑡

𝜆𝜃𝑑𝑠] ⋅ 𝑁 (𝑑
3
) ,

𝐼𝑉
𝑐
= 𝐾 exp[

𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)] ⋅ 𝑁 (𝑑

4
) ,

𝑁 (𝑑
3
)

= 𝑁((ln[𝑆
𝑡
⋅
∏
𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾
] + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

− ∫

𝑇

𝑡

𝜆𝜃𝑑𝑠 + (𝑛 − 1) 𝜎
2

𝑋
+
2𝑛 − 1

2
𝜎
2

𝑌
)

× (√𝜎
2

𝑋
+ 𝜎

2

𝑌
)

−1

) ,

𝑁 (𝑑
4
)

= 𝑁((ln[𝑆
𝑡
⋅
∏
𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾
] + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

−∫

𝑇

𝑡

𝜆𝜃𝑑𝑠 − 𝜎
2

𝑋
−
𝜎
2

𝑌

2
)(√𝜎

2

𝑋
+ 𝜎

2

𝑌
)

−1

) .

(41)

Proof. Similarly, we have

𝐼𝐼𝐼
𝑐
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑇
≥𝐾
] . (42)

Since

exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑇

= exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [𝑛∫
𝑇

𝑡

(𝑟 (𝑠) − 𝜆𝜃 − 𝐻𝜎
2

(𝑠) 𝑠
2𝐻−1

) 𝑑𝑠

+ 𝑛∫

𝑇

𝑡

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) ∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
] ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{(𝑛 − 1) [𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢)]

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
} ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝑒
(𝑛−1)𝑋+𝑛𝑌

,

𝑆
𝑇
≥ 𝐾

󳨐⇒ 𝑆
𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

≥ 𝐾

󳨐⇒ exp[∫
𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢) + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
] ⋅ 𝑒

𝑌

>
𝐾

𝑆
𝑡
⋅ ∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

󳨐⇒ 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝜎
2

𝑌

2
+ 𝑋 + 𝑌

≥ ln[ 𝐾

𝑆
𝑡
⋅ ∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]

󳨐⇒ 𝑋 + 𝑌 ≥ ln[ 𝐾

𝑆
𝑡
⋅ ∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

]

− 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 +
𝜎
2

𝑌

2
,

𝜒
𝑆
𝑇
≥𝐾
= 𝜒

𝑋+𝑌≥ln[𝐾/𝑆
𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

,

(43)

we obtain

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑇
≥𝐾
]

= 𝐸[𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))
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× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅ 𝜒
𝑋+𝑌≥ln[𝐾/𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝐸 [𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅ 𝜒
𝑋+𝑌≥ln[𝐾/𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ exp(
(𝑛 − 1)

2

𝜎
2

𝑋
+ 𝑛

2

𝜎
2

𝑌

2
)

⋅ 𝑁[(ln[
𝑆
𝑡
⋅ ∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾
] + 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

− ∫

𝑇

𝑡

(𝜆𝜃) 𝑑𝑠 + (𝑛 − 1) 𝜎
2

𝑋
+
(2𝑛 − 1)

2
𝜎
2

𝑌
)

× (√𝜎
2

𝑋
+ 𝜎

2

𝑌
)

−1

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[(𝑛 − 1)
2

2
𝜎
2

𝑋
+
𝑛
2

− 𝑛

2
𝜎
2

𝑌
+ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

− 𝑛∫

𝑇

𝑡

𝜆𝜃𝑑𝑠] ⋅ 𝑁 (𝑑
3
) .

(44)

Also,

𝐼𝑉
𝑐
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑇
≥𝐾
] , (45)

where

𝜒
𝑆
𝑇
≥𝐾

= 𝜒
𝑋+𝑌≥ln[𝐾/𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

,

exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)

= exp(−𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢))

= exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
)) ⋅ exp (−𝑋) .

(46)

In the similar way, we have

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑇
≥𝐾
]

= 𝐾 ⋅ exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
))

⋅ 𝐸 [ exp (−𝑋)

× 𝜒
𝑋+𝑌≥ln[𝐾/𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))]−𝐺(𝑡,𝑇,𝑟

𝑡
)−∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠+𝜎

2

𝑌
/2

]

= 𝐾 exp(
𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)) ⋅ 𝑁 (𝑑

4
) .

(47)

Theorem 8. The formula of the second kind put power option
with exercise price 𝐾, exercise date 𝑇 is

𝑃 (𝑡, 𝑟
𝑡
, 𝑆
𝑡
, 𝐾)

=

∞

∑

𝑚=0

[exp (−𝜆 (𝑇 − 𝑡)) (𝜆(𝑇 − 𝑡))
𝑚

𝑚!
(𝐼𝐼𝐼

𝑝
− 𝐼𝑉

𝑝
)] ,

(48)

where

𝐼𝐼𝐼
𝑝
= 𝐾 exp[

𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)] ⋅ 𝑁 (−𝑑

4
) ,

𝐼𝑉
𝑝
= 𝑆

𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[(𝑛 − 1)
2

2
𝜎
2

𝑋
+
𝑛
2

− 𝑛

2
𝜎
2

𝑌
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+ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − 𝑛∫

𝑇

𝑡

𝜆𝜃𝑑𝑠] ⋅ 𝑁 (−𝑑
3
) ,

𝑁 (−𝑑
4
) = 𝑁((− ln[𝑆

𝑡
⋅
∏
𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾
] − 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+∫

𝑇

𝑡

𝜆𝜃𝑑𝑠 + 𝜎
2

𝑋
+
𝜎
2

𝑌

2
)

× (√𝜎
2

𝑋
+ 𝜎

2

𝑌
)

−1

) ,

𝑁 (−𝑑
3
) = 𝑁((− ln[𝑆

𝑡
⋅
∏
𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾
] − 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+ ∫

𝑇

𝑡

𝜆𝜃𝑑𝑠 − (𝑛 − 1) 𝜎
2

𝑋
−
2𝑛 − 1

2
𝜎
2

𝑌
)

× (√𝜎
2

𝑋
+ 𝜎

2

𝑌
)

−1

) .

(49)

Proof. Similarly, we have

𝐼𝐼𝐼
𝑝
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑇
<𝐾
] . (50)

Since

𝜒
𝑆
𝑇
<𝐾
!

= 𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))/

𝑛
√𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

,

exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)

= exp(−𝐺 (𝑡, 𝑇, 𝑟
𝑡
) − ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵

𝑄

(𝑢))

= exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
)) ⋅ exp (−𝑋) ,

(51)

we obtain

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)𝐾𝜒
𝑆
𝑇
<𝐾
]

= 𝐾 ⋅ exp (−𝐺 (𝑡, 𝑇, 𝑟
𝑡
))

⋅ 𝐸 [ exp (−𝑋)

× 𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))/𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

]

= 𝐾 exp(
𝜎
2

𝑋

2
− 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)) ⋅ 𝑁 (−𝑑

4
) .

(52)

Also,

𝐼𝑉
𝑝
= 𝐸[exp(−∫

𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑇
<𝐾
] . (53)

Since

exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑇

= exp [−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠] 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [𝑛∫
𝑇

𝑡

(𝑟 (𝑠) − 𝜆𝜃 − 𝐻𝜎
2

(𝑠) 𝑠
2𝐻−1

) 𝑑𝑠

+ 𝑛∫

𝑇

𝑡

𝜎 (𝑠) 𝑑𝐵
𝐻
(𝑠)]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) ∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠 + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
] ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp{(𝑛 − 1) [𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + ∫

𝑇

𝑡

𝜎
𝑟
(𝑢)𝑚 (𝑢, 𝑇) 𝑑𝐵 (𝑢)]

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
} ⋅ 𝑒

𝑛𝑌

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
)

+ 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
] ⋅ 𝑒

(𝑛−1)𝑋+𝑛𝑌

,

𝜒
𝑆
𝑇
<𝐾
= 𝜒

−𝑋−𝑌>ln[𝑆
𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))/𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

(54)

we obtain

𝐸[exp(−∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠) 𝑆
𝑛

𝑇
𝜒
𝑆
𝑇
<𝐾
]

= 𝐸[𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ 𝑒
(𝑛−1)𝑋+𝑛𝑌

⋅ 𝜒
−𝑋−𝑌>ln[𝑆

𝑡
⋅∏
𝑚

𝑖=1
(1+𝑗(𝑖))/𝐾]+𝐺(𝑡,𝑇,𝑟

𝑡
)+∫

𝑇

𝑡
(−𝜆𝜃)𝑑𝑠−𝜎

2

𝑌
/2

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))
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× exp [(𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟
𝑡
) + 𝑛∫

𝑇

𝑡

(−𝜆𝜃) 𝑑𝑠 −
𝑛

2
𝜎
2

𝑌
]

⋅ exp(
(𝑛 − 1)

2

𝜎
2

𝑋
+ 𝑛

2

𝜎
2

𝑌

2
)

⋅ 𝑁[(− ln[
𝑆
𝑡
⋅ ∏

𝑚

𝑖=1
(1 + 𝑗 (𝑖))

𝐾
] − 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

+ ∫

𝑇

𝑡

(𝜆𝜃) 𝑑𝑠 − (𝑛 − 1) 𝜎
2

𝑋
−
(2𝑛 − 1)

2
𝜎
2

𝑌
)

× (√𝜎
2

𝑋
+ 𝜎

2

𝑌
)

−1

]

= 𝑆
𝑛

𝑡

𝑚

∏

𝑖=1

(1 + 𝑗 (𝑖))

× exp[(𝑛 − 1)
2

2
𝜎
2

𝑋
+
𝑛
2

− 𝑛

2
𝜎
2

𝑌
+ (𝑛 − 1) 𝐺 (𝑡, 𝑇, 𝑟

𝑡
)

− 𝑛∫

𝑇

𝑡

𝜆𝜃𝑑𝑠] ⋅ 𝑁 (−𝑑
3
) .

(55)

5. Conclusions

In this paper, we investigate the issue of pricing the reset
option in FBM model, closed-form formulas for the reset
option with a single reset date, and the phenomena of delta
of the reset jumps existing in the reset option during the reset
date. Under the assumption that the exchange rate follows
the extended Vasicek model, we obtain the closed form of
the pricing formulas for two kinds of power options under
fractional Brownian motion(FBM) jump-diffusion models.
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