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The aim of this paper is twofold. First, we introduce the concept of quaternion metric spaces which generalizes both real and
complex metric spaces. Further, we establish some fixed point theorems in quaternion setting. Secondly, we prove a fixed point
theorem in normal cone metric spaces for four self-maps satisfying a general contraction condition.

1. Introduction and Preliminaries

A metric space can be thought as very basic space having
a geometry, with only a few axioms. In this paper we
introduce the concept of quaternionmetric spaces.The paper
treats material concerning quaternion metric spaces that is
important for the study of fixed point theory in Clifford
analysis. We introduce the basic ideas of quaternion metric
spaces and Cauchy sequences and discuss the completion of
a quaternion metric space.

In what follows we will work on H, the skew field of
quaternions. This means we can write each element 𝑥 ∈ H in
the form 𝑞 = 𝑥

0
+ 𝑥
1
𝑖 + 𝑥
2
𝑗 + 𝑥
3
𝑘, 𝑥
𝑛
∈ R, where 1, 𝑖, 𝑗, 𝑘 are

the basis elements ofH and 𝑛 = 1, 2, 3. For these elements we
have the multiplication rules 𝑖2 = 𝑗

2
= 𝑘
2
= −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘,

𝑘𝑗 = −𝑗𝑘 = −𝑖, and 𝑘𝑖 = −𝑖𝑘 = 𝑗. The conjugate element 𝑥 is
given by 𝑞 = 𝑥

0
− 𝑥
1
𝑖 − 𝑥
2
𝑗 − 𝑥
3
𝑘. The quaternion modulus

has the form of |𝑞| = √𝑥2
0
+ 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
.

Quaternions can be defined in several different equiva-
lent ways. Notice the noncommutative multiplication, their
novel feature; otherwise, quaternion arithmetic has spe-
cial properties. There is also more abstract possibilty of
treating quaternions as simply quadruples of real numbers
[𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
], with operation of addition and multiplication

suitably defined. The components naturally group into the
imaginary part (𝑥

1
, 𝑥
2
, 𝑥
3
), for which we take this part as

a vector and the purely real part, 𝑥
0
, which called a scalar.

Sometimes, we write a quaternion as [V, 𝑥
0
] with V =

(𝑥
1
, 𝑥
2
, 𝑥
3
).

Here, we give the following forms:

𝑞 := [V, 𝑥
0
] , V ∈ R

3
; 𝑥
0
∈ R

= [(𝑥
1
, 𝑥
2
, 𝑥
3
) , 𝑥
0
] ; 𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
∈ R

= 𝑥
0
+ 𝑥
1
𝑖 + 𝑥
2
𝑗 + 𝑥
3
𝑘.

(1)

Thus a quaternion 𝑞 may be viewed as a four-dimensional
vector (𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
).

Formore information about quaternion analysis, we refer
to [1–4] and others.

Define a partial order ≾ on H as follows.
𝑞
1
≾ 𝑞
2
if and only if Re(𝑞

1
) ≤ Re(𝑞

2
), Im
𝑠
(𝑞
1
) ≤ Im

𝑠
(𝑞
2
),

𝑞
1
, 𝑞
2
∈ H; 𝑠 = 𝑖, 𝑗, 𝑘, where Im

𝑖
= 𝑥
1
; Im
𝑗
= 𝑥
2
; Im
𝑘
= 𝑥
3
.

It follows that 𝑞
1
≾ 𝑞
2
, if one of the following conditions is

satisfied.

(i) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) = Im

𝑠
1

(𝑞
2
), where 𝑠

1
= 𝑗, 𝑘;

Im
𝑖
(𝑞
1
) < Im

𝑖
(𝑞
2
).

(ii) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) = Im

𝑠
2

(𝑞
2
), where 𝑠

2
= 𝑖, 𝑘;

Im
𝑗
(𝑞
1
) < Im

𝑗
(𝑞
2
).

(iii) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) = Im

𝑠
3

(𝑞
2
), where 𝑠

3
= 𝑖, 𝑗;

Im
𝑘
(𝑞
1
) < Im

𝑘
(𝑞
2
).

(iv) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) < Im

𝑠
1

(𝑞
2
); Im
𝑖
(𝑞
1
) =

Im
𝑖
(𝑞
2
).
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(v) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) < Im

𝑠
2

(𝑞
2
); Im
𝑗
(𝑞
1
) =

Im
𝑗
(𝑞
2
).

(vi) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) < Im

𝑠
3

(𝑞
2
); Im
𝑘
(𝑞
1
) =

Im
𝑘
(𝑞
2
).

(vii) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
(𝑞
1
) < Im

𝑠
(𝑞
2
).

(viii) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
(𝑞
1
) = Im

𝑠
(𝑞
2
).

(ix) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) = Im

𝑠
1

(𝑞
2
); Im
𝑖
(𝑞
1
) <

Im
𝑖
(𝑞
2
).

(x) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) = Im

𝑠
2

(𝑞
2
); Im
𝑗
(𝑞
1
) <

Im
𝑗
(𝑞
2
).

(xi) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) = Im

𝑠
3

(𝑞
2
); Im
𝑘
(𝑞
1
) <

Im
𝑘
(𝑞
2
).

(xii) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) < Im

𝑠
1

(𝑞
2
); Im
𝑖
(𝑞
1
) =

Im
𝑖
(𝑞
2
).

(xiii) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) < Im

𝑠
2

(𝑞
2
); Im
𝑗
(𝑞
1
) =

Im
𝑗
(𝑞
2
).

(xiv) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) < Im

𝑠
3

(𝑞
2
); Im
𝑘
(𝑞
1
) =

Im
𝑘
(𝑞
2
).

(xv) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
(𝑞
1
) < Im

𝑠
(𝑞
2
).

(xvi) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
(𝑞
1
) = Im

𝑠
(𝑞
2
).

Remark 1. In particular, we will write 𝑞
1
⋨ 𝑞
2
if 𝑞
1
̸= 𝑞
2
and

one from (i) to (xvi) is satisfied. Also, we will write 𝑞
1
≺ 𝑞
2
if

only (xv) is satisfied. It should be remarked that

𝑞
1
≾ 𝑞
2
󳨐⇒

󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑞
2

󵄨
󵄨
󵄨
󵄨
. (2)

Remark 2. The conditions from (i) to (xv) look strange but
these conditions are natural generalizations to the corre-
sponding conditions in the complex setting (see [5]). So,
the number of these conditions is related to the number
of units in the working space. For our quaternion setting
we have four units (one real and three imaginary); then we
have 24 conditions. But in the complex setting there were 22
conditions.

Azam et al. in [5] introduced the definition of the complex
metric space as follows.

Definition 3 ([5]). Let𝑋 be a nonempty set and suppose that
the mapping 𝑑C : 𝑋 × 𝑋 → C satisfies the following.

(d
1
) 0 < 𝑑C(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑C(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦.

(d
2
) 𝑑C(𝑥, 𝑦) = 𝑑C(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

(d
3
) 𝑑C(𝑥, 𝑦) ≾ 𝑑C(𝑥, 𝑧) + 𝑑C(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then (𝑋, 𝑑C) is called a complex metric space.
Now, we extend the above definition to Clifford analysis.

Definition 4. Let 𝑋 be a nonempty set. Suppose that the
mapping 𝑑H : 𝑋 × 𝑋 → H satisfies

(1) 0 ≾ 𝑑H(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑H(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦,

(2) 𝑑H(𝑥, 𝑦) = 𝑑H(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋,
(3) 𝑑H(𝑥, 𝑦) ≾ 𝑑H(𝑥, 𝑧) + 𝑑H(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then 𝑑H is called a quaternion valued metric on 𝑋, and
(𝑋, 𝑑H) is called a quaternion valued metric space.

Example 5. Let 𝑑H : H × H → H be a quaternion valued
function defined as 𝑑H(𝑝, 𝑞) = |𝑎

0
− 𝑏
0
| + 𝑖|𝑎

1
− 𝑏
1
| + 𝑗|𝑎

2
−

𝑏
2
| + 𝑘|𝑎

3
− 𝑏
3
|, where 𝑝, 𝑞 ∈ H with

𝑝 = 𝑎
0
+ 𝑎
1
𝑖 + 𝑎
2
𝑗 + 𝑎
3
𝑘, 𝑞 = 𝑏

0
+ 𝑏
1
𝑖 + 𝑏
2
𝑗 + 𝑏
3
𝑘;

𝑎
𝑠
, 𝑏
𝑠
∈ R; 𝑠 = 1, 2, 3.

(3)

Then (𝑋, 𝑑H) is a quaternion metric space.
Now, we give the following definitions.

Definition 6. Point 𝑥 ∈ 𝑋 is said to be an interior point of set
𝐴 ⊆ 𝑋 whenever there exists 0 ≺ 𝑟 ∈ H such that

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑H (𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐴. (4)

Definition 7. Point 𝑥 ∈ 𝑋 is said to be a limit point of 𝐴 ⊆ 𝑋

whenever for every 0 ≺ 𝑟 ∈ H

𝐵 (𝑥, 𝑟) ∩ (𝐴 − {𝑥}) ̸= 𝜙. (5)

Definition 8. Set 𝐴 is called an open set whenever each
element of 𝐴 is an interior point of 𝐴. Subset 𝐵 ⊆ 𝑋 is called
a closed set whenever each limit point of 𝐵 belongs to 𝐵. The
family

𝐹 = {𝐵 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, 0 ≺ 𝑟} (6)

is a subbase for Hausdroff topology 𝜏 on𝑋.

Definition 9. Let {𝑥
𝑛
} be a sequence in 𝑋 and 𝑥 ∈ 𝑋. If for

every 𝑞 ∈ H with 0 ≺ 𝑞 there is 𝑛
0
∈ N such that for all

𝑛 > 𝑛
0
, 𝑑H(𝑥𝑛, 𝑥) ≺ 𝑞, then {𝑥

𝑛
} is said to be convergent

if {𝑥
𝑛
} converges to the limit point 𝑥; that is, 𝑥

𝑛
→ 𝑥 as

𝑛 → ∞ or lim
𝑛
𝑥
𝑛
= 𝑥. If for every 𝑞 ∈ H with 0 ≺ 𝑞 there is

𝑛
0
∈ N such that for all 𝑛 > 𝑛

0
, 𝑑H(𝑥𝑛, 𝑥𝑛+𝑚) ≺ 𝑞, then {𝑥𝑛} is

called Cauchy sequence in (𝑋, 𝑑H). If every Cauchy sequence
is convergent in (𝑋, 𝑑H), then (𝑋, 𝑑H) is called a complete
quaternion valued metric space.

2. Convergence in Quaternion Metric Spaces

In this section we give some auxiliary lemmas using the
concept of quaternion metric spaces; these lemmas will be
used to prove some fixed point theorems of contractive
mappings.

Lemma 10. Let (𝑋, 𝑑H) be a quaternion valued metric space
and let {𝑥

𝑛
} be a sequence in𝑋. Then {𝑥

𝑛
} converges to 𝑥 if and

only if |𝑑H(𝑥𝑛, 𝑥)| → 0 as 𝑛 → ∞.
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Proof. Suppose that {𝑥
𝑛
} converges to 𝑥. For a given real

number 𝜀 > 0, let

𝑞 =

𝜀

2

+ 𝑖

𝜀

2

+ 𝑗

𝜀

2

+ 𝑘

𝜀

2

. (7)

Then 0 ≺ 𝑞 ∈ H and there is a natural number 𝑁 such that
𝑑H(𝑥𝑛, 𝑥) ≺ 𝑞 for all 𝑛 > 𝑁.

Therefore, |𝑑H(𝑥𝑛, 𝑥)| < |𝑞| = 𝜀 for all 𝑛 > 𝑁. Hence
|𝑑H(𝑥𝑛, 𝑥)| → 0 as 𝑛 → ∞.

Conversely, suppose that |𝑑H(𝑥𝑛, 𝑥)| → 0 as 𝑛 → ∞.
Then, given 𝑞 ∈ H with 0 ≺ 𝑞, there exists a real number
𝛿 > 0, such that, for ℎ ∈ H,

|ℎ| < 𝛿 󳨐⇒ ℎ < 𝑞. (8)

For this 𝛿, there is a natural number𝑁 such that |𝑑H(𝑥𝑛, 𝑥)| <
𝛿 for all 𝑛 > 𝑁. Implying that 𝑑H(𝑥𝑛, 𝑥) ≺ 𝑞 for all 𝑛 > 𝑁,
hence {𝑥

𝑛
} converges to 𝑥.

Lemma 11. Let (𝑋, 𝑑H) be a quaternion valued metric space
and let {𝑥

𝑛
} be a sequence in𝑋.Then {𝑥

𝑛
} is a Cauchy sequence

if and only if |𝑑H(𝑥𝑛, 𝑥𝑛+𝑚)| → 0 as 𝑛 → ∞.

Proof. Suppose that {𝑥
𝑛
} is a Cauchy sequence. For a given

real number 𝜀 > 0, let

𝑞 =

𝜀

2

+ 𝑖

𝜀

2

+ 𝑗

𝜀

2

+ 𝑘

𝜀

2

. (9)

Then, 0 ≺ 𝑞 ∈ H and there is a natural number N such that
𝑑H(𝑥𝑛, 𝑥𝑛+𝑚) ≺ 𝑞 for all 𝑛 > 𝑁. Therefore |𝑑H(𝑥𝑛, 𝑥𝑛+𝑚)| <
|𝑞| = 𝜀 for all 𝑛 > 𝑁. Hence |𝑑H(𝑥𝑛, 𝑥𝑛+𝑚)| → 0 as 𝑛 → ∞.

Conversely, suppose that |𝑑H(𝑥𝑛, 𝑥𝑛+𝑚)| → 0 as 𝑛 → ∞.
Then, given 𝑞 ∈ Hwith 0 ≺ 𝑞, there exists a real number𝛿 > 0,
such that for ℎ ∈ H, we have that

|ℎ| < 𝛿 󳨐⇒ ℎ ≺ 𝑞. (10)

For this 𝛿, there is a natural number 𝑁 such that
|𝑑H(𝑥𝑛, 𝑥𝑛+𝑚)| < 𝛿 for all 𝑛 > 𝑁, which implies that
𝑑H(𝑥𝑛, 𝑥𝑛+𝑚) ≺ 𝑞 for all 𝑛 > 𝑁. Hence {𝑥

𝑛
} is a Cauchy

sequence. This completes the proof of Lemma 11.

Definition 12. Let (𝑋, 𝑑H) be a complete quaternion valued
metric space. For all 𝑥, 𝑦 ∈ 𝑋, 𝑑H(𝑥, 𝑦) represents ‖𝑥 −

𝑦‖. A quaternion valued metric space (𝑋, 𝑑H) is said to be
metrically convex if𝑋 has the property that, for each 𝑥, 𝑦 ∈ 𝑋
with 𝑥 ̸= 𝑦, there exists 𝑧 ∈ 𝑋, 𝑥 ̸= 𝑦 ̸= 𝑧 such that

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑥, 𝑧) + 𝑑H (𝑧, 𝑦)

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
. (11)

The following lemma finds immediate applications which is
straightforward from [6].

Lemma 13. Let (𝑋, 𝑑H) be a metrically convex quaternion
valued metric space and 𝐾 a nonempty closed subset of 𝑋. If
𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐾, then there exists a point 𝑧 ∉ 𝜕𝐾 (where 𝜕𝐾
stands for the boundary of 𝐾) such that

𝑑H (𝑥, 𝑦) = 𝑑H (𝑥, 𝑧) + 𝑑H (𝑧, 𝑦) . (12)

Definition 14. Let 𝐾 be a nonempty subset of a quaternion
valued metric space (𝑋, 𝑑H) and let 𝐹, 𝑇 : 𝐾 → 𝑋 satisfy the
condition

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑥, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
]

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥, 𝐹𝑥)

󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑦, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
] , 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑦, 𝐹𝑥)

󵄨
󵄨
󵄨
󵄨
]} .

(13)

For all 𝑥, 𝑦 ∈ 𝐾, with 𝑥 ̸= 𝑦, 𝑏, 𝑐 ≥ 0, 2𝑏 + 𝑐 < 1 and let 𝜑 :

R+ → R+ be an increasing continuous function for which
the following property holds:

𝜑 (𝑡) = 0 ⇐⇒ 𝑡 = 0. (14)

We call function 𝐹 satisfying condition (13) generalized 𝑇-
contractive.

Motivated by [7, 8], we construct the following definition.

Definition 15. Let 𝐾 be a nonempty subset of a quaternion
valued metric space (𝑋, 𝑑H) and 𝐹, 𝑇 : 𝐾 → 𝑋. The pair
{𝐹, 𝑇} is said to be weakly commuting if, for each 𝑥, 𝑦 ∈ 𝐾

such that 𝑥 = 𝐹𝑦 and 𝑇𝑦 ∈ 𝐾, we have

𝑑H (𝑇𝑥, 𝐹𝑇𝑦) ≾ 𝑑H (𝑇𝑦, 𝐹𝑦) . (15)

It follows that
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥, 𝐹𝑇𝑦)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑦, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
. (16)

Remark 16. It should be remarked that Definition 15 extends
and generalizes the definition of weakly commuting map-
pings which are introduced in [7].

3. Common Fixed Point Theorems in
Quaternion Analysis

In this section, we prove common fixed point theorems
for two pairs of weakly commuting mappings on complete
quaternionmetric spaces.The obtained results will be proved
using generalized contractive conditions.

Now, we give the following theorem.

Theorem 17. Let (𝑋, 𝑑H) be a complete quaternion valued
metric space,𝐾 a nonempty closed subset of𝑋, and 𝜑 : R+ →
R+ an increasing continuous function satisfying (13) and (14).
Let 𝐹, 𝑇 : 𝐾 → 𝑋 be such that 𝐹 is generalized 𝑇-contractive
satisfying the conditions:

(i) 𝜕𝐾 ⊆ 𝑇𝐾, 𝐹𝐾 ⊆ 𝑇𝐾,
(ii) 𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾,
(iii) 𝐹 and 𝑇 are weakly commuting mappings,
(iv) 𝑇 is continuous at 𝐾,

then there exists a unique common fixed point 𝑧 in𝐾, such that
𝑧 = 𝑇𝑧 = 𝐹𝑧.

Proof. We construct the sequences {𝑥
𝑛
} and {𝑦

𝑛
} in the

following way.
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Let 𝑥 ∈ 𝜕𝐾. Then there exists a point 𝑥
0
∈ 𝐾 such that

𝑥 = 𝑇𝑥
0
as 𝜕𝐾 ⊆ 𝑇𝐾. From 𝑇𝑥

0
∈ 𝜕𝐾 and the implication

𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾, we conclude that 𝐹𝑥
0
∈ 𝐾 ∩ 𝐹𝐾 ⊆ 𝑇𝐾.

Now, let 𝑥
1
∈ 𝐾 be such that

𝑦
1
= 𝑇𝑥
1
= 𝐹𝑥
0
∈ 𝐾. (17)

Let 𝑦
2
= 𝐹𝑥
1
and assume that 𝑦

2
∈ 𝐾; then

𝑦
2
∈ 𝐾 ∩ 𝐹𝐾 ⊆ 𝑇𝐾, (18)

which implies that there exists a point 𝑥
2
∈ 𝐾 such that 𝑦

2
=

𝑇𝑥
2
. Suppose 𝑦

2
∉ 𝐾; then there exists a point 𝑝 ∈ 𝜕𝐾 (using

Lemma 13) such that

𝑑H (𝑇𝑥1, 𝑝) + 𝑑H (𝑝, 𝑦2) = 𝑑H (𝑇𝑥1, 𝑦2) . (19)

Since 𝑝 ∈ 𝜕𝐾 ⊆ 𝑇𝐾, there exists a point 𝑥
2
∈ 𝐾 such that

𝑝 = 𝑇𝑥
2
and so

𝑑H (𝑇𝑥1, 𝑇𝑥2) + 𝑑H (𝑇𝑥2, 𝑦2) = 𝑑H (𝑇𝑥1, 𝑦2) . (20)

Let 𝑦
3
= 𝐹𝑥
2
. Thus, repeating the forgoing arguments, we

obtain two sequences {𝑥
𝑛
} and {𝑦

𝑛
} such that

(i) 𝑦
𝑛+1

= 𝐹𝑥
𝑛
,

(ii) 𝑦
𝑛
∈ 𝐾 ⇒ 𝑦

𝑛
= 𝑇𝑥
𝑛
, or

(iii) 𝑦
𝑛
∉ 𝐾 ⇒ 𝑇𝑥

𝑛
∈ 𝜕𝐾,

𝑑H (𝑇𝑥𝑛−1, 𝑇𝑥𝑛) + 𝑑H (𝑇𝑥𝑛, 𝑦𝑛) = 𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛) . (21)

We denote

𝑃 = {𝑇𝑥
𝑖
∈ {𝑇𝑥

𝑛
} : 𝑇𝑥

𝑖
= 𝑦
𝑖
} ,

𝑄 = {𝑇𝑥
𝑖
∈ {𝑇𝑥

𝑛
} : 𝑇𝑥

𝑖
̸= 𝑦
𝑖
} .

(22)

Obviously, the two consecutive terms of {𝑇𝑥
𝑛
} cannot lie in

𝑄.
Let us denote 𝑡

𝑛
= 𝑑H(𝑇𝑥𝑛, 𝑇𝑥𝑛+1). We have the following

three cases.

Case 1. If 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

∈ 𝑃, then

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) = 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
]

= 𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑥𝑛−1, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
]

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑
𝐻
(𝑇𝑥
𝑛−1

, 𝐹𝑥
𝑛−1

)
󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
] ,

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
]}

= 𝑏 [𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

󵄨
󵄨
󵄨
󵄨
) + 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
)] .

(23)

Thus,

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ (

𝑏

1 − 𝑏

)𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

󵄨
󵄨
󵄨
󵄨
) . (24)

Case 2. If 𝑇𝑥
𝑛
∈ 𝑃, 𝑇𝑥

𝑛+1
∈ 𝑄, note that

𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) + 𝑑H (𝑇𝑥𝑛+1, 𝑦𝑛+1) = 𝑑H (𝑇𝑥𝑛, 𝑦𝑛+1) (25)

or

𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≾ 𝑑H (𝑇𝑥𝑛, 𝑦𝑛+1) = 𝑑H (𝑦𝑛, 𝑦𝑛+1) , (26)

which implies that
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑦𝑛+1)

󵄨
󵄨
󵄨
󵄨
. (27)

Hence
𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑦𝑛+1)

󵄨
󵄨
󵄨
󵄨
] = 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑥𝑛−1, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
]

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
] ,

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
]}

= 𝑏 [𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

󵄨
󵄨
󵄨
󵄨
) + 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑦𝑛+1)

󵄨
󵄨
󵄨
󵄨
)] .

(28)

Therefore,

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑦𝑛+1)

󵄨
󵄨
󵄨
󵄨
) ≤ (

𝑏

1 − 𝑏

)𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

󵄨
󵄨
󵄨
󵄨
) . (29)

Hence,

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑦𝑛+1)

󵄨
󵄨
󵄨
󵄨
) ≤ (

𝑏

1 − 𝑏

)𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

󵄨
󵄨
󵄨
󵄨
) . (30)

Case 3. If 𝑥
𝑛
∈ 𝑄, 𝑇𝑥

𝑛+1
∈ 𝑃, so 𝑇𝑥

𝑛−1
∈ 𝑃. Since 𝑇𝑥

𝑛
is a

convex linear combination of 𝑇𝑥
𝑛−1

and 𝑦
𝑛
, it follows that

𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≾ max {𝑑H (𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1) , 𝑑H (𝑦𝑛, 𝑇𝑥𝑛+1)} .
(31)

If 𝑑H(𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1) ≾ 𝑑H(𝑦𝑛, 𝑇𝑥𝑛+1), then 𝑑H(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≾
𝑑H(𝑦𝑛, 𝑇𝑥𝑛+1) implying that

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
. (32)

Hence,

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) = 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
)

= 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑦𝑛, 𝑦𝑛+1)

󵄨
󵄨
󵄨
󵄨
)

= 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑥𝑛−1, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
]

+𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
] ,

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
]}

= 𝑏 [𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
) + 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
)]

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
] ,

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
]} .

(33)
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It follows that

(1 − 𝑏) 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ 𝑏𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
) + 𝑐𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
) .

(34)

Since

𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛) ≿ 𝑑H (𝑇𝑥𝑛, 𝑦𝑛) as 𝑇𝑥
𝑛
∈ 𝑄, (35)

then

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
) ≥ 𝜑 (𝑑H (𝑇𝑥𝑛, 𝑦𝑛)) . (36)

Therefore,

(1 − 𝑏) 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ (𝑏 + 𝑐) 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
)

󳨐⇒ 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ (

𝑏 + 𝑐

1 − 𝑏

)𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑦𝑛)

󵄨
󵄨
󵄨
󵄨
) .

(37)

Now, proceeding as in Case 2 (because 𝑇𝑥
𝑛−1

∈ 𝑃, 𝑇𝑥
𝑛
∈ 𝑄),

we obtain that

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ (

𝑏 + 𝑐

1 − 𝑏

)(

𝑏

1 − 𝑏

)𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−2

󵄨
󵄨
󵄨
󵄨
) . (38)

Also from (31), if 𝑑H(𝑦𝑛, 𝑇𝑥𝑛+1) ≾ 𝑑H(𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1), then

𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1) ≾ 𝑑H (𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1) (39)

which implies that |𝑑H(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)| ≤ |𝑑H(𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1)|;
hence

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) = 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
)

= 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑥𝑛−2, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−2, 𝐹𝑥𝑛−2)

󵄨
󵄨
󵄨
󵄨
]

+𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥𝑛−2, 𝐹𝑥𝑛)

󵄨
󵄨
󵄨
󵄨
] ,

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝐹𝑥𝑛−2)

󵄨
󵄨
󵄨
󵄨
]}

= 𝑏 [𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−2

󵄨
󵄨
󵄨
󵄨
) + 𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
)] + 𝑐𝜑 (

󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−1

󵄨
󵄨
󵄨
󵄨
) .

(40)

Therefore, noting that, by Case 2, 𝜑(|𝑡
𝑛−1

|) < 𝜑(|𝑡
𝑛−2

|), we
conclude that

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
) ≤ (

𝑏 + 𝑐

1 − 𝑏

)𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛−2

󵄨
󵄨
󵄨
󵄨
) . (41)

Thus, in all cases we get either

𝜑(|𝑡
𝑛
|) ≤ ((𝑏 + 𝑐)/(1 − 𝑏))𝜑(|𝑡

𝑛−1
|)

or 𝜑(|𝑡
𝑛
|) ≤ ((𝑏 + 𝑐)/(1 − 𝑏))𝜑(|𝑡

𝑛−2
|);

for 𝑛 = 1, we have 𝜑(|𝑡
1
|) ≤ ((𝑏 + 𝑐)/(1 − 𝑏))𝜑(|𝑡

0
|);

for 𝑛 = 2, we have 𝜑(|𝑡
2
|) ≤ ((𝑏 + 𝑐)/(1 − 𝑏))𝜑(|𝑡

1
|) ≤

((𝑏 + 𝑐)/(1 − 𝑏))
2
𝜑(|𝑡
0
|);

by induction, we get 𝜑(|𝑡
𝑛
|) ≤ ((𝑏+ 𝑐)/(1−𝑏))

𝑛
𝜑(|𝑡
0
|).

Letting 𝑛 → ∞, we have 𝜑(|𝑡
𝑛
|) → 0 and by (14),

we have
󵄨
󵄨
󵄨
󵄨
𝑡
𝑛

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)

󵄨
󵄨
󵄨
󵄨
󳨀→ 0 as 𝑛 󳨀→ ∞, (42)

so that {𝑇𝑥
𝑛
} is a Cauchy sequence and hence it converges to

point 𝑧 in𝐾. Now there exists a subsequence {𝑇𝑥
𝑛
𝑘

} of {𝑇𝑥
𝑛
}

such that it is contained in 𝑃. Without loss of generality, we
may denote {𝑇𝑥

𝑛
𝑘

} = {𝑇𝑥
𝑛
}. Since 𝑇 is continuous, {𝑇𝑇𝑥

𝑛
}

converges to 𝑇𝑧.
We now show that 𝑇 and 𝐹 have common fixed point

(𝑇𝑧 = 𝐹𝑧). Using the weak commutativity of 𝑇 and 𝐹, we
obtain that

𝑇𝑥
𝑛
= 𝐹𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

∈ 𝐾; (43)

then

𝑑H (𝑇𝑇𝑥𝑛, 𝐹𝑇𝑥𝑛−1) ≾ 𝑑H (𝐹𝑥𝑛−1, 𝑇𝑥𝑛−1) = 𝑑H (𝑇𝑥𝑛, 𝑇𝑥𝑛−1) .

(44)

This implies that
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑇𝑥𝑛, 𝐹𝑇𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑑
𝐻
(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

)
󵄨
󵄨
󵄨
󵄨
. (45)

On letting 𝑛 → ∞, we obtain

𝑑H (𝑇𝑧, 𝐹𝑇𝑥𝑛−1) 󳨀→ 0, (46)

which means that

{𝐹𝑇𝑥
𝑛−1

} 󳨀→ 𝑇𝑧 as 𝑛 󳨀→ ∞. (47)

Now, consider

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑇𝑥𝑛−1, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑇𝑥𝑛−1, 𝐹𝑇𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑇𝑥𝑛−1, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
] , 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑇𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
]} .

(48)

Letting 𝑛 → ∞ yields

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
) ≤ 𝑏𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
] , (49)

a contradiction, thus giving 𝜑(|𝑑H(𝑇𝑧, 𝐹𝑧)|) = 0 which
implies |𝑑H(𝑇𝑧, 𝐹𝑧)| = 0, so that 𝑑H(𝑇𝑧, 𝐹𝑧) = 0 and hence
𝑇𝑧 = 𝐹𝑧.

To show that 𝑇𝑧 = 𝑧, consider

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛, 𝑇𝑧)

󵄨
󵄨
󵄨
󵄨
)

= 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑥𝑛−1, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑥𝑛−1, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
] , 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑥𝑛−1)

󵄨
󵄨
󵄨
󵄨
]} .

(50)

Letting 𝑛 → ∞, we obtain

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑧, 𝑇𝑧)

󵄨
󵄨
󵄨
󵄨
) ≤ 𝑐𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑧, 𝑇𝑧)

󵄨
󵄨
󵄨
󵄨
] , (51)
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a contradiction, thereby giving 𝜑(|𝑑H(𝑧, 𝑇𝑧)|) = 0 which
implies |𝑑H(𝑧, 𝑇𝑧)| = 0, so that 𝑑H(𝑧, 𝑇𝑧) = 0 and hence
𝑧 = 𝑇𝑧. Thus, we have shown that 𝑧 = 𝑇𝑧 = 𝐹𝑧, so 𝑧 is a
common fixed point of 𝐹 and 𝑇. To show that 𝑧 is unique, let
𝑤 be another fixed point of 𝐹 and 𝑇; then

𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑤, 𝑧)

󵄨
󵄨
󵄨
󵄨
)

= 𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝐹𝑤, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
)

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑤, 𝐹𝑤)

󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑H (𝑇𝑤, 𝐹𝑧)

󵄨
󵄨
󵄨
󵄨
] , 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑H (𝑇𝑧, 𝐹𝑤)

󵄨
󵄨
󵄨
󵄨
]}

= 𝑐𝜑 (
󵄨
󵄨
󵄨
󵄨
𝑑H (𝑤, 𝑧)

󵄨
󵄨
󵄨
󵄨
) ,

(52)

a contradiction, therefore giving 𝜑(|𝑑H(𝑤, 𝑧)|) = 0 which
implies that |𝑑H(𝑤, 𝑧)| = 0, so that 𝑑H(𝑤, 𝑧) = 0; thus 𝑤 = 𝑧.
This completes the proof.

Remark 18. If Im
𝑠
𝑑H(𝑥, 𝑦) = 0, 𝑠 = 𝑖, 𝑗, 𝑘 then 𝑑H(𝑥, 𝑦) =

𝑑(𝑥, 𝑦) and therefore, we obtain the same results in [9]. So,
our theorem is more general than Theorem 3.1 in [9] for a
pair of weakly commuting mappings.

Using the concept of commuting mappings (see, e.g.,
[10]), we can give the following result.

Theorem 19. Let (𝑋, 𝑑H) be a complete quaternion valued
metric space,𝐾 a nonempty closed subset of𝑋, and 𝜑 : R+ →
R+ an increasing continuous function satisfying (13) and (14).
Let 𝐹, 𝑇 : 𝐾 → 𝑋 be such that 𝐹 is generalized 𝑇-contractive
satisfying the conditions:

(i) 𝜕𝐾 ⊆ 𝑇𝐾, 𝐹𝐾 ⊆ 𝑇𝐾,
(ii) 𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾,
(iii) 𝐹 and 𝑇 are commuting mappings,
(iv) 𝑇 is continuous at 𝐾;

then there exists a unique common fixed point 𝑧 in𝐾 such that
𝑧 = 𝑇𝑧 = 𝐹𝑧.

Proof. The proof is very similar to the proof of Theorem 17
with some simple modifications; so it will be omitted.

Corollary 20. Let (𝑋, 𝑑C) be a complete complex valued
metric space,𝐾∗ a nonempty closed subset of𝑋, and 𝜑 : R+ →
R+ an increasing continuous function satisfying (14) and

𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑C (𝐹𝑥, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
]

≤ 𝑏 {𝜑 [
󵄨
󵄨
󵄨
󵄨
𝑑C (𝑇𝑥, 𝐹𝑥)

󵄨
󵄨
󵄨
󵄨
] + 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑C (𝑇𝑦, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
]}

+ 𝑐min {𝜑 [󵄨󵄨󵄨
󵄨
𝑑C (𝑇𝑥, 𝐹𝑦)

󵄨
󵄨
󵄨
󵄨
] , 𝜑 [

󵄨
󵄨
󵄨
󵄨
𝑑C (𝑇𝑦, 𝐹𝑥)

󵄨
󵄨
󵄨
󵄨
]} ,

(53)

for all 𝑥, 𝑦 ∈ 𝐾∗, with 𝑥 ̸= 𝑦; 𝑏, 𝑐 ≥ 0, 2𝑏 + 𝑐 < 1.
Let 𝐹, 𝑇 : 𝐾

∗
→ 𝑋 be such that 𝐹 is generalized 𝑇-

contractive satisfying the conditions:

(i) 𝜕𝐾∗ ⊆ 𝑇𝐾∗, 𝐹𝐾∗ ⊆ 𝑇𝐾∗,
(ii) 𝑇𝑥 ∈ 𝜕𝐾∗ ⇒ 𝐹𝑥 ∈ 𝐾

∗,

(iii) 𝐹 and 𝑇 are weakly mappings,
(iv) 𝑇 is continuous at 𝐾∗;

then there exists a unique common fixed point 𝑧 in 𝐾∗ such
that 𝑧 = 𝑇𝑧 = 𝐹𝑧.

Proof. Since each element 𝑥 ∈ H can be written in the form
𝑞 = 𝑥

0
+ 𝑥
1
𝑖 + 𝑥
2
𝑗 + 𝑥
3
𝑘, 𝑥
𝑛
∈ R, where 1, 𝑖, 𝑗, 𝑘 are the

basis elements of H and 𝑛 = 1, 2, 3. Putting 𝑥
2
= 𝑥
3
= 0, we

obtain an element in C. So, the proof can be obtained from
Theorem 17 directly.

4. Fixed Points in Normal Cone Metric Spaces

In this section, we prove a fixed point theorem in normal
cone metric spaces, including results which generalize a
result due to Huang and Zhang in [11] as well as a result
due to Abbas and Rhoades [12]. The obtained result gives a
fixed point theorem for four mappings without appealing to
commutativity conditions, defined on a cone metric space.

Let 𝐸 be a real Banach space. A subset 𝑃 of 𝐸 is called a
cone if and only if

(a) 𝑃 is closed and nonempty and 𝑃 ̸= 0;
(b) 𝑎, 𝑏 ∈ R, 𝑎, 𝑏 ≥ 0, 𝑎, 𝑏 ∈ 𝑃 implies that 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃;
(c) 𝑃⋂(−𝑃) = {0}.

Given cone 𝑃 ⊂ 𝐸, we define a partial ordering ≤with respect
to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦−𝑥 ∈ 𝑃. Cone 𝑃 is called normal
if there is a number 𝐾

1
> 0 such that, for all 𝑥, 𝑦 ∈ 𝐸,

0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾1

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
. (54)

The least positive number satisfying the above inequality is
called the normal constant of 𝑃, while 𝑥 ≪ 𝑦 stands for 𝑦 −
𝑥 ∈ int𝑃 (interior of 𝑃). We will write 𝑥 < 𝑦 to indicate that
𝑥 ≪ 𝑦 but 𝑥 ̸= 𝑦.

Definition 21 (see [11]). Let𝑋 be a nonempty set. Suppose that
the mapping 𝑑 : 𝑋 × 𝑋 → 𝐸 satisfies

(d
1
) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and only
if 𝑥 = 𝑦;

(d
2
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

(d
3
) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑑 is called a conemetric on𝑋 and (𝑋, 𝑑) is called a cone
metric space.

Definition 22 (see [11]). Let (𝑋, 𝑑) be a conemetric space, {𝑥
𝑛
}

a sequence in 𝑋, and 𝑥 ∈ 𝑋. For every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐, we
say that {𝑥

𝑛
} is

(1) a Cauchy sequence if there is an 𝑁 such that, for all
𝑛,𝑚 > 𝑁, 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐;

(2) a convergent sequence if there is an 𝑁 such that, for
all 𝑛 > 𝑁, 𝑑(𝑥

𝑛
, 𝑥) ≪ 𝑐; for some 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝑦) ≤

𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.
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A cone metric space𝑋 is said to be complete if every Cauchy
sequence in𝑋 is convergent in𝑋.

Now, we give the following result.

Theorem 23. Let (𝑋, 𝑑) be a complete cone metric space and
𝑃 a normal cone with normal constant 𝐾

1
. Suppose that the

mappings 𝑓, 𝑔, 𝑓
1
, 𝑔
1
are four self-maps of𝑋 satisfying

𝜆𝑑 (𝑓𝑥, 𝑔𝑦) + (1 − 𝜆) 𝑑 (𝑓1
𝑥, 𝑔
1
𝑦)

≤ 𝛼𝑑 (𝑥, 𝑦) + 𝛽 [𝜆 (𝑑 (𝑥, 𝑓𝑥) + 𝑑 (𝑦, 𝑔𝑦))

+ (1 − 𝜆) (𝑑 (𝑥, 𝑓1
𝑥) + 𝑑 (𝑦, 𝑔

1
𝑦))]

+ 𝛾 [𝜆 (𝑑 (𝑥, 𝑔𝑦) + 𝑑 (𝑦, 𝑓𝑥))

+ (1 − 𝜆) (𝑑 (𝑥, 𝑔
1
𝑥) + 𝑑 (𝑦, 𝑓

1
𝑥))]

(55)

for all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝜆 ≤ 1 and 𝛼, 𝛽, 𝛾 ≥ 0 with 𝛼+ 2𝛽+
2𝛾 < 1. Then, 𝑓, 𝑔, 𝑓

1
, and 𝑔

1
have a unique common fixed

point in 𝑋.

Proof. If 𝜆 = 0 or 𝜆 = 1, the proof is already known from [12].
So, we consider the case when 0 < 𝜆 < 1. Suppose 𝑥

0
is an

arbitrary point of𝑋, and define {𝑥
𝑛
} by 𝑥

2𝑛+1
= 𝑓𝑥
2𝑛
= 𝑓
1
𝑥
2𝑛

and 𝑥
2𝑛+2

= 𝑔𝑥
2𝑛+1

= 𝑔
1
𝑥
2𝑛+1

; 𝑛 = 0, 1, 2, . . .. Then, we have

𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

= 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

= 𝜆𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

) + (1 − 𝜆) 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

= 𝜆𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

) + (1 − 𝜆) 𝑑 (𝑓1
𝑥
2𝑛
, 𝑔
1
𝑥
2𝑛+1

)

≤ 𝛼𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

+ 𝛽 [𝜆 (𝑑 (𝑥
2𝑛
, 𝑓𝑥
2𝑛
) + 𝑑 (𝑥

2𝑛+1
, 𝑔𝑥
2𝑛+1

))

+ (1 − 𝜆) (𝑑 (𝑥
2𝑛
, 𝑓
1
𝑥
2𝑛
) + 𝑑 (𝑥

2𝑛+1
, 𝑔
1
𝑥
2𝑛+1

))]

+ 𝛾 [𝜆 (𝑑 (𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝑓𝑥
2𝑛
))

+ (1 − 𝜆) (𝑑 (𝑥2𝑛
, 𝑔
1
𝑥
2𝑛
) + 𝑑 (𝑥

2𝑛+1
, 𝑓
1
𝑥
2𝑛
))]

= (𝛼 + 𝛽 + 𝛾) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + (𝛽 + 𝛾) 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) ;

(56)

this yields that

𝑑(𝑥
2𝑛+1

, 𝑥
2𝑛+2

)≤𝛿𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) , where 𝛿 =
𝛼 + 𝛽 + 𝛾

1− 𝛽 − 𝛾

<1.

(57)

Therefore, for all 𝑛, we deduce that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ≤ 𝛿𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ ⋅ ⋅ ⋅ ≤ 𝛿
𝑛+1

𝑑 (𝑥
0
, 𝑥
1
) . (58)

Now, for𝑚 > 𝑛, we obtain that

𝑑 (𝑥
𝑚
, 𝑥
𝑛
) ≤

𝛿
𝑛

1 − 𝛿

𝑑 (𝑥
0
, 𝑥
1
) . (59)

From (54), we have

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑚
, 𝑥
𝑛
)
󵄩
󵄩
󵄩
󵄩
≤

𝐾
1
𝛿
𝑛

1 − 𝛿

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
0
, 𝑥
1
)
󵄩
󵄩
󵄩
󵄩
, (60)

which implies that 𝑑(𝑥
𝑚
, 𝑥
𝑛
) → 0 as 𝑛,𝑚 → ∞. Hence,

{𝑥
𝑛
} is a Cauchy sequence. Since 𝑋 is complete there exists a

point 𝑝 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑝 as 𝑛 → ∞. Now using (55),

we obtain that

𝜆𝑑 (𝑝, 𝑔𝑝) + (1 − 𝜆) 𝑑 (𝑝, 𝑔
1
𝑝)

≤ 𝜆 [𝑑 (𝑝, 𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝑔𝑝)]

+ (1 − 𝜆) [𝑑 (𝑝, 𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝑔
1
𝑝)]

≤ 𝑑 (𝑝, 𝑥
2𝑛+1

) + 𝛼𝑑 (𝑥
2𝑛
, 𝑝)

+ 𝛽 [𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝜆 𝑑 (𝑝, 𝑔𝑝) + (1 − 𝜆) 𝑑 (𝑝, 𝑔1
𝑝)]

+ 𝛾 [𝑑 (𝑥
2𝑛
, 𝑝) + 𝜆 𝑑 (𝑝, 𝑔𝑝)

+ (1 − 𝜆) 𝑑 (𝑝, 𝑔
1
𝑝) + 𝑑 (𝑝, 𝑥

2𝑛+1
)] .

(61)

Now, using (54) and (61), we obtain that

|𝜆|
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑔𝑝)

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝜆𝑑 (𝑝, 𝑔𝑝) + (1 − 𝜆) 𝑑 (𝑝, 𝑔1

𝑝)
󵄩
󵄩
󵄩
󵄩

≤

𝐾
1

1 − 𝛽 − 𝛾

{
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
+ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛+1

, 𝑝)
󵄩
󵄩
󵄩
󵄩

+ 𝛽
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄩
󵄩
󵄩
󵄩

+𝛾
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑝)

󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
} .

(62)

Therefore
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑔𝑝)

󵄩
󵄩
󵄩
󵄩

≤ (𝐾
1
{
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
+ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛+1

, 𝑝)
󵄩
󵄩
󵄩
󵄩
+ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄩
󵄩
󵄩
󵄩

+ 𝛾
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑝)

󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
})

× (|𝜆| (1 − 𝛽 − 𝛾))
−1
.

(63)

Since the right hand side of the above inequality approaches
zero as 𝑛 → 0, hence ‖𝑑(𝑝, 𝑔𝑝)‖ = 0, and then 𝑝 = 𝑔𝑝. Also,
we have

|1 − 𝜆|
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑔

1
𝑝)
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝜆𝑑 (𝑝, 𝑔𝑝) + (1 − 𝜆) 𝑑 (𝑝, 𝑔

1
𝑝)
󵄩
󵄩
󵄩
󵄩

≤

𝐾
1

1 − 𝛽 − 𝛾

{
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
+ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛+1

, 𝑝)
󵄩
󵄩
󵄩
󵄩

+ 𝛽
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑝)

󵄩
󵄩
󵄩
󵄩

+𝛾
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
} ,

(64)
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which implies that

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑔

1
𝑝)
󵄩
󵄩
󵄩
󵄩

≤ (𝐾
1
{
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
+ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛+1

, 𝑝)
󵄩
󵄩
󵄩
󵄩
+ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄩
󵄩
󵄩
󵄩

+ 𝛾
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑝)

󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
})

× (|1 − 𝜆| (1 − 𝛽 − 𝛾))
−1
.

(65)

Letting 𝑛 → 0, we deduce that ‖𝑑(𝑝, 𝑔
1
𝑝)‖ = 0, and then

𝑝 = 𝑔
1
𝑝. Similarly, by replacing 𝑔 by 𝑓 and 𝑔

1
by 𝑓
1
in (61),

we deduce that
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑓𝑝)

󵄩
󵄩
󵄩
󵄩

≤ (𝐾
1
{
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
+ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛+1

, 𝑝)
󵄩
󵄩
󵄩
󵄩
+ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄩
󵄩
󵄩
󵄩

+𝛾
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑝)

󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
})

× (|𝜆| (1 − 𝛽 − 𝛾))
−1
,

(66)

where ‖𝑑(𝑝, 𝑓𝑝)‖ = 0, as 𝑛 → 0. Hence ‖𝑑(𝑝, 𝑓𝑝)‖ = 0, and
then 𝑝 = 𝑓𝑝. Also,

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑓

1
𝑝)
󵄩
󵄩
󵄩
󵄩

≤ (𝐾
1
{
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
+ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛+1

, 𝑝)
󵄩
󵄩
󵄩
󵄩
+ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)
󵄩
󵄩
󵄩
󵄩

+𝛾
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥
𝑛
, 𝑝)

󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑝, 𝑥

𝑛+1
)
󵄩
󵄩
󵄩
󵄩
})

× (|1 − 𝜆| (1 − 𝛽 − 𝛾))
−1
.

(67)

Letting 𝑛 → 0, we deduce that ‖𝑑(𝑝, 𝑓
1
𝑝)‖ = 0, and then

𝑝 = 𝑓
1
𝑝.

To prove uniqueness, suppose that 𝑞 is another fixed point
of 𝑓, 𝑔, 𝑔

1
, and 𝑓

1
, and then

𝑑 (𝑝, 𝑞) = 𝜆𝑑 (𝑝, 𝑞) + (1 − 𝜆) 𝑑 (𝑝, 𝑞)

= 𝜆𝑑 (𝑓𝑝, 𝑔𝑞) + (1 − 𝜆) 𝑑 (𝑓1
𝑝, 𝑔
1
𝑞)

≤ 𝛼𝑑 (𝑝, 𝑞)

+ 𝛽 [𝜆𝑑 (𝑝, 𝑓𝑝) + (1 − 𝜆) 𝑑 (𝑝, 𝑓1
𝑝)

+ 𝜆𝑑 (𝑞, 𝑔𝑞) + (1 − 𝜆) 𝑑 (𝑞, 𝑔
1
𝑞)]

+ 𝛾 [𝜆𝑑 (𝑝, 𝑔𝑞) + (1 − 𝜆) 𝑑 (𝑝, 𝑔
1
𝑞)

+ 𝜆𝑑 (𝑞, 𝑓𝑝) + (1 − 𝜆) 𝑑 (𝑞, 𝑓1
𝑝)]

= (𝛼 + 2𝛾) 𝑑 (𝑝, 𝑞) ,

(68)

which gives 𝑑(𝑝, 𝑞) = 0, and hence 𝑝 = 𝑞. This completes the
proof.

Now, we give the following result.

Corollary 24. Let (𝑋, 𝑑) be a complete cone metric space and
𝑃 a normal cone with normal constant 𝐾

1
. Suppose that the

mappings 𝑓, 𝑔, 𝑓
1
, 𝑔
1
are four self-maps of𝑋 satisfying

𝜆𝑑 (𝑓
𝑚
𝑥, 𝑔
𝑛
𝑦) + (1 − 𝜆) 𝑑 (𝑓

𝑚

1
𝑥, 𝑔
𝑛

1
𝑦)

≤ 𝛼𝑑 (𝑥, 𝑦) + 𝛽 [𝜆 (𝑑 (𝑥, 𝑓
𝑚
𝑥) + 𝑑 (𝑦, 𝑔

𝑛
𝑦)) + (1 − 𝜆)

× (𝑑 (𝑥, 𝑓
𝑚

1
𝑥) + 𝑑 (𝑦, 𝑔

𝑛

1
𝑦))]

+ 𝛾 [𝜆 (𝑑 (𝑥, 𝑔
𝑛
𝑦) + 𝑑 (𝑦, 𝑓

𝑚
𝑥))

+ (1 − 𝜆) (𝑑 (𝑥, 𝑔
𝑛

1
𝑥) + 𝑑 (𝑦, 𝑓

𝑚

1
𝑥))]

(69)

for all 𝑥, 𝑦 ∈ 𝑋, where 0 ≤ 𝜆 ≤ 1 and 𝛼, 𝛽, 𝛾 ≥ 0 with 𝛼+ 2𝛽+
2𝛾 < 1. Then, 𝑓, 𝑔, 𝑓

1
, and 𝑔

1
have a unique common fixed

point in𝑋;𝑚, 𝑛 > 1.

Proof. Inequality (69) is obtained from (55) by setting 𝑓 ≡

𝑓
𝑚, 𝑓
1
≡ 𝑓
𝑚

1
, and 𝑔 ≡ 𝑔

𝑚, 𝑔
1
≡ 𝑔
𝑚

1
. Then the result follows

fromTheorem 23.

Remark 25. If we put 𝜆 = 0 or 𝜆 = 1 inTheorem 23, we obtain
Theorem 2.1 in [12].

Remark 26. It should be remarked that the quaternionmetric
space is different from conemetric space which is introduced
in [11] (see also [12–19]). The elements in R or C form an
algebra while the same is not true in H.

Open Problem. It is still an open problem to extend our results
in this paper for some kinds of mappings like biased, weakly
biased, weakly compatible mappings, compatible mappings
of type (𝑇), and 𝑚-weak∗∗ commuting mappings. See [20–
30] for more studies on these mentioned mappings.
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tions in the Plane and n-Dimensional Space, Birkhäuser, Basel,
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[19] H. Rahimi, S. Radenović, G. S. Rad, and P. Kumam, “Quadru-
pled fixed point results in abstract metric spaces,” Computa-
tional and Applied Mathematics, 2013.

[20] A. El-Sayed Ahmed, “Common fixed point theorems for m-
weak∗∗ commuting mappings in 2-metric spaces,” Applied
Mathematics & Information Sciences, vol. 1, no. 2, pp. 157–171,
2007.

[21] A. El-Sayed and A. Kamal, “Fixed points and solutions of
nonlinear functional equations in Banach spaces,” Advances in
Fixed Point Theory, vol. 2, no. 4, pp. 442–451, 2012.

[22] A. El-Sayed and A. Kamal, “Some fixed point theorems using
compatible-typemappings in Banach spaces,”Advances in Fixed
Point Theory, vol. 4, no. 1, pp. 1–11, 2014.

[23] A. Aliouche, “Common fixed point theorems of Gregus type for
weakly compatible mappings satisfying generalized contractive
conditions,” Journal of Mathematical Analysis and Applications,
vol. 341, no. 1, pp. 707–719, 2008.

[24] J. Ali andM. Imdad, “Common fixed points of nonlinear hybrid
mappings under strict contractions in semi-metric spaces,”
Nonlinear Analysis. Hybrid Systems, vol. 4, no. 4, pp. 830–837,
2010.

[25] G. Jungck and H. K. Pathak, “Fixed points via ‘biased maps’,”
Proceedings of the American Mathematical Society, vol. 123, no.
7, pp. 2049–2060, 1995.

[26] J. K. Kim and A. Abbas, “Common fixed point theorems
for occasionally weakly compatible mappings satisfying the
expansive condition,” Journal of Nonlinear and Convex Analysis,
vol. 12, no. 3, pp. 535–540, 2011.

[27] R. P. Pant and R. K. Bisht, “Occasionally weakly compatible
mappings and fixed points,”Bulletin of the BelgianMathematical
Society, vol. 19, no. 4, pp. 655–661, 2012.

[28] H. K. Pathak, S. M. Kang, Y. J. Cho, and J. S. Jung, “Greguš type
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