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Travelling wave solutions for the generalized Boussinesq wave equation are studied by using the Weierstrass elliptic function
method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given, as well as
integrable ones.

1. Introduction

It is well known that investigating the exact travelling wave
solutions to nonlinear evolution equations plays an important
role in the study of nonlinear physical phenomena. In order
to obtain the exact solutions, a number of methods have
been proposed, such as the homogeneous balancemethod [1],
the hyperbolic function expansion method [2], Jacobi elliptic
function method [3], F-expansion method [4], homotopy
analysis method [5, 6], the bifurcation theory method of
dynamical systems [7, 8], and Weierstrass elliptic function
method [9]. Among these methods,Weierstrass elliptic func-
tionmethod is a powerful mathematic tool to solve nonlinear
evolution equations. By using this method, many kinds of
important nonlinear evolution equations have been solved
successfully [10, 11].

To understand the role of nonlinear dispersion in the
formation of patterns in liquid drops, Rosenau and Hyman
[12] introduced and studied a family of fully nonlinear KdV
equations𝐾(𝑚, 𝑛):

𝑢
𝑡
+ (𝑢
𝑚
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥

= 0, 𝑚 > 0, 1 < 𝑛 ≤ 3. (1)

A class of solitary waves (which they named compactons)
with the special property that, after colliding with other
compacton solutions, they reemerge with the same coherent
shape was presented. From then on, compacton solutions
attracted a lot of interest [13–15]. You can refer to [16–18], for

example, for more details about the properties of compacton
solutions. Compacton solutions and solitary solutions of
other nonlinear evolution equations such as Boussinesq
equations and Boussinesq-like 𝐵(𝑚, 𝑛) equations had been
extensively investigated by many authors [19–21]. Recently,
Yan [19] introduced a class of fully Boussinesq equations𝐵(𝑚,
𝑛)

𝑢
𝑡𝑡
= (𝑢
𝑚
)
𝑥𝑥

+ (𝑢
𝑛
)
𝑥𝑥𝑥𝑥

= 0, 𝑚, 𝑛 ∈ R (2)

and presented some of its compacton solutions when 𝑚 =

𝑛. Liu et al. [22] utilized the integral approach to investigate
its compacton solutions. More recently, Zhu [20, 21] studied
Boussinesq-like 𝐵(𝑚, 𝑛) equations

𝑢
𝑡𝑡
+ (𝑢
𝑚
)
𝑥𝑥

− (𝑢
𝑛
)
𝑥𝑥𝑥𝑥

= 0, 𝑚, 𝑛 > 1,

𝑢
𝑡𝑡
− (𝑢
𝑚
)
𝑥𝑥

+ (𝑢
𝑛
)
𝑥𝑥𝑥𝑥

= 0, 𝑚, 𝑛 > 1,

𝑢
𝑡𝑡
+ (𝑢
2𝑛
)
𝑥𝑥

+ (𝑢
2𝑛
)
𝑥𝑥𝑥𝑥

= 0, 𝑛 ≥ 1,

(3)

by using the extended decomposition method.
By making use of the sine-cosine method technique,

Wazwaz [23] obtained various forms of travelling wave
solutions for improved Boussinesq equations with positive
or negative exponents. It was highlighted in [23] that the
variants and exponents in the equations directly lead to a
qualitative change in the physical structures of the obtained
solutions. Lai and Wu [24, 25] proposed an approach for
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constructing asymptotic solutions in a Sobolev space for
generalized Boussinesq equations. Using the tanh methods,
Wazwaz [26] obtained the compacton solutions, solitons,
solitary pattern solutions, and periodic solutions for the
Boussinesq wave equation

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

+ 3(𝑢
2
)
𝑥𝑥

+ 𝑎
1
𝑢
𝑥𝑥𝑥𝑥

(4)

and its generalized form

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

+
3

2
(𝑢
𝑚
)
𝑥𝑥

+ 𝑎
1
𝑢
𝑥𝑥𝑥𝑥

, (5)

where 𝑎
1
and𝑚 ̸= ± 1 are constants.

In this paper, we will consider the travelling wave
solutions of the following generalized Boussinesq equations
(simply called GB(𝑚, 𝑛) equation):

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

+ 𝑎(𝑢
𝑚
)
𝑥𝑥

+ 𝑏(𝑢
𝑛
)
𝑥𝑥𝑥𝑥

. (6)

The objective of this paper is to investigate the travelling wave
solutions of (6) systematically, by applying the Weierstrass
elliptic function method. It will be shown that some previ-
ously known solutions are recovered, and at the same time,
some new ones are also given.

The rest of this paper is organized as follows. In Section 2,
we first outline the Weierstrass elliptic function method
which will be used in the next section. In Section 3, we give
some particular travellingwave solutions of (6). Finally, some
conclusions are given in Section 4.

2. Weierstrass Elliptic Functions

Let us consider the following nonlinear differential equation:

(
𝑑𝜙 (𝑧)

𝑑𝑧
)

2

= 𝑎
0
𝜙
4
+ 4𝑎
1
𝜙
3
+ 6𝑎
2
𝜙
2
+ 4𝑎
3
𝜙 + 𝑎
4
≡ 𝑓 (𝜙) .

(7)

As is well known [27, 28], the solutions 𝜙 of (7) can be
expressed in terms of elliptic functions ℘. It reads as

𝜙 (𝑧) = 𝜙
0
+

𝑓
󸀠
(𝜙
0
)

4 [℘ (𝑧, 𝑔
2
, 𝑔
3
) − (1/24) 𝑓

󸀠󸀠 (𝜙
0
)]

, (8)

where the primes denote differentiation with respect to 𝜙 and
𝜙
0
is a simple root of 𝑓(𝜙). The invariants 𝑔

2
, 𝑔
3
of elliptic

functions ℘(𝑡, 𝑔
2
, 𝑔
3
) are related to the coefficients of 𝑓(𝜙) by

[29]

𝑔
2
= 𝑎
0
𝑎
4
− 4𝑎
1
𝑎
3
+ 3𝑎
2

2
,

𝑔
3
= 𝑎
0
𝑎
2
𝑎
4
+ 2𝑎
1
𝑎
2
𝑎
3
− 𝑎
3

2
− 𝑎
0
𝑎
2

3
− 𝑎
2

1
𝑎
4
.

(9)

When 𝑔
2
and 𝑔

3
are real and the discriminant

Δ = 𝑔
3

2
− 27𝑔

2

3
(10)

is positive, negative, or zero, we have different behavior of
℘(𝑡). The conditions [9]

Δ ̸= 0 or Δ = 0, 𝑔
2
> 0, 𝑔

3
> 0 (11)

lead to periodic solutions, whereas the conditions

Δ = 0, 𝑔
2
≥ 0, 𝑔

3
≤ 0 (12)

lead to solitary wave solutions.
If Δ = 0, then ℘(𝑡, 𝑔

2
, 𝑔
3
) degenerates into trigonometric

or hyperbolic functions [30].Thus, periodic solutions accord-
ing to (8) are determined by

𝜙 (𝑧) = 𝜙
0

+ 𝑓
󸀠
(𝜙
0
) × (4 [ −

𝑒
1

2
−

𝑓
󸀠󸀠
(𝜙
0
)

24

+
3

2
𝑒
1
csc2 (√

3

2
𝑒
1
𝑡)])

−1

,

Δ = 0, 𝑔
3
> 0,

(13)

and solitary wave solutions by

𝜙 (𝑧) = 𝜙
0

+ 𝑓
󸀠
(𝜙
0
) × (4 [𝑒

1
−

𝑓
󸀠󸀠
(𝜙
0
)

24

+3𝑒
1
csch2 (√3𝑒

1
𝑡) ])

−1

,

Δ = 0, 𝑔
3
< 0,

(14)

where 𝑒
1
=
3
√|𝑔
3
| in (13) and 𝑒

1
= (1/2)

3
√|𝑔
3
| in (14).

3. Travelling Wave Solutions of the
Generalized Boussinesq Equations

In this section, we consider the travelling wave solutions of
(6). Assume that (6) has an exact solution in the form of a
travelling wave

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝜇 (𝑥 − 𝑐𝑡 − 𝑥
0
) , (15)

where 𝜇 ̸= 0, 𝑐 ̸= 0, and 𝑥
0
are arbitrary constants. Substituting

(15) into (6), we get

(𝑐
2
− 1) 𝑢

󸀠󸀠
+ 𝑎(𝑢
𝑚
)
󸀠󸀠

+ 𝑏𝜇
2
(𝑢
𝑛
)
󸀠󸀠󸀠󸀠

. (16)

Integrating (16) twice and letting the constants of integration
be zero give rise to

(𝑐
2
− 1) 𝑢 + 𝑎 (𝑢

𝑚
) + 𝑏𝜇

2
(𝑢
𝑛
)
󸀠󸀠

= 0. (17)

Making transformation, 𝑢𝑛 = 𝜑, and (17) becomes

(𝑐
2
− 1) 𝜑

1/𝑛
+ 𝑎 (𝜑

𝑚/𝑛
) + 𝑏𝜇

2
𝜑
󸀠󸀠
= 0. (18)
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Multiply (18) by the integrating factor 𝜑
󸀠 on both sides, and

integrating it with respect to 𝜉, we have

(
𝑑𝜑

𝑑𝜉
)

2

=
2

𝑏𝜇2
[𝐶
1
−

𝑛 (𝑐
2
− 1)

𝑛 + 1
𝜑
1+(1/𝑛)

−
𝑎𝑛

𝑚 + 𝑛
𝜑
1+(𝑚/𝑛)

] ,

(19)

where 𝐶
1
is an integration constant.

Making the transformation 𝜑 = 𝜙
𝑝, 𝑝 ̸= 0 we get

(
𝑑𝜙

𝑑𝜉
)

2

=
2

𝑏𝜇2𝑝2

× [𝐶
1
𝜙
2−2𝑝

−

𝑛 (𝑐
2
− 1)

𝑛 + 1
𝜙
2+((1/𝑛)−1)𝑝

−
𝑎𝑛

𝑚 + 𝑛
𝜙
2+((𝑚/𝑛)−1)𝑝

] .

(20)

In order to guarantee the integrability of (20), the powers of
𝜙 have to be integer numbers between 0 and 4, and therefore
we have the following parameter conditions:

(1) if 𝐶
1
= 0, 𝑛 = 1, then 𝑝 ∈ {−2/𝑚, −1/(𝑚 − 1), 2/(𝑚 −

1), 1/(𝑚 − 1)};
(2) if 𝐶

1
= 0, 𝑛 ̸= 1, 𝑛 = 𝑚 + 1, then 𝑝 ∈ {𝑚/(𝑚 −

1), −𝑚/(𝑚 − 1), 2𝑚/(𝑚 − 1), −2𝑚/(𝑚 − 1)};
(3) if 𝐶

1
̸= 0, 𝑛 = 1, then we have𝑚 = 5 and 𝑝 = ±1/2;

(4) if 𝑛 = 𝑝 = 1, then we have𝑚 = 2 or𝑚 = 3.

Next, using the basic results on Weierstrass elliptic func-
tions shown in Section 2, we will analyze the solutions of (20)
in the above cases.

3.1. Case 1. (i) If 𝐶
1

= 0, 𝑛 = 1, and 𝑝 = 1/(𝑚 − 1), (20)
becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
2(𝑚 − 1)

2

𝑏𝜇2
[

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

𝑚 + 1
𝜙
3
] = 𝑓 (𝜙) .

(21)

It is easy to see that 𝑓(𝜙) has two roots: 𝜙
0

= 0 and 𝜙
0

=

((1 − 𝑐
2
)(𝑚 + 1))/2𝑎. From (8), we can obtain the following

solution for (21):

𝜙 = 𝜙
0
+

6 (𝑚 − 1) ((1 − 𝑐
2
) 𝜙
0
− (3𝑎/ (𝑚 + 1)) 𝜙

2

0
)

12𝑏𝜇2℘ (𝜉) − (𝑚 − 1) (1 − 𝑐2 − (6𝑎/ (𝑚 + 1)))
,

(22)

where the invariants are

𝑔
2
=

(𝑚 − 1)
4
(1 − 𝑐

2
)
2

12(𝑏𝜇2)
2

, 𝑔
3
= −

(𝑚 − 1)
6
(1 − 𝑐

2
)
3

216(𝑏𝜇2)
3

.

(23)

Then the discriminant Δ = 0. The root 𝜙
0
= 0 gives the trivial

solution 𝜙 = 0, and the nonzero solution of (21) can be found

by taking 𝜙
0
= ((1−𝑐

2
)(𝑚+1))/2𝑎. Hence, from (11), we have

the periodic wave solution to (21)

𝜙 =

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎
sec2(1

2

√−

(𝑚 − 1)
2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉)

(24)

for (1 − 𝑐
2
)/𝑏 < 0. From (12), we have the solitary wave

solution

𝜙 =

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎
sech2(1

2

√
(𝑚 − 1)

2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉)

(25)

for (1 − 𝑐
2
)/𝑏 > 0.

Therefore, when (1 − 𝑐
2
)/𝑏 < 0, GB(𝑚, 1) (6) has the

following periodic wave solution:

𝑢 (𝑥, 𝑡)

= (

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎

× sec2(1

2

√−

(𝑚 − 1)
2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉))

1/(𝑚−1)

.

(26)

When (1 − 𝑐
2
)/𝑏 < 0, GB(𝑚, 1) (6) has the following solitary

wave solution:

𝑢 (𝑥, 𝑡)

= (

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎

× sech2(1

2

√
(𝑚 − 1)

2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉))

1/(𝑚−1)

.

(27)

Remark 1. When 𝑚 > 1, the solutions (26)-(27) that we
obtained are completely the same as (22)–(24) that were
obtained by Lai [31].

(ii) If 𝐶
1
= 0, 𝑛 = 1, and 𝑝 = −1/(𝑚 − 1), (20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
2(𝑚 − 1)

2

𝑏𝜇2
[

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

𝑚 + 1
𝜙] = 𝑓 (𝜙) .

(28)
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It is easy to see that 𝑓(𝜙) has two roots: 𝜙
0

= 0 and
𝜙
0
= 2𝑎/((1 − 𝑐

2
)(𝑚 + 1)). From (8), we can obtain that the

expression for the solutions of (28) is

𝜙 = (12𝑏𝜇
2
𝜙
0
℘ (𝜉) + 5(𝑚 − 1)

2
(1 − 𝑐

2
) 𝜙
0

−
6𝑎(𝑚 − 1)

2

(𝑚 + 1)
)

× (12𝑏𝜇
2
℘ (𝜉) − (𝑚 − 1)

2
(1 − 𝑐

2
))
−1

,

(29)

where the invariants are given by (23). Taking the root 𝜙
0
= 0

into (29), we get

𝜙 =
−6𝑎(𝑚 − 1)

2

(𝑚 + 1) [12𝑏𝜇
2℘ (𝜉) − (𝑚 − 1)

2
(1 − 𝑐2)]

. (30)

Since the discriminant Δ = 0, thus from (11), we have the
periodic wave solution to (28)

𝜙 =
2𝑎

(1 − 𝑐2) (𝑚 + 1)
sin2(1

2

√−

(𝑚 − 1)
2
(1 − 𝑐

2
)

𝑏𝜇2
𝜉) ,

(31)

for (1 − 𝑐
2
)/𝑏 < 0. From (12), we have the solitary wave

solution

𝜙 = −
2𝑎

(1 − 𝑐2) (𝑚 + 1)
sinh2(1

2

√
(𝑚 − 1)

2
(1 − 𝑐

2
)

𝑏𝜇2
𝜉)

(32)

for (1 − 𝑐
2
)/𝑏 > 0.

Therefore, when (1 − 𝑐
2
)/𝑏 < 0, the GB(𝑚, 1) (6) has the

following periodic wave solution:

𝑢 (𝑥, 𝑡)

= (

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎

×csc2(1

2

√−

(𝑚 − 1)
2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉))

1/(𝑚−1)

.

(33)

When (1 − 𝑐
2
)/𝑏 > 0, the GB(𝑚, 1) (6) has the following

solitary wave solution:

𝑢 (𝑥, 𝑡)

= ( −

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎

×csch2(1

2

√
(𝑚 − 1)

2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉))

1/(𝑚−1)

.

(34)

When substituting the second root 𝜙
0
= 2𝑎/((1 − 𝑐

2
)(𝑚 + 1))

into (29), we have

𝜙 = (24𝑎𝑏𝜇
2
℘ (𝜉) + 5 (𝑚 + 1) (𝑚 − 1)

2
(1 − 𝑐

2
)
2

−6𝑎(𝑚 − 1)
2
(1 − 𝑐

2
))

× ((𝑚 + 1) (1 − 𝑐
2
) [12𝑏𝜇

2
℘ (𝜉) − (𝑚 − 1)

2
(1 − 𝑐

2
)])
−1

.

(35)

So from (11), we have the periodic wave solution to (28):

𝜙 =
2𝑎

(1 − 𝑐2) (𝑚 + 1)
cos2(1

2

√−

(𝑚 − 1)
2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉) ,

(36)

for (1 − 𝑐
2
)/𝑏 < 0. From (12), we have the solitary wave

solution to (28):

𝜙 =
2𝑎

(1 − 𝑐2) (𝑚 + 1)
cosh2(1

2

√
(𝑚 − 1)

2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉) .

(37)

Therefore, when (1−𝑐
2
)/𝑏 < 0, GB(𝑚, 1) (6) has the following

periodic wave solution:

𝑢 (𝑥, 𝑡)

= (
2𝑎

(1 − 𝑐2) (𝑚 + 1)

×cos2(1

2

√−

(𝑚 − 1)
2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉))

1/(1−𝑚)

.

(38)
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When (1 − 𝑐
2
)/𝑏 > 0, the GB(𝑚, 1) (6) has the following

solitary wave solution:
𝑢 (𝑥, 𝑡)

= (
2𝑎

(1 − 𝑐2) (𝑚 + 1)

×cosh2(1

2

√
(𝑚 − 1)

2
(1 − 𝑐

2
)

(𝑏𝜇2)
𝜉))

1/(1−𝑚)

.

(39)
Remark 2. When 𝑚 > 1, the solutions (33)-(34) that we
obtained are completely the same as (23)–(25) that were
obtained by Lai [31]; when 𝑚 < 1 and 𝑚 ̸= − 1, the solutions
(38)-(39) that we obtained are similar as the solutions (26)–
(28) that were obtained by Lai [31].

(iii) If 𝐶
1
= 0, 𝑛 = 1, and 𝑝 = 2/(𝑚 − 1), (20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
(𝑚 − 1)

2

2𝑏𝜇2
[

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

𝑚 + 1
𝜙
4
] = 𝑓 (𝜙) .

(40)
According to (8), the solutions of (40) read

𝜙 = 𝜙
0
+ (3(𝑚 − 1)

2
[(1 − 𝑐

2
) 𝜙
0
−

4𝑎

𝑚 + 1
𝜙
3

0
])

× (24𝑏𝜇
2
℘ (𝜉) − (𝑚 − 1)

2

× (

(1 − 𝑐
2
)

2
−

6𝑎

𝑚 + 1
𝜙
2

0
))

−1

,

(41)

where the invariants are

𝑔
2
=

(𝑚 − 1)
4
(1 − 𝑐

2
)
2

192(𝑏𝜇2)
2

, 𝑔
3
= −

(𝑚 − 1)
6
(1 − 𝑐

2
)
3

(24𝑏𝜇2)
3

.

(42)
Taking the root𝜙

0
= 0 into (41), we get the trivial solution𝜙 =

0. However, when taking the root 𝜙 = ±√(1 − 𝑐2)(𝑚 + 1)/2𝑎

into (41), we can obtain the solutions to (40)

𝜙 = ±
√

(1 − 𝑐
2
) (𝑚 + 1)

2𝑎

48𝑏𝜇
2
℘ (𝜉) − (𝑚 − 1)

2
(1 − 𝑐

2
)

48𝑏𝜇2℘ (𝜉) + 5(𝑚 − 1)
2
(1 − 𝑐2)

.

(43)
Since the discriminant Δ = 0, it is easy to see from (11), (12)
that the above solutions (43) will generate the same periodic
and solitary wave solutions to (6) as (26), (27).

(iv) If 𝐶
1
= 0, 𝑛 = 1, and 𝑝 = −2/(𝑚 − 1), (20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
(𝑚 − 1)

2

2𝑏𝜇2
[

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

𝑚 + 1
] = 𝑓 (𝜙) . (44)

Using the same arguments as the above, we can deduce that
it would give exactly the same solutions of (6) as Case 1 (ii).

3.2. Case 2. (i) If 𝐶
1
= 0, 𝑛 ̸= 1, 𝑛 = 𝑚, and 𝑝 = −𝑚/(𝑚 − 1),

(20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
2(𝑚 − 1)

2

𝑏𝜇2𝑚2
[

𝑚(1 − 𝑐
2
)

𝑚 + 1
𝜙
3
−

𝑎

2
𝜙
2
] = 𝑓 (𝜙) .

(45)

Using similar arguments to Case 1 (i), we can deduce that
when 𝑎/𝑏 > 0, the GB(𝑚,𝑚) (6) has the following periodic
wave solution:

𝑢 (𝑥, 𝑡) = (
𝑎 (𝑚 + 1)

2𝑚 (1 − 𝑐2)
sec2(1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 − 1

𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
√

𝑎

𝑏𝜇2
𝜉))

−1/(𝑚−1)

.

(46)

When 𝑎/𝑏 < 0, the GB(𝑚,𝑚) (6) has the following solitary
wave solution:
𝑢 (𝑥, 𝑦, 𝑡)

= [
𝑎 (𝑚 + 1)

2𝑚 (1 − 𝑐2)
sech2(1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 − 1

𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
√−

𝑎

𝑏𝜇2
𝜉)]

−1/(𝑚−1)

.

(47)

Remark 3. When 𝑚 < 1, the solutions (46)-(47) that we
obtained are completely the same as (62)–(64) that were
obtained by Lai [31].

(ii) If 𝐶
1

= 0, 𝑛 ̸= 1, 𝑛 = 𝑚, and 𝑝 = 𝑚/(𝑚 − 1), (20)
becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
2(𝑚 − 1)

2

𝑏𝜇2𝑚2
[

𝑚(1 − 𝑐
2
)

𝑚 + 1
𝜙 −

𝑎

2
𝜙
2
] = 𝑓 (𝜙) .

(48)

Using similar arguments to Case 1 (ii), we can deduce that
when 𝑎/𝑏 > 0, the GB(𝑚,𝑚) (6) has the following periodic
wave solution:

𝑢 (𝑥, 𝑡) = [

2𝑚 (1 − 𝑐
2
)

𝑎 (𝑚 + 1)
sin2(1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 − 1

𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
√

𝑎

𝑏𝜇2
𝜉)]

1/(𝑚−1)

.

(49)

When 𝑎/𝑏 < 0, the GB(𝑚,𝑚) (6) has the following solitary
wave solution:

𝑢 (𝑥, 𝑡) = [

2𝑚 (1 − 𝑐
2
)

𝑎 (𝑚 + 1)
sinh2(1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 − 1

𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
√

𝑎

𝑏𝜇2
𝜉)]

1/(𝑚−1)

.

(50)

Remark 4. When𝑚 > 1, solutions (49)-(50) that we obtained
are completely the same as (59)–(61) that were obtained by Lai
[31].

(iii) If 𝐶
1
= 0, 𝑛 ̸= 1, 𝑛 = 𝑚, and 𝑝 = −2𝑚/(𝑚 − 1), (20)

becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
(𝑚 − 1)

2

2𝑏𝜇2𝑚2
[

𝑚(1 − 𝑐
2
)

𝑚 + 1
𝜙
4
−

𝑎

2
𝜙
2
] = 𝑓 (𝜙) . (51)
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Using similar arguments to Case 2 (i), we can deduce that it
would give exactly the same solutions of the GB(𝑚,𝑚) (6) as
those given by (45) and (46).

(iv) If 𝐶
1
= 0, 𝑛 ̸= 1, 𝑛 = 𝑚, and 𝑝 = 2𝑚/(𝑚 − 1),

(
𝑑𝜙

𝑑𝜉
)

2

=
(𝑚 − 1)

2

2𝑏𝜇2𝑚2
[

𝑚(1 − 𝑐
2
)

𝑚 + 1
−

𝑎

2
𝜙
2
] = 𝑓 (𝜙) . (52)

Using similar arguments to Case 2 (ii), we can deduce that it
would give exactly the same solutions of the GB(𝑚,𝑚) (6) as
those given by (48) and (49).

3.3. Case 3. (i) If 𝐶
1

̸= 0, 𝑛 = 1, 𝑚 = 5, and 𝑝 = 1/2, (20)
becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
8

𝑏𝜇2
[𝐶
1
𝜙 +

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

6
𝜙
4
] = 𝑓 (𝜙) . (53)

According to (8), the solutions of (52) read

𝜙 =

3𝑏𝜇
2
𝜙
0
℘ (𝜉) + 5 (1 − 𝑐

2
) 𝜙
0
− 2𝑎𝜙

3

0
+ 6𝐶
1

3𝑏𝜇2℘ (𝜉) − (1 − 𝑐2) + 2𝑎𝜙
2

0

, (54)

where the invariants are given by

𝑔
2
=

4(1 − 𝑐
2
)
2

3(𝑏𝜇2)
2

, 𝑔
3
= −

8(1 − 𝑐
2
)
3

27(𝑏𝜇2)
3

+
16𝑎𝐶
2

1

3(𝑏𝜇2)
3
. (55)

So we can obtain the general expressions for the solutions to
the GB(5, 1) (6):

𝑢 (𝑥, 𝑡) = [

3𝑏𝜇
2
𝜙
0
℘ (𝜉) + 5 (1 − 𝑐

2
) 𝜙
0
− 2𝑎𝜙

3

0
+ 6𝐶
1

3𝑏𝜇2℘ (𝜉) − (1 − 𝑐2) + 2𝑎𝜙
2

0

]

1/2

.

(56)

For example, substituting the simplest root 𝜙 = 0 of𝑓(𝜙) into
(56), we get

𝑢 (𝑥, 𝑡) = [
6𝐶
1

3𝑏𝜇2℘ (𝜉) − (1 − 𝑐2)
]

1/2

. (57)

(ii) If 𝐶
1

̸= 0, 𝑛 = 1,𝑚 = 5, and 𝑝 = −1/2, (20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
8

𝑏𝜇2
[𝐶
1
𝜙
3
+

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

6
] = 𝑓 (𝜙) . (58)

Using similar arguments toCase 3 (i), we can get the following
general expression for the solutions to GB(5, 1) (6):

𝑢 (𝑥, 𝑡) = [

3𝑏𝜇
2
𝜙
0
℘ (𝜉) + 3 (1 − 𝑐

2
) 𝜙
0
+ 12𝐶

1
𝜙
2

0

3𝑏𝜇2℘ (𝜉) − (1 − 𝑐2) − 6𝐶
1

]

−1/2

,

(59)

where the invariants are given by (55).

3.4. Case 4. (i) If 𝑛 = 1,𝑚 = 2, and 𝑝 = 1, (20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
2

𝑏𝜇2
[𝐶
1
+

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

3
𝜙
3
] = 𝑓 (𝜙) . (60)

Following the same procedure as mentioned above, we can
get the general solutions to GB(2, 1) (6):

𝑢 (𝑥, 𝑡) = [

12𝑏𝜇
2
𝜙
0
℘ (𝜉) + 5 (1 − 𝑐

2
) 𝜙
0
− 4𝑎𝜙

2

0

12𝑏𝜇2℘ (𝜉) − (1 − 𝑐2) + 2𝑎𝜙
0

] , (61)

where 𝜙
0
is the real root of 𝑓(𝜙) = 0 and the invariants are

given by

𝑔
2
= 3

4(1 − 𝑐
2
)
2

6(𝑏𝜇2)
2

, 𝑔
3
= −

(1 − 𝑐
2
)
3

216(𝑏𝜇2)
3
−

𝑎
2
𝐶
1

108(𝑏𝜇2)
3
.

(62)

(ii) If 𝑛 = 1,𝑚 = 3, and 𝑝 = 1, (20) becomes

(
𝑑𝜙

𝑑𝜉
)

2

=
2

𝑏𝜇2
[𝐶
1
+

(1 − 𝑐
2
)

2
𝜙
2
−

𝑎

4
𝜙
4
] = 𝑓 (𝜙) . (63)

Likewise, we can get the general solutions to GB(3, 1) (6):

𝑢 (𝑥, 𝑡) = [

12𝑏𝜇
2
𝜙
0
℘ (𝜉) + 5 (1 − 𝑐

2
) 𝜙
0
− 3𝑎𝜙

3

0

12𝑏𝜇2℘ (𝜉) − (1 − 𝑐2) + 3𝑎𝜙
2

0

] , (64)

where 𝜙
0
is the real root of 𝑓(𝜙) = 0.

4. Conclusion

From the above discussion, we find the traveling wave solu-
tions of the generalized Boussinesq equationGB(𝑚, 𝑛), which
are expressed by the hyperbolic functions and trigonometric
functions, out without the aid of mathematical software.
The results show that the Weierstrass function method is
a powerful mathematical tool to search for exact solutions
to nonlinear differential equations, especially solitary ones.
It may be advantageous that this quite general method can
lead to free parameters as shown in the solution. We believe
that this approach can also be used to solve other nonlinear
equations.
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