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This paper elucidates the main advantages of the exp-function method in finding exact solutions of nonlinear wave equations. By
the aid of some mathematical software, the solution process becomes extremely simple and accessible.

1. Introduction

One of the most important aspects in nonlinear science
is how to solve an exact solution of a nonlinear equation.
Recently many different methods have appeared, among
which the homotopy perturbation method [1–4], the tanh-
method [5], the sinh-method [6, 7], and the F-expansion
method [8–11] have caught much attention; however, all
these methods are valid for some special kinds of nonlinear
equations. It is therefore verymuch needed to find a universal
approach to nonlinear equations; this is very challenging
indeed, and the exp-function method [12–15] meets this
requirement. The exp-function method itself is mathemat-
ically beautiful and extremely accessible to nonmathemati-
cians. The use of the method requires no special knowledge
of advanced calculus, and it is especially effective for solitary
solutions.

2. Exp-Function Method

The exp-function method was first proposed by He and Wu
[16], and we consider a general partial differential equation
(PED) in the form

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑥𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑦𝑦
) = 0 (1)

to pick out the main solution process and its advantages.

Use a transformation [16]

𝜉 = 𝑘𝑥 + 𝜔𝑡 + 𝑙𝑦, (2)

where 𝑘, 𝜔, and 𝑙 are unknown constants and should be
determined later. By (2), we can convert (1) to the following
nonlinear ordinary differential equation:

𝐺(𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
, . . .) = 0. (3)

According to the exp-function method, we assume that its
solution can be expressed in the following form [16, 17]:

𝑢 (𝜉) =
∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp (𝑛𝜉)

∑
𝑞

𝑚=−𝑝
𝑏
𝑛
exp (𝑚𝜉)

, (4)

where 𝑐, 𝑑, 𝑝, 𝑞 are positive integers that could be freely
chosen. To determine the value of 𝑐 and 𝑝, we balance the
linear term of highest order of (3) with the highest order of
the nonlinear term. Similarly for determining the value of 𝑑
and 𝑞, we balance the lowest orders of linear and nonlinear
terms in (3). By substituting (4) into (3), collecting terms of
the same term of exp(𝑖𝜉), and equating the coefficient of each
power of exp to zero, we can get a set of algebraic equations
for determining unknown constants.
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3. Exact Solution for Nonlinear Wave Equation

In order to illustrate the basic solution process of the exp-
function method, we use the Burgers-Huxley equation as an
example, which can be expressed as [18]

𝑢
𝑡
+ 𝑢
𝑥𝑥
+
3

𝑘
𝑢𝑢
𝑥
+ 𝑐𝑢 + 𝑢

2
+ 𝑢
3
= 0, (5)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function, 𝑢
𝑡
, 𝑢
𝑥
are the

partial derivatives of 𝑢(𝑥, 𝑡) with respect to 𝑡 and 𝑥, respec-
tively, and 𝑘 and 𝑐 are arbitrary constants.

According to the exp-function method [15–17], we intro-
duce a complex variation 𝜉 defined as

𝜉 = 𝑘𝑥 + 𝜔𝑡. (6)

Equation (5) thus becomes an ordinary differential equation
as

𝑘
2
𝑢
󸀠󸀠
+ (3𝑢 + 𝜔) 𝑢

󸀠
+ 𝑐𝑢 + 𝑢

2
+ 𝑢
3
= 0. (7)

We suppose that the solution of (7) can be expressed as

𝑢 (𝜉) =
𝑎
𝑐
exp (𝑐𝜉) + ⋅ ⋅ ⋅ + 𝑎

−𝑑
exp (−𝑑𝜉)

𝑏
𝑝
exp (𝑝𝜉) + ⋅ ⋅ ⋅ + 𝑏

−𝑞
exp (−𝑞𝜉)

. (8)

Thus we have

𝑢
󸀠󸀠
=
𝛾
1
exp ((𝑐 + 3𝑝) 𝜉)
𝛾
2
exp (4𝜉)

,

𝑢
3
=
𝑐
3
exp (3𝑐𝜉) + ⋅ ⋅ ⋅

𝑐
4
exp (3𝑝𝜉) + ⋅ ⋅ ⋅

=
𝑐
3
exp ((3𝑐 + 𝑝) 𝜉)
𝑐
4
exp (4𝑝𝜉)

.

(9)

Balancing highest order of exp-function in (9), we have 3𝑐 +
𝑝 = 𝑐 + 3𝑝, which leads to the result 𝑝 = 𝑐. Similarly we
balance the lowest orders of linear and nonlinear terms in (5)
to determine values of 𝑑 and 𝑞, and we can get 𝑑 = 𝑞. For
simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1; then (8) reduces
to

𝑢 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

exp (𝜉) + 𝑏
0
+ 𝑏
−1
exp (−𝜉)

. (10)

Substituting (10) in to (5), we have

1

𝐴
[𝐸
3
exp (3𝜉) + 𝐸

2
exp (2𝜉) + 𝐸

1
exp (𝜉) + 𝐸

0

+𝐸
−1
exp (−𝜉) + 𝐸

−2
exp (−2𝜉) + 𝐸

−3
exp (−3𝜉)] = 0,

(11)

where = [𝑏
0
+ exp(𝜉) + 𝑏

−1
exp(−𝜉)]3,

𝐸
3
= 𝑎
3

1
+ 𝑎
2

1
+ 𝑐𝑎
1
,

𝐸
2
= 𝑐𝑎
0
− 𝑎
0
𝑎
1
− 𝜔𝑎
0
+ 3𝑎
0
𝑎
2

1
+ 4𝑎
2

1
𝑏
0

+ 𝑘
2
𝑎
0
+ 2𝑎
1
𝑏
0
𝑐 + 𝜔𝑎

1
𝑏
0
− 𝑘
2
𝑎
1
𝑏
0
,

𝐸
0
= 𝑎
3

0
+ 𝑎
2

0
𝑏
0
− 7𝑎
0
𝑎
−1
+ 6𝑎
0
𝑎
1
𝑎
−1

+ 11𝑎
0
𝑎
1
𝑏
−1
+ 2𝑏
0
𝑎
1
𝑎
−1
+ 2𝑐𝑎
0
𝑏
−1
+ 2𝑐𝑏
0
𝑎
−1

− 3𝜔𝑏
0
𝑎
−1
+ 𝑐𝑎
0
𝑏
2

0
− 6𝑘
2
𝑎
0
𝑏
−1
+ 3𝑘
2
𝑎
−1
𝑏
0

+ 3𝑘
2
𝑎
−1
𝑏
−1
𝑏
0
+ 2𝑐𝑎
1
𝑏
−1
𝑏
0
+ 3𝜔𝑎

1
𝑏
−1
𝑏
0
,

𝐸
1
= 𝑐𝑎
−1
− 4𝑎
1
𝑎
−1
− 2𝜔𝑎

−1
+ 3𝑎
1
𝑎
2

0
+ 3𝑎
2

1
𝑎
−1

+ 7𝑎
2

1
𝑏
−1
+ 4𝑘
2
𝑎
−1
− 2𝑎
2

0
+ (𝑘
2
+ 𝑐) 𝑎

1
𝑏
2

0
+ 5𝑎
0
𝑎
1
𝑏
0

+ 2𝑐𝑎
1
𝑏
−1
− 𝜔𝑎
0
𝑏
0
+ 2𝜔𝑎

1
𝑏
−1
+ 2𝑐𝑎
0
𝑏
0
,

𝐸
−1
= 3𝑎
2

0
𝑎
−1
+ 3𝑎
1
𝑎
2

−1
+ 4𝑎
2

0
𝑏
−1
− 5𝑎
2

−1
+ 𝑎
−1
𝑏
2

0
𝑘
2

+ 4𝑎
1
𝑏
2

−1
𝑘
2
− 𝑎
0
𝑎
−1
𝑏
0
+ 8𝑎
1
𝑎
−1
𝑏
−1
+ (2𝑐 − 2𝜔) 𝑎

−1
𝑏
−1

+ 𝑐𝑎
−1
𝑏
2

0
+ 𝑐𝑎
1
𝑏
2

−1
− 4𝑎
−1
𝑏
2

−1
𝑘
2
− 𝜔𝑎
−1
𝑏
2

0
+ 2𝜔𝑎

1
𝑏
2

−1

+ (2𝑐 + 𝜔 − 𝑘
2
) 𝑎
0
𝑏
−1
𝑏
0
,

𝐸
−2
= 3𝑎
0
𝑎
2

−1
− 2𝑎
2

−1
𝑏
0
+ 𝑘
2
𝑎
0
𝑏
2

−1
+ 5𝑎
0
𝑎
−1
𝑏
−1

+ (𝑐 + 𝜔) 𝑎
0
𝑏
2

−1
+ (2𝑐 − 𝑘

2
− 𝜔) 𝑎

−1
𝑏
−1
𝑏
0
,

𝐸
−3
= 𝑎
3

−1
+ 𝑎
2

−1
𝑏
−1
+ 𝑐𝑎
−1
𝑏
2

−1
.

(12)

Setting the coefficients of exp(𝑖𝜉), (𝑖 = 0, ±1, ±2, ±3) to zero,
we have

𝐸
3
= 0, 𝐸

2
= 0, 𝐸

1
= 0

𝐸
0
= 0,

𝐸
−3
= 0, 𝐸

−2
= 0, 𝐸

−1
= 0.

(13)

With the help of some mathematical software, we can solve
the solutions of the algebraic equations.

Case 1. Consider

𝑎
1
=
√1 − 4𝑐 − 1

2
,

𝑏
0
=

−𝑎
0
(3𝑎
2

1
− 𝑎
1
+ 𝑘
2
+ 𝑐 − 𝜔)

𝑎
1
(−𝑘2 + 4𝑎

1
+ 2𝑐 + 𝜔)

,

𝜔 =
𝑐𝑎
0
− 𝑎
0
𝑎
1
+ 3𝑎
0
𝑎
2

1
+ 4𝑎
2

1
𝑏
0
+ 𝑎
0
𝑘
2
+ 2𝑎
1
𝑏
0
𝑐 − 𝑎
1
𝑏
0
𝑘
2

𝑎
0
− 𝑎
1
𝑏
0

,

𝑎
−1
=

𝑏
−1
(√1 − 4𝑐 − 1)

2
.

(14)
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This implies the following exact solution:

𝑢 (𝜉) = (
√1 − 4𝑐 − 1

2
exp (𝜉) + 𝑎

0

+

𝑏
2
(√1 − 4𝑐 − 1)

2
exp (−𝜉))

× (exp (𝜉) −
(3𝑎
0
𝑎
2

1
− 𝑎
0
𝑎
1
+ 𝑎
0
𝑘
2
+ 𝑐𝑎
0
− 𝜔𝑎
0
)

2𝑐𝑎
1
+ 𝜔𝑐 − 𝑎

1
𝑘2 + 4𝑎

2

1

+ 𝑏
2
exp (−𝜉))

−1

,

(15)

where

𝜉 = 𝑘𝑥

+
𝑐𝑎
0
− 𝑎
0
𝑎
1
+ 3𝑎
0
𝑎
2

1
+ 4𝑎
2

1
𝑏
0
+ 𝑎
0
𝑘
2
+ 2𝑎
1
𝑏
0
𝑐 − 𝑎
1
𝑏
0
𝑘
2

𝑎
0
− 𝑎
1
𝑏
0

𝑡,

(16)

𝑎
0
, 𝑏
2
are parameters, 𝑏

2
̸= 0, and 𝑘 is a free real number.

Case 2. Consider

𝑎
1
=
1

2
, 𝑏

0
= 0,

𝑎
2
= −

𝑏
2

2
, 𝑏

2
= 𝑏
2
,

𝑎
0
=
√2

2
+ √−16𝑏

2
𝑘2 +

19

2
𝑏
2
+ 2𝑐𝑏
2
+ 8𝑏
2
𝜔,

𝜔 = 𝑘
2
+ 𝑐 +

1

4
.

(17)

This case gives another exact solution as follows:

𝑢 (𝑥, 𝑡) = (
1

2
exp (𝑘𝑥 + (𝑘2 + 𝑐 + 1

4
) 𝑡)

+
√2

2

√10𝑏
2
𝑐 − 8𝑏

2
𝑘2 +

19

2
𝑏
2
+ 2𝑏
2

− 𝑏
2
exp(−𝑘𝑥 − (𝑘2 + 𝑐 + 1

4
) 𝑡))

× (exp(𝑘𝑥 + (𝑘2 + 𝑐 + 1
4
) 𝑡)

+ 𝑏
2
exp(−𝑘𝑥 − (𝑘2 + 𝑐 + 1

4
) 𝑡))

−1

,

(18)

where 𝑏
2
, 𝑘, are nonzero free parameters.

Case 3. Consider

𝑎
1
= −

√1 − 4𝑐 + 1

2
, 𝑎

0
= 0,

𝑏
0
= 0, 𝑏

2
= 𝑏
2
, 𝑎

2
= −

(1 + √1 − 4𝑐)

2
𝑏
2
.

(19)

This results in the following exact solution:

𝑢 (𝜉) = (−
√1 − 4𝑐 + 1

2
exp (𝜉)

−

(1 + √1 − 4𝑐)

2
𝑏
2
exp (−𝜉))

× (exp (𝜉) + 𝑏
2
exp (−𝜉))−1,

(20)

where 𝑏
2
is nonzero free parameter.

4. Conclusion

By some mathematical software, the solution process is
extremely simple and abundant solutions are predicted [19–
21].The exp-functionmethod is a universal tool for nonlinear
equations and can be easily extended to fractional calculus
[22–27].
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