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We define and study Sobolev-type spaces 𝑊𝑠,𝑝

𝐴
(R

+
) associated with singular second-order differential operator on (0,∞). Some

properties are given; in particular we establish a compactness-type imbedding result which allows a Reillich-type theorem. Next,
we introduce a generalized Weierstrass transform and, using the theory of reproducing kernels, some applications are given.

1. Introduction

The Sobolev spaces have served as a very useful tool in the
theory of partial differential equations,mostly those related to
continuummechanics or physics. Their uses and the study of
their properties were facilitated by the theory of distributions
and Fourier analysis. The Sobolev space𝑊𝑠,𝑝

(R
+
) is defined

by the use of the classical Fourier transform as the set of
all tempered distribution 𝑢 such that its classical Fourier
transform 𝑢̂ satisfying

(1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

)
𝑠/2

𝑢̂ ∈ 𝐿
𝑝

(R
+
) . (1)

Generalization of the Sobolev space has been studied by
replacing the classical Fourier transformby a generalized one.

In this paper we consider the differential operator on
(0,∞),

Δ
𝐴
=

𝑑
2

𝑑𝑥2
+
𝐴

󸀠

(𝑥)

𝐴 (𝑥)

𝑑

𝑑𝑥
+ 𝜌

2

, 𝜌 > 0, (2)

where 𝐴 is the Chebli-Trimeche function (cf. [1, Section 3.5])
defined on [0,∞) and satisfies the following conditions.

(i) There exists a positive even infinitely differentiable
function 𝐵 on R, with 𝐵(𝑥) ≥ 1, 𝑥 ∈ R

+
, such that

𝐴(𝑥) = 𝑥
2𝛼+1

𝐵(𝑥), 𝛼 > −1/2.

(ii) 𝐴 is increasing on R
+
and lim

𝑥→∞
𝐴(𝑥) = ∞.

(iii) 𝐴󸀠

/𝐴 is decreasing on (0,∞), and
lim

𝑥→∞
(𝐴

󸀠

(𝑥)/𝐴(𝑥)) = 2𝜌.
(iv) There exists a constant 𝜎 > 0, such that for all 𝑥 ∈

[𝑥
0
,∞), 𝑥

0
> 0, we have

𝐴
󸀠

(𝑥)

𝐴 (𝑥)
=
{

{

{

2𝜌 + 𝑒
−𝜎𝑥

𝐹 (𝑥) , if 𝜌 > 0

2𝛼 + 1

𝑥
+ 𝑒

−𝜎𝑥

𝐹 (𝑥) , if 𝜌 = 0,
(3)

where 𝐹 is 𝐶∞ on (0,∞), bounded together with its deriva-
tives.

For 𝐴(𝑥) = 𝑥
2𝛼+1, 𝛼 > −1/2, and 𝜌 = 0, we regain the

Bessel operator

𝑙
𝛼
𝑓 =

𝑑
2

𝑓

𝑑𝑥2
+ (

2𝛼 + 1

𝑥
)
𝑑𝑓

𝑑𝑥
. (4)

For 𝐴(𝑥) = sinh2𝛼+1

(𝑥)cosh2𝛽+1

(𝑥), 𝛼 ≥ 𝛽 ≥ −1/2, 𝛼 ̸= −

1/2, and 𝜌 = 𝛼 + 𝛽 + 1, we regain the Jacobi operator

𝑙
𝛼,𝛽
𝑓 =

𝑑
2

𝑓

𝑑𝑥2
+ [(2𝛼 + 1) coth𝑥 + (2𝛽 + 1) tanh𝑥]

×
𝑑𝑓

𝑥
+ 𝜌

2

.

(5)
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2 Abstract and Applied Analysis

The purpose of this paper is to introduce and study new
Sobolev-type spaces 𝑊𝑠,𝑝

𝐴
(R

+
), associated with the singular

operator Δ
𝐴

that generalizes the corresponding classical
spaces. The Bessel case was treated by Assal and Nessibi [2],
while Ben Salem and Dachraoui [3] studied the generalized
Soblev spaces in the Jacobi setting theory.

The paper is organized as follows. In Section 2 we recall
the main results about the harmonic analysis associated with
the operator Δ

𝐴
. In Section 3 Sobolev-type spaces on the

dual of the Chébli-Trimèche hypergroup are studied. Some
properties including completeness and Sobolev embedding
theorems are established. Next, we prove a Reillich-type
theorem. Finally, in Section 4, as applications, we give prac-
tical real inversion formulas using the theory of reproducing
kernels for the generalized Weierstrass transform.

2. Preliminaries

In this section, we collect some harmonic analysis results
related to the operator Δ

𝐴
. For details, we refer the reader to

[1, 4–8].

2.1. Eigenfunctions of the Operator Δ
𝐴
. In the following, we

denote by
E

∗
(R) the space of even 𝐶∞-functions on R,

S
∗
(R) the subspace ofE

∗
(R), consisting of functions

𝑓 rapidly decreasing together with their derivatives,
S2

∗
(R) = 𝜑

0
S

∗
(R), where 𝜑

0
is the eigenfunction of

the operator Δ
𝐴
associated with the value 𝜆 = 0,

S󸀠

∗
(R) the dual topological space of S

∗
(R),

(S2

∗
)
󸀠

(R) the dual topological space of S2

∗
(R),

E󸀠

∗
(R

+
) the dual topological space of E

∗
(R),

H
∗
(C) the space of even entire functions onCwhich

are of exponential type and slowly increasing,
H

∗,𝑎
(C) the subspace ofH

∗
(C) satisfying

∃𝑚 ∈ N.

𝑃
𝑚
(𝑓) = sup

𝜆∈C

(1 + 𝜆
2

)
−𝑚 󵄨󵄨󵄨󵄨𝑓 (𝜆)

󵄨󵄨󵄨󵄨 exp (−𝑎 |Im 𝜆|) < +∞.
(6)

We haveH
∗
(C) = ⋃

𝑎≥0
H

∗,𝑎
(C).

For every 𝜆 ∈ C, let us denote by 𝜑
𝜆
the unique solution

of the eigenvalue problem:

Δ
𝐴
𝑓 (𝑥) = −𝜆

2

𝑓 (𝑥) ,

𝑓 (0) = 1, 𝑓
󸀠

(0) = 0.

(7)

Remark 1. This function satisfies the following properties.
(i) ∀𝑥 ⩾ 0, the function 𝜆 󳨃→ 𝜑

𝜆
(𝑥) is analytic on C.

(ii) Product formula:

∀𝑥, 𝑦 ⩾ 0;

𝜑
𝜆
(𝑥) 𝜑

𝜆
(𝑦) = ∫

∞

0

𝜑
𝜆
(𝑧) 𝑤 (𝑥, 𝑦, 𝑧) 𝐴 (𝑧) 𝑑𝑧,

(8)

where 𝑤(𝑥, 𝑦, ⋅) is a measurable positive function on
[0,∞), with support in [|𝑥 − 𝑦|, 𝑥 + 𝑦].

(iii)

∀𝜆 ≥ 0, 𝑥 ∈ R,
󵄨󵄨󵄨󵄨𝜑𝜆

(𝑥)
󵄨󵄨󵄨󵄨 ≤ 1. (9)

(iv) For 𝜌 > 0, we have

∀𝑥 ≥ 0, ∀𝜆 ∈ R,

󵄨󵄨󵄨󵄨𝜑𝜆
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝜑
0
(𝑥) ≤ 𝑚 (1 + 𝑥) exp (−𝜌𝑥) ,

(10)

where𝑚 is a positive constant.
(v) For 𝜌 = 0, we have

∀𝑥 ≥ 0, 𝜑
0
(𝑥) = 1. (11)

(vi) We have the following integral representation of
Mehler type,

∀𝑥 > 0, ∀𝜆 ∈ C, 𝜑
𝜆
(𝑥) = ∫

𝑥

0

𝑘 (𝑥, 𝑡) cos (𝜆𝑡) 𝑑𝑡, (12)

where 𝑘(𝑥, ⋅) is an even positive 𝐶
∞ function on

(−𝑥, 𝑥) with support in [−𝑥, 𝑥].

2.2. Generalized Fourier Transform. For a Borel positive
measure 𝜇 on R, and 1 ≤ 𝑝 ≤ ∞, we write 𝐿𝑝

𝜇
(R

+
) for the

Lebesgue space equipped with the norm ‖ ⋅ ‖
𝐿
𝑝

𝜇(R+)
defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

𝜇(R+)
= (∫

R

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝜇 (𝑥))

1/𝑝

, if 𝑝 < ∞, (13)

and ‖𝑓‖
𝐿
∞
𝜇
(R+)

= ess sup
𝑥∈R+

|𝑓(𝑥)|. When 𝜇(𝑥) = 𝑤(𝑥)𝑑𝑥,
with𝑤 a nonnegative function onR

+
, we replace the 𝜇 in the

norms by 𝑤.
For 𝑓 ∈ 𝐿

1

𝐴
(R

+
), the generalized Fourier transform is

defined by

F (𝑓) (𝜆) = ∫
R+

𝑓 (𝑥) 𝜑
𝜆
(𝑥) 𝐴 (𝑥) 𝑑𝑥, ∀𝜆 ∈ R. (14)

The inverse generalized Fourier transform of a suitable
function 𝑔 on R

+
is given by

J𝑔 (𝑥) = F
−1

𝑔 (𝑥) = ∫
R+

(𝜆) 𝜑
𝜆
(𝑥) 𝑑𝛾 (𝜆) , (15)

where 𝑑𝛾(𝜆) is the spectral measure given by

𝑑𝛾 (𝜆) =
𝑑𝜆

󵄨󵄨󵄨󵄨𝑐𝐴 (𝜆)
󵄨󵄨󵄨󵄨

2
. (16)

Remark 2. The function 𝜆 󳨃→ 𝑐
𝐴
(𝜆) satisfies the following

properties.

(i) For 𝜆 ∈ R, we have 𝑐
𝐴
(−𝜆) = 𝑐

𝐴
(𝜆).

(ii) The function |𝑐
𝐴
(𝜆)|

−2 is continuous on [0,∞[.
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(iii) There exist positive constants 𝑘
1
, 𝑘

2
, and 𝑘

3
, such that

If 𝜌 ⩾ 0 : ∀𝜆 ∈ C, Im 𝜆 ⩽ 0, |𝜆| > 𝑘
3
;

𝑘
1
|𝜆|

2𝛼+1

⩽
󵄨󵄨󵄨󵄨𝑐𝐴 (𝜆)

󵄨󵄨󵄨󵄨

−2

⩽ 𝑘
2
|𝜆|

2𝛼+1

. (17)

If 𝜌 = 0, 𝛼 > 0 : ∀𝜆 ∈ C, |𝜆| ⩽ 𝑘
3
;

𝑘
1
|𝜆|

2𝛼+1

⩽
󵄨󵄨󵄨󵄨𝑐𝐴 (𝜆)

󵄨󵄨󵄨󵄨

−2

⩽ 𝑘
2
|𝜆|

2𝛼+1

. (18)

If 𝜌 > 0 : ∀𝜆 ∈ C, |𝜆| ⩽ 𝑘
3
;

𝑘
1
|𝜆|

2

⩽
󵄨󵄨󵄨󵄨𝑐𝐴 (𝜆)

󵄨󵄨󵄨󵄨

−2

⩽ 𝑘
2
|𝜆|

2

. (19)

Proposition 3 (see [7, 9]). (i) The generalized transform F
and its inverse J are topological isomorphisms between the
generalized Schwartz space S2

∗
(R) and the Schwartz space

S(R
∗
).

(ii) The transform F is a topological isomorphism from
E󸀠

∗
(R

+
) onto H

∗
(C). Moreover, for all 𝑇 ∈ E󸀠

∗
(R

+
), we have

supp(𝑇) ⊆ [−𝑎, 𝑎] if and only ifF(𝑇) ∈ H
∗,𝑎
(C).

Next, we give some properties of this transform.

(i) For 𝑓 in 𝐿1

𝐴
(R

+
) we have

󵄩󵄩󵄩󵄩F (𝑓)
󵄩󵄩󵄩󵄩𝐿∞
𝛾
(R+)

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1
𝐴
(R+)

. (20)

(ii) For 𝑓 in S2

∗
(R) we have

F (Δ
𝐴
𝑓) (𝑦) = −𝑦

2

F (𝑓) (𝑦) , ∀𝑦 ∈ R
+
. (21)

Proposition 4 (see [7, 9]). Plancherel formula for F. For all
𝑓 in S2

∗
(R), we have

∫
R+

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

2

𝐴 (𝑥) 𝑑𝑥 = ∫
R+

󵄨󵄨󵄨󵄨F (𝑓) (𝜉)
󵄨󵄨󵄨󵄨

2

𝑑𝛾 (𝜉) . (22)

(ii) Plancherel Theorem. The transformF extends uniquely to
an isomorphism from 𝐿

2

𝐴
(R

+
) onto 𝐿2

𝛾
(R

+
).

Remark 5. We have S2

∗
(R) ⊂ 𝐿

𝑝

𝐴
(R

+
) for all 2 ≤ 𝑝 ≤ ∞, but

𝑆
2

∗
(R) ̸⊆ 𝐿

𝑝

𝐴
(R

+
) for all 0 < 𝑝 < 2.

Proposition 6. Let 1 ≤ 𝑝 ≤ 2. The Fourier transformF (resp.
J) can be extended as a continuous mapping from 𝐿

𝑝

𝐴
(R

+
)

onto 𝐿𝑝
󸀠

𝛾
(R

+
) (resp. from 𝐿

𝑝

𝛾
(R

+
) onto 𝐿𝑝

󸀠

𝐴
(R

+
)) and we have

󵄩󵄩󵄩󵄩F𝑓
󵄩󵄩󵄩󵄩
𝐿
𝑝󸀠

𝛾 (R+)
⩽
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

;
󵄩󵄩󵄩󵄩J𝑔

󵄩󵄩󵄩󵄩
𝐿
𝑝󸀠

𝐴
(R+)

⩽
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)

(23)

with (1/𝑝󸀠

) + (1/𝑝) = 1.

2.3. Generalized Convolution

Definition 7 (see [10]). The translation operator associated
with the operator Δ

𝐴
is defined on 𝐿1

𝐴
(R

+
), by

∀𝑥, 𝑦 ⩾ 0; 𝜏
𝑥
𝑓 (𝑦) = ∫

∞

0

𝑓 (𝑧)𝑤 (𝑥, 𝑦, 𝑧) 𝐴 (𝑧) 𝑑𝑧, (24)

where 𝑤 is the function defined in the relation (9).

Proposition 8 (see [10]). For a suitable function 𝑓 on R
+
, we

have

(i) 𝜏
𝑥
𝑓(𝑦) = 𝜏

𝑦
𝑓(𝑥),

(ii) 𝜏
0
𝑓(𝑦) = 𝑓(𝑦),

(iii) 𝜏
𝑥
𝜏
𝑦
= 𝜏

𝑦
𝜏
𝑥
,

(iv) 𝜏
𝑥
𝜑
𝜆
(𝑦) = 𝜑

𝜆
(𝑥)𝜑

𝜆
(𝑦),

(v) F(𝜏
𝑥
𝑓)(𝜆) = 𝜑

𝜆
(𝑥)F(𝑓)(𝜆),

(vi) Δ
𝐴
(𝜏

𝑥
)𝑓 = 𝜏

𝑥
(Δ

𝐴
𝑓).

Definition 9 (see [10]). For suitable functions 𝑓 and 𝑔, we
define the convolution product 𝑓∗

𝐴
𝑔 by

𝑓∗
𝐴
𝑔 (𝑥) = ∫

R+

𝜏
𝑥
𝑓 (𝑦) 𝑔 (𝑦)𝐴 (𝑦) 𝑑𝑦, (25)

Remark 10. It is clear that this convolution product is both
commutative and associative:

(i) 𝑓∗
𝐴
𝑔 = 𝑔∗

𝐴
𝑓.

(ii) (𝑓∗
𝐴
𝑔)∗

𝐴
ℎ = 𝑓∗

𝐴
(𝑔∗

𝐴
ℎ).

Proposition 11 (see [10]). (i) Assume that 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞

satisfy (1/𝑝) + (1/𝑞) − 1 = 1/𝑟. Then, for every 𝑓 ∈ 𝐿
𝑝

𝐴
(R

+
)

and 𝑔 ∈ 𝐿
𝑞

𝐴
(R

+
), we have 𝑓∗

𝐴
𝑔 ∈ 𝐿

𝑟

𝐴
(R

+
), and

󵄩󵄩󵄩󵄩𝑓∗𝐴
𝑔
󵄩󵄩󵄩󵄩𝐿𝑟
𝐴
(R+)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿
𝑞

𝐴
(R+)

. (26)

(ii) If 𝜌 > 0 and 1 ≤ 𝑝 < 𝑞 ≤ 2, then

𝐿
𝑝

𝐴
(R

+
) ∗

𝐴
𝐿
𝑞

𝐴
(R

+
) 󳨅→ 𝐿

𝑞

𝐴
(R

+
) . (27)

(iii) If 𝜌 > 0 and 2 < 𝑝, 𝑞 < ∞ such that 𝑞/2 ≤ 𝑝 < 𝑞, then

𝐿
𝑝

𝐴
(R

+
) ∗

𝐴
𝐿
𝑞
󸀠

𝐴
(R

+
) 󳨅→ 𝐿

𝑞

𝐴
(R

+
) , (28)

where 𝑞󸀠 is the conjugate exponent of 𝑞.
(iv) If 𝜌 > 0 and 1 < 𝑝 < 2 such that 𝑝 < 𝑞 ≤ 𝑝/(2 − 𝑝),

then

𝐿
𝑝

𝐴
(R

+
) ∗

𝐴
𝐿
𝑝

𝐴
(R

+
) 󳨅→ 𝐿

𝑞

𝐴
(R

+
) . (29)

Proposition 12. For 𝑓 ∈ 𝐿
2

𝐴
(R

+
) and 𝑔 ∈ 𝐿

𝑝

𝐴
(R

+
), with 1 ≤

𝑝 < 2 we have

F (𝑓∗
𝐴
𝑔) = F (𝑓) (𝜆)F (𝑔) (𝜆) . (30)

Proposition 13. Let 𝑓, 𝑔 ∈ 𝐿
2

𝐴
(R

+
). Then 𝑓∗

𝐴
𝑔 ∈ 𝐿

2

𝐴
(R

+
) if

and only ifF(𝑓)F(𝑔) belongs to 𝐿2

𝐴
(R

+
), and in this case we

have

F (𝑓∗
𝐴
𝑔) = F (𝑓)F (𝑔) . (31)

Definition 14. The generalized Fourier transform of a distri-
bution 𝜏 in (S2

∗
)
󸀠

(R) is defined by

⟨F (𝜏) , 𝜙⟩ = ⟨𝜏,F
−1

(𝜙)⟩ , ∀𝜙 ∈ S
∗
(R) . (32)
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Proposition 15. The generalized Fourier transform F is a
topological isomorphism from (S2

∗
)
󸀠

(R) onto S󸀠

∗
(R).

Let 𝜏 be in (S2

∗
)
󸀠

(R
+
). We define the distribution Δ

𝐴
𝜏, by

⟨Δ
𝐴
𝜏, 𝜓⟩ = ⟨𝜏, Δ

𝐴
𝜓⟩ , ∀𝜓 ∈ S

2

∗
(R

+
) . (33)

This distribution satisfy the following property:

F (Δ
𝐴
𝜏) = −𝑦

2

F (𝜏) . (34)

3. Sobolev-Type Spaces on the Dual of
the Chébli-Trimèche Hypergroup

Definition 16. Let 𝑠 ∈ R and 𝑝 ∈ [1,∞]. We define the
Sobolev-type spaces 𝑊𝑠,𝑝

𝐴
(R

+
) as the set of tempered dis-

tributions 𝑢 ∈ 𝑆󸀠
∗
(R) such that

(1 + 𝑥
2

)
𝑠

J (𝑢) ∈ 𝐿
𝑝

𝐴
(R

+
) . (35)

We provide the space𝑊𝑠,𝑝

𝐴
(R

+
) with the norm:

‖𝑢‖
𝑊
𝑠,𝑝

𝐴
(R+)

=
󵄩󵄩󵄩󵄩󵄩󵄩
(1 + 𝑥

2

)
𝑠

J (𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

. (36)

In the sequel, we will give some properties of the space
𝑊

𝑠,𝑝

𝐴
(R

+
).

Proposition 17. Let 𝑠 ∈ R. The space S
∗
(R) is dense in

𝑊
𝑠,𝑝

𝐴
(R

+
), for

𝑝 ∈ {
[1,∞) , 𝑖𝑓 𝜌 = 0

[2,∞) , 𝑖𝑓 𝜌 > 0.
(37)

Proof. Firstly, we want to prove that the space S
∗
(R) is a

subset of 𝑊𝑠,𝑝

𝐴
(R

+
). Indeed, let 𝑓 ∈ S

∗
(R). By Proposition

3(i) the function (1+𝑥2

)
𝑠

J(𝑓) ∈ S2

∗
(R).Thus, using Remark

5, we deduce the claim. Now, we prove the density. Let 𝑓 ∈

𝑊
𝑠,𝑝

𝐴
(R

+
). Then, from the density of 𝐷

∗
(R

+
) in 𝐿𝑝

𝐴
(R

+
), we

deduce the existence of a sequence (𝑔
𝑛
)
𝑛
in𝐷

∗
(R

+
) such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + 𝑥

2

)
𝑠

J (𝑓) − 𝑔
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

= 0. (38)

On the other hand, according to Proposition 3(i), for all 𝑛 ∈

N, the function𝑓
𝑛
= F((1+𝑥

2

)
−𝑠

𝑔
𝑛
) is inS

∗
(R) and we have

󵄩󵄩󵄩󵄩𝑓 − 𝑓
𝑛

󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

=
󵄩󵄩󵄩󵄩󵄩󵄩
(1 + 𝑥

2

)
𝑠

J (𝑓) − 𝑔
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

. (39)

Therefore, the result follows by combining (38) and (39).

Proposition 18. (i) Let 1 ≤ 𝑝 < ∞ and let 𝑠
1
and 𝑠

2
inR such

that 𝑠
2
≥ 𝑠

1
then

𝑊
𝑠2 ,𝑝

𝐴
(R

+
) 󳨅→ 𝑊

𝑠1 ,𝑝

𝐴
(R

+
) . (40)

(ii) Let 1 ≤ 𝑝 < ∞, and let 𝑠
1
, 𝑠 and 𝑠

2
be three real

numbers: 𝑠
1
< 𝑠 < 𝑠

2
. Then, for all 𝜀 > 0, there exists a

nonnegative constant 𝐶
𝜀
such that for all 𝑢 in𝑊𝑠,𝑝

𝐴
(R

+
)

‖𝑢‖
𝑊
𝑠,𝑝

𝐴
(R+)

≤ 𝐶
𝜀
‖𝑢‖

𝑊
𝑠1,𝑝

𝐴
(R+)

+ 𝜀‖𝑢‖
𝑊
𝑠2,𝑝

𝐴
(R+)

. (41)

Proof. (i) is clear.
(ii)We consider 𝑠 = (1−𝑡)𝑠

1
+𝑡𝑠

2
, with 𝑡 ∈]0, 1[. Moreover

it is easy to see

‖𝑢‖
𝑊
𝑠,𝑝

𝐴
(R+)

≤ ‖𝑢‖
1−𝑡

𝑊
𝑠1,𝑝

𝐴 (R+)
‖𝑢‖

𝑡

𝑊
𝑠2,𝑝

𝐴 (R+)
. (42)

Thus,

‖𝑢‖
𝑊
𝑠,𝑝

𝐴
(R+)

≤ (𝜀
−𝑡/(1−𝑡)

‖𝑢‖
𝑊
𝑠1,𝑝

𝐴
(R+)

)

1−𝑡

(𝜀‖𝑢‖
𝑊
𝑠2,𝑝

𝐴
(R+)

)

𝑡

≤ 𝜀
−𝑡/(1−𝑡)

‖𝑢‖
𝑊
𝑠1,𝑝

𝐴
(R+)

+ 𝜀‖𝑢‖
𝑊
𝑠2,𝑝

𝐴
(R+)

.

(43)

Hence, the proof is completed for 𝐶
𝜀
= 𝜀

−𝑡/(1−𝑡).

Proposition 19. (i) Let 𝑝 ∈ [1,∞] if 𝜌 = 0 and 𝑝 in [1, 2], if
𝜌 > 0. The space𝑊𝑠,𝑝

𝐴
(R

+
) provided with the norm ‖ ⋅‖

𝑊
𝑠,𝑝

𝐴
(R+)

is a Banach space.
(ii) Let 𝑠, 𝑡 ∈ R and 𝑝 ∈ [1,∞]. Then, the operator (𝐼 +

D
𝐴
)
𝑡 defined, on S󸀠

∗
(R), by

(𝐼 +D
𝐴
)
𝑡

𝑢 = F ((1 + 𝑥
2

)
𝑡

J (𝑢)) (44)

is an isometric isomorphism from𝑊
𝑠,𝑝

𝐴
(R

+
) onto𝑊𝑠−𝑡,𝑝

𝐴
(R

+
).

Moreover, for all 𝑢 ∈ 𝑊
𝑠,𝑝

𝐴
(R

+
), 𝑝 ∈ [1, 2], and for all 𝑡 ≤ 𝑠,

the function

𝑥 󳨀→ (𝐼 +D
𝐴
)
𝑡

𝑢 (𝑥) (45)

belongs to the space 𝐿𝑝
󸀠

𝛾
(R

+
), with (1/𝑝) + (1/𝑝󸀠

) = 1.

Proof. (i) Let (𝑓
𝑚
)
𝑚∈N be a Cauchy sequence in 𝑊

𝑠,𝑝

𝐴
(R

+
).

Then ((1 + 𝑥
2

)
𝑠

J(𝑓
𝑚
))

𝑚∈N is a Cauchy sequence in 𝐿𝑝

𝐴
(R

+
).

But 𝐿𝑝

𝐴
(R

+
) is complete, so, there exists a function 𝑔 such that

(1 + 𝑥
2

)
𝑠

𝑔 ∈ 𝐿
𝑝

𝐴
(R

+
) and

lim
𝑚→∞

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + 𝑥

2

)
𝑠

J (𝑓
𝑚
) − (1 + 𝑥

2

)
𝑠

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

= 0. (46)

But since 𝑝 ∈ [1,∞] when 𝜌 = 0 and 𝑝 ∈ [1, 2] when 𝜌 > 0,
then 𝑔 ∈ (𝑆

2

∗
)
󸀠

(R) and consequently 𝑓 = F(𝑔) ∈ 𝑆
󸀠

∗
(R). This

implies that 𝑓 ∈ 𝑊
𝑠,𝑝

𝐴
(R

+
) and from relation (46), we get

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑓𝑚
− 𝑓

󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

= 0. (47)

This achieves the proof of (i).
(ii) Let 𝑢 ∈ 𝑊

𝑠,𝑝

𝐴
(R

+
). By remarking that J is an

isomorphism from S󸀠

∗
(R) onto (𝑆2

∗
(R))󸀠 and using the fact

that

(1 + 𝑥
2

)
𝑠−𝑡

J ((𝐼 +D
𝐴
)
𝑡

𝑢) = (1 + 𝑥
2

)
𝑠

J (𝑢) ,

(𝐼+D
𝐴
)
𝑡

∘ (𝐼+D
𝐴
)
−𝑡

(𝑢)=(𝐼+D
𝐴
)
−𝑡

∘ (𝐼+D
𝐴
)
𝑡

(𝑢)= 𝑢,

(48)

we deduce the first part of (ii). Now, let 𝑢 ∈ 𝑊
𝑠,𝑝

𝐴
(R

+
), 𝑝 ∈

[1, 2]. Then, for all 𝑡 ≤ 𝑠, the function

𝑥 󳨀→ (1 + 𝑥
2

)
𝑡

J (𝑢) (49)

belongs to the space 𝐿𝑝

𝐴
(R

+
).Therefore, we obtain the second

part of (ii) by using inequality (23).
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In the following, we prove aHardy-Littlewood-Paley type
inequality for the transformJ.

Proposition 20. (1) Let 𝑝 ∈ [1, 2]. Then, for 𝜌 = 0 and 𝛼 > 0,
there exists a positive constant 𝐶

1
such that for all 𝑓 ∈ 𝐿

𝑝

𝛾
(R

+
)

∫

∞

0

𝑥
2(𝛼+1)(𝑝−2)󵄨󵄨󵄨󵄨J (𝑓) (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝐴 (𝑥) 𝑑𝑥 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

𝐿
𝑝

𝛾(R+)
. (50)

(2) (i) For 𝜌 > 0, 1 ≤ 𝑝 < 2, 𝛼 > −1/2, and 𝛿 > 0, we have for
all 𝑠 > 2(𝛼 + 1)(1 − (2/𝑝))

∫

∞

0

𝑥
𝑠𝑝󵄨󵄨󵄨󵄨J (𝑓) (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝐴 (𝑥) 𝑑𝑥 ≤ 𝐶 (𝛿, 𝑠, 𝑝)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝

𝐿
𝑝

𝛾(R+)
,

𝑓 ∈ 𝐿
𝑝

𝛾
(R

+
) ∩H

∗,𝛿
(C) .

(51)

(ii) For 𝜌 > 0, 𝑝 = 2, 𝛼 > −1/2, and 𝛿 > 0, we have (51)
for all 𝑠 ≥ 0.

We start with the following lemma deduced from the
hypothesis of the function 𝐴.

Lemma 21. (i) For any real 𝑎 > 0, there exist positive constants
𝐶

1
(𝑎) and 𝐶

2
(𝑎) such that for all 𝑥 ∈ [0, 𝑎],

𝐶
1
(𝑎) 𝑥

2𝛼+1

≤ 𝐴 (𝑥) ≤ 𝐶
2
(𝑎) 𝑥

2𝛼+1

. (52)
(ii) For 𝜌 > 0,

𝐴 (𝑥) ∼ 𝑒
2𝜌𝑥

, (𝑥 󳨀→ ∞) . (53)
(iii) For 𝜌 = 0,

𝐴 (𝑥) ∼ 𝑥
2𝛼+1

, (𝑥 󳨀→ ∞) . (54)
Proof of Proposition 20. (1) Let 𝜌 = 0 and 𝛼 > 0. Clearly, the
operator𝐾 defined on 𝐿𝑝

𝛾
(R

+
), 1 ≤ 𝑝 ≤ 2, by

𝐾(𝑓) (𝑥) = 𝑥
2(𝛼+1)

J (𝑓) (𝑥) (55)
is of strong type (2, 2) between the spaces (R

+
, 𝑑𝛾(𝜆))

and (R
+
, 𝐴(𝑥)𝑑𝑥/𝑥

4(𝛼+1)

). Therefore, according to the
Marcinkiewicz theorem (cf. [11]), to obtain the result, it
suffices to show that 𝐾 is of weak type (1, 1) between the
spaces under consideration. Indeed, using assertions (i) and
(iii) of Lemma 21 and inequality (23), we obtain for all 𝜆 > 0

and 𝑓 ∈ 𝐿
1

𝛾
(R

+
)

∫
{𝑥∈R+,𝐾(𝑓)(𝑥)>𝜆}

𝐴 (𝑥) 𝑑𝑥

𝑥4(𝛼+1)

≤ 𝐶∫
{𝑥∈R+ ,𝑥

2(𝛼+1)
‖J(𝑓)‖

𝐿∞
𝐴
(R+)

>𝜆}

𝑥
2𝛼+1

𝑑𝑥

𝑥4(𝛼+1)

≤ 𝐶∫
{𝑥∈R+ ,𝑥

2(𝛼+1)
‖𝑓‖
𝐿1𝛾(R+)

>𝜆}

𝑑𝑥

𝑥2𝛼+3

= 𝐶∫
(𝜆/‖𝑓‖

𝐿1𝛾(R+)
)
1/2(𝛼+1)

𝑑𝑥

𝑥2𝛼+3

≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1
𝛾
(R+)

𝜆
,

(56)

and the desired result follows.

(2) Let 𝜌 > 0, 𝛼 > −1/2, and 𝛿 > 0. According to
Proposition 3(ii), for all 𝑓 ∈ 𝐿

𝑝

𝛾
(R

+
)⋂H

∗,𝛿
(C), it follows

that supp(J(𝑓)) ⊆ [−𝛿, 𝛿].

(i) If 𝑝 ∈ [1, 2) and 𝑠 > 2(𝛼 + 1)(1 − (2/𝑝)), one can
easily see by using Holder inequality, Lemma 21(i),
and inequality (23) that for 𝑓 ∈ 𝐿

𝑝

𝛾
(R

+
) ∩H

∗,𝛿
(C)

(∫

∞

0

𝑥
𝑠𝑝󵄨󵄨󵄨󵄨J (𝑓) (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝐴 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶 (𝛿, 𝑠, 𝑝)
󵄩󵄩󵄩󵄩1[0,𝛿]J (𝑓)

󵄩󵄩󵄩󵄩
𝐿
𝑝󸀠

𝐴
(R+)

≤ 𝐶 (𝛿, 𝑠, 𝑝)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)
.

(57)

(ii) If 𝑝 = 2, then by virtue of Plancherel Theorem for the
transformJ, we deduce that for all 𝑠 ≥ 0,

∫

∞

0

𝑥
2𝑠󵄨󵄨󵄨󵄨J (𝑓) (𝑥)

󵄨󵄨󵄨󵄨

2

𝐴 (𝑥) 𝑑𝑥 ≤ 𝛿
2𝑠󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

2,𝛾
,

𝑓 ∈ 𝐿
2

𝛾
(R

+
) ∩H

∗,𝛿
(C) .

(58)

This completes the proof of the proposition.

Proposition 22. (1) Let 𝑝 ∈ (1, 2]. Then for 𝜌 = 0, 𝛼 > 0, and
𝑠 ≤ (𝛼 + 1)(1 − (2/𝑝)),

𝐿
𝑝

𝛾
(R

+
) 󳨅→ 𝑊

𝑠,𝑝

𝐴
(R

+
) . (59)

and we have
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)
, 𝑓 ∈ 𝐿

𝑝

𝛾
(R

+
) . (60)

(2) (i) Let 𝑝 ∈ [1, 2). Then for 𝜌 > 0, 𝛼 > −1/2, and 𝛿 > 0,
we have for all 𝑠 > (𝛼 + 1)(1 − (2/𝑝))

𝐿
𝑝

𝛾
(R

+
) ∩H

∗,𝛿
(C) 󳨅→ 𝑊

𝑠,𝑝

𝐴
(R

+
) ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)
, 𝑓 ∈ 𝐿

𝑝

𝛾
(R

+
) ∩H

∗,𝛿
(C) .

(61)

(ii) For 𝑝 = 2. Then for 𝜌 > 0, 𝛼 > −1/2, and 𝛿 > 0, we
have for all 𝑠 ≥ 0,

𝑊
𝑠,2

𝐴
(R

+
) ⊂ 𝐿

2

𝛾
(R

+
) ∩H

∗,𝛿
(C) ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑠,2
𝐴

(R+)
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝛾

, 𝑓 ∈ 𝐿
2

𝛾
(R

+
) ∩H

∗,𝛿
(C) .

(62)

Proof. (1) The result follows from Proposition 20(1) and the
fact that, for all 𝑠 ≤ (𝛼 + 1)(1 − (2/𝑝)),

(1 + 𝑥
2

)
𝑠

≤ 𝑥
2(𝛼+1)(1−(2/𝑝))

, 𝑥 ∈ (0,∞) . (63)

(2) (i) If 𝑝 ∈ [1, 2) and using the fact that, for all 𝑠 ∈ R,

(1 + 𝑥
2

)
𝑠

≤ 𝐶 (𝑥
2𝑠

+ 1) , 𝑥 ∈ (0,∞) , (64)
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it follows, from Holder inequality, that for all 𝛿 > 0 and 𝑠 >
(𝛼 + 1)(1 − (2/𝑝))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

≤ 𝐶 (𝛿, 𝑠, 𝑝)

× [(∫

∞

0

𝑥
2𝑠𝑝󵄨󵄨󵄨󵄨J (𝑓) (𝑥)

󵄨󵄨󵄨󵄨

𝑝

𝐴 (𝑥) 𝑑𝑥)

1/𝑝

+
󵄩󵄩󵄩󵄩1[0,𝛿]J (𝑓)

󵄩󵄩󵄩󵄩
𝐿
𝑝󸀠

𝐴
(R+)

] .

(65)

Thus, we deduce the result using Proposition 20(2) and
inequality (23).

(ii) By virtue of (64), we obtain the result, for 𝑝 = 2,
from Plancherel Theorem and Proposition 20(2).

Proposition 23. Let 𝑠 be a non negative real number.Then, we
have

(i) For 𝜌 ≥ 0, 𝑊𝑠,1

𝐴
(R

+
) ∩ 𝐿

2

𝐴
(R

+
) ⊂ 𝐶

2𝑚

∗
(R

+
), 𝑚 ∈ N;

𝑚 ≤ 𝑠.
(ii) If 𝜌 = 0,𝑊𝑠,2

𝐴
(R

+
) ⊂ 𝐶

2𝑚

∗
(R

+
),𝑚 ∈ N; 𝑚 + (1/2)(𝛼 +

1) < 𝑠,

where 𝐶𝑘

∗
(R

+
) is the space of even functions with

class 𝐶𝑘 on R.

Proof. (i) Let 𝑢 be in 𝑊
𝑠,1

𝐴
(R

+
) ∩ 𝐿

2

𝐴
(R

+
) with 𝑠 ∈ R

+
. It is

clear thatJ(𝑢) belongs to 𝐿1

𝐴
(R

+
) ∩ 𝐿

2

𝐴
(R

+
).

Thus, from (14) and Proposition 4(ii), we have

𝑢 (𝜆) = ∫
R+

J (𝑢) (𝑥) 𝜑
𝜆
(𝑥) 𝐴 (𝑥) 𝑑𝑥, a.e. 𝜆 ∈ R

+
. (66)

We identify 𝑢 with the second member, then we deduce that
𝑢 belongs to 𝐶

∗
(R) and the injection of𝑊𝑠,1

𝐴
(R

+
) into 𝐶

∗
(R)

is continuous.
Now, let 𝑢 be in 𝑊

𝑠,1

𝐴
(R

+
) with 𝑠 ∈ R

+
such that 𝑠 > 𝑚

with𝑚 ∈ N \ {0}. From (12), for all 𝑥, 𝜆 ∈ R
+
, and 𝑛 ∈ N such

that 𝑛 ≤ 𝑝, we have
󵄨󵄨󵄨󵄨𝐷

𝑛

𝜆
𝜑
𝜆
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑥
𝑛

. (67)

Using the same method as for 𝑚 = 0 and the derivation
theorem under the integral sign, we deduce that

∀𝑥 ∈ R
+
,

𝐷
𝑛

𝜆
𝑢 (𝜆) = ∫

R+

J (𝑢) (𝑥)𝐷
𝑛

𝜆
𝜑
𝜆
(𝑥) 𝐴 (𝑥) 𝑑𝑥.

(68)

Then, for all 𝑛 ∈ N such that 𝑛 ≤ 2𝑚,𝐷
𝑛

𝜆
𝑢 belongs to

𝐶
∗
(R). Thus, 𝑢 is in 𝐶

2𝑚

∗
(R) and the injection of 𝑊𝑠,1

𝐴
(R

+
)

into 𝐶2𝑚

∗
(R) is continuous.

(ii) If 𝜌 = 0 and 𝑢 in 𝑊𝑠,2

𝐴
(R

+
); then using assertions (i)

and (iii) of Lemma 21 and Holder inequality, we deduce that
for all𝑚 ∈ N; 𝑚 + (1/2)(𝛼 + 1) < 𝑠, the function 𝑢 belongs to
𝑊

𝑚,1

𝐴
(R

+
) ∩ 𝐿

2

𝐴
(R

+
).

Therefore, (ii) follows from (i).

Proposition 24. For 1 ≤ 𝑝 < ∞ and 𝑠 ∈ R, the space
𝑊

𝑠,𝑝

𝐴
(R

+
) is separable.

Proof. Let 𝑝 ∈ [1,∞). It is well known that 𝐿𝑝

𝐴
(R

+
) is

separable. More precisely, the set

𝐸 = {𝐴
−1/𝑝

(𝑥) ∑

finite
𝛼
𝑖
1]𝑎𝑖 ,𝑏𝑖[ (𝑥) ; 𝛼𝑖

, 𝑎
𝑖
, 𝑏

𝑖
∈ Q} (69)

is countable and dense in 𝐿𝑝

𝐴
(R

+
).Thus, for all 𝑢 ∈ 𝑊𝑠,𝑝

𝐴
(R

+
),

𝑠 ∈ R, there exists a sequence (𝑢
𝑛
)
𝑛∈N in 𝐸 such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− (1 + 𝑥

2

)
𝑠

J (𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝐴
(R+)

= 0. (70)

On the other hand, for all 𝑛 ∈ N, 𝑢
𝑛
∈ (𝐿

1

𝐴
∩ 𝐿

𝑝

𝐴
)(R

+
), and

so 𝑢
𝑛
∈ (𝑆

2

∗
)
󸀠

(R
+
). Therefore, for all 𝑛 ∈ N, there exists V

𝑛
∈

𝑊
𝑠,𝑝

𝐴
(R

+
) such that 𝑢

𝑛
= (1 + 𝑥

2

)
𝑠

J(V
𝑛
). Hence, from (70),

we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑢
󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

= 0. (71)

This implies that 𝐹 = {F((1 + 𝑥
2

)
−𝑠

𝑓) : 𝑓 ∈ 𝐸} is countable
and dense in𝑊𝑠,𝑝

𝐴
(R

+
) and the proposition is proved.

3.1. Reillich-Type Theorem. In this subsection, using Hahn
Banach’s and Riesz’s theorems [12, 13], we describe the
dual space (𝑊𝑠,𝑝

𝐴
(R

+
))

∗ of 𝑊𝑠,𝑝

𝐴
(R

+
). We prove also that a

compact imbedding theorem and a Reillich-type theorem are
established. We need firstly the following lemmas.

Lemma 25. Let 𝑠 ∈ R and 𝑥, 𝑡 ≥ 0. For all positive continuous
function 𝑓, we have

(1 + 𝑥
2

)
𝑠 󵄨󵄨󵄨󵄨𝜏𝑥𝑓 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 2
|𝑠|

(1 + 𝑡
2

)
𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏
𝑥
[(1 + 𝑦

2

)
|𝑠|

𝑓] (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(72)

Proof. The result follows by using the following classical
Peetre’s inequality:

(1 + 𝑥
2

)
𝑠

≤ 2
|𝑠|

(1 + 𝑡
2

)
𝑠

(1 + |𝑥 − 𝑡|
2

)
|𝑠|

, (73)

and the fact that the kernel𝑊(𝑥, 𝑡, ⋅) is positive with support
in [|𝑥 − 𝑡|, 𝑥 + 𝑡].

Lemma 26. For all 𝑢 ∈ S󸀠

∗
(R) and 𝜙 ∈ S

∗
(R), we have

J (Φ𝑢) = J (𝑢) ∗
𝐴
J (Φ) , (74)

where, for 𝑆 in (𝑆2
∗
)
󸀠

(R) and 𝜓 in 𝑆2
∗
(R), the function 𝑆 ∗ 𝜓 is

the generalized convolution product of the distribution 𝑆 and
the function 𝜓 defined by

𝑆∗
𝐴
𝜓 (𝑥) = ⟨𝑆, 𝜏

𝑥
(𝜓)⟩ . (75)

Proof. For all 𝑆 ∈ (𝑆2
∗
)
󸀠

(R) and 𝜓 ∈ 𝑆
2

∗
(R), the function 𝑆 ∗ 𝜓

belongs to (𝑆2
∗
)
󸀠

(R) (cf. [4]) and we have

⟨𝑆∗
𝐴
𝜓, 𝜑⟩ = ⟨𝑆, 𝜓∗

𝐴
𝜙⟩ , 𝜙 ∈ 𝑆

2

∗
(R) ,

F (𝑆∗
𝐴
𝜓) = F (𝑆)F (𝜓) .

(76)
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Therefore, the result follows by using the fact that F is an
isomorphism from 𝑆

2

∗
(R) (resp. (𝑆2

∗
)
󸀠

(R)) onto S
∗
(R) (resp.

S󸀠

∗
(R)).

Theorem 27. Let 𝑠 ∈ R, Φ ∈ S
∗
(R), and 1 ≤ 𝑞 ≤ 𝑟 ≤ ∞.

(i) If 𝜌 = 0, then the mapping

𝑊
𝑠,𝑞

𝐴
(R

+
) 󳨀→ 𝑊

𝑠,𝑟

𝐴
(R

+
)

𝑢 󳨃󳨀→ Φ𝑢

(77)

is continuous.
(ii) If 𝜌 > 0. We have the same result as in (i) if 1/2 ≤

(1/𝑞) − (1/𝑟) ≤ 1.
(iii) If 𝜌 > 0 and 2 < 𝑞 < ∞, then the mapping

𝑊
𝑠,𝑞
󸀠

𝐴
(R

+
) 󳨀→ 𝑊

𝑠,𝑞

𝐴
(R

+
)

𝑢 󳨃󳨀→ Φ𝑢

(78)

is continuous.
(iv) Let 𝜌 > 0, 𝑠 ≥ 0, and 𝑞 ≤ 2 ≤ 𝑟. Then, the mapping

𝑊
𝑠,𝑞

𝐴
(R

+
) 󳨀→ 𝑊

0,𝑟

𝐴
(R

+
)

𝑢 󳨃󳨀→ Φ𝑢

(79)

is continuous.

Proof. (1) (i) According to Lemmas 25 and 26, we have, for
Φ ∈ S

∗
(R) and 𝑢 ∈ 𝑊𝑠,𝑝

𝐴
(R

+
),

󵄨󵄨󵄨󵄨󵄨󵄨
(1 + 𝑥

2

)
𝑠

J (Φ𝑢) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨(1 + 𝑡
2

)
𝑠

J (𝑢) ,

(1 + 𝑡
2

)
−𝑠

(1 + 𝑥
2

)
𝑠

𝜏
𝑥
(J (Φ))⟩

𝐿
2
𝐴
(R+)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2
|𝑠|

[(1 + 𝑡
2

)
𝑠

|J (𝑢)|] ∗ [(1 + 𝑡
2

)
|𝑠|

|J (Φ)|] (𝑥) .

(80)

On the other hand, from the hypothesis on 𝑞 and 𝑟, there
exists

𝑝 ∈ [1,∞] :
1

𝑝
+
1

𝑞
− 1 =

1

𝑟
. (81)

Thus, using Proposition 11(i), we obtain the result.
(ii) As Φ ∈ S

∗
(R), it is easy to see that Φ ∈ 𝑊

|𝑠|,𝑝

𝐴
(R

+
)

for 2 ≤ 𝑝 ≤ ∞. Moreover, we proceed as above and using
Proposition 11(i), we obtain

‖Φ𝑢‖
𝑊
𝑠,𝑟

𝐴
(R+)

≤ 2
|𝑠|

‖𝑢‖
𝑊
𝑠,𝑞

𝐴
(R+)

‖Φ‖
𝑊
|𝑠|,𝑝

𝐴
(R+)

, (82)

for

𝑝 ∈ [2,∞] : 1

𝑝
+
1

𝑞
− 1 =

1

𝑟
. (83)

Hence, using the fact that the imbedding S
∗
(R) 󳨅→

𝑊
|𝑠|,𝑝

𝐴
(R

+
) is continuous, the desired result follows.

(iii) Let 𝑝 ∈ (max(2, 𝑞/2), 𝑞). Then Φ ∈ 𝑊
|𝑠|,𝑝

𝐴
(R

+
).

Therefore, from (80) and using Proposition 11(iii), we
deduce the result.

(iv) Using (23) and Holder’s inequality, we obtain, for all
Φ ∈ S

∗
(R) and 𝑢 ∈ 𝑊𝑠,𝑞

𝐴
(R

+
),

‖Φ𝑢‖
𝑊
0,𝑟

𝐴
(R+)

≤ ‖Φ𝑢‖
𝐿
𝑟󸀠

𝛾
(R+)

≤ 𝐶
{

{

{

‖𝑢‖
𝐿
𝑞󸀠

𝛾 (R+)
‖Φ‖

𝐿
𝑞𝑟/(𝑟−𝑞)

𝛾 (R+)
, for 𝑟 ̸= 𝑞

‖𝑢‖
𝐿
2
𝛾
(R+)

‖Φ‖
𝐿
∞
𝛾
(R+)

, for 𝑟 = 𝑞 = 2

≤ 𝐶{

‖𝑢‖
𝑊
𝑠,𝑞

𝐴
(R+)

‖Φ‖
𝐿
𝑞𝑟/(𝑟−𝑞)

𝛾 (R+)
, for 𝑟 ̸= 𝑞

‖𝑢‖
𝑊
𝑠,2

𝐴
(R+)

‖Φ‖
𝐿
∞
𝛾
(R+)

, for 𝑟 = 𝑞 = 2,

(84)

where 𝑞
󸀠 and 𝑟

󸀠 are,respectively, the conjugates of 𝑞 and
𝑟. Therefore, we deduce the result by remarking that the
embedding S

∗
(R) 󳨅→ 𝐿

𝑝

𝛾
(R

+
) is continuous. This achieves

the proof of theorem.

Now, we shall characterize the dual space (𝑊𝑠,𝑝

𝐴
(R

+
))

∗ of
𝑊

𝑠,𝑝

𝐴
(R

+
).

Theorem 28. Let 𝑝 ∈ [1,∞) when 𝜌 = 0 and 𝑝 ∈ [2,∞)

when 𝜌 > 0. The dual space (𝑊𝑠,𝑝

𝐴
(R

+
))

∗ of 𝑊𝑠,𝑝

𝐴
(R

+
) can be

identified with𝑊−𝑠,𝑝
󸀠

𝐴
(R

+
), where 𝑞󸀠 is the conjugate of 𝑝.

Proof. Let 𝑝 ∈ [1, +∞) when 𝜌 = 0 and 𝑝 ∈ [2,∞) when
𝜌 > 0. Then, for 𝑢 ∈ 𝑊−𝑠,𝑝

󸀠

𝐴
(R

+
), we have, for all 𝜑 ∈ 𝑆

∗
(R),

󵄨󵄨󵄨󵄨⟨𝑢, 𝜑⟩
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨(1 + 𝑥
2

)
−𝑠

J (𝑢) , (1 + 𝑥
2

)
𝑠

J (𝜑)⟩
𝐿
2
𝐴
(R+)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝑢‖
𝑊
−𝑠,𝑝󸀠

𝐴
(R+)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝑊
𝑠,𝑝

𝐴
(R+)

.

(85)

This proves, from the density of 𝑆
∗
(R) in 𝑊

𝑠,𝑝

𝐴
(R

+
), that 𝑢

admits a unique continuous extension to𝑊𝑠

𝑝
.

Conversely, suppose that 𝑢 ∈ (𝑊
𝑠,𝑝

𝐴
(R

+
))

∗. Then the
mapping

V : 𝐿
𝑝

𝐴
(R

+
) 󳨀→ C

𝜓 󳨃󳨀→ ⟨𝑢, U
−1

(𝜓)⟩

(86)

is continuous, where U is the isometric isomorphism from
(𝑊

𝑠,𝑝

𝐴
(R

+
), ‖ ⋅ ‖

𝑊
𝑠,𝑝

𝐴
(R+)

) into (𝐿𝑝

𝐴
(R

+
), ‖ ⋅ ‖

𝐿
𝑝

𝐴
(R+)

), defined by

U (𝜑) = (1 + 𝑥
2

)
𝑠

J (𝜑) . (87)

with inverse

U
−1

(𝜓) = F ((1 + 𝑥
2

)
−𝑠

𝜓) . (88)
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Thus, and using the fact that 𝑢 ∈ 𝑆
󸀠

∗
(R), there exists 𝐶 > 0

such that

∀𝜓 ∈ 𝐷
∗
(R) ,

󵄨󵄨󵄨󵄨V (𝜓)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨(1 + 𝑥
2

)
−𝑠

J (𝑢) , 𝜓⟩
𝐿
2
𝐴
(R+)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝑝,].

(89)

Hence, from the density of 𝐷
∗
(R) in 𝐿

𝑝

𝐴
(R

+
) and using

Riez’s theorem, we deduce that 𝑢 belongs to𝑊−𝑠,𝑝
󸀠

𝐴
(R

+
). This

completes the proof of Theorem 28.

Proposition 29. Let 𝑞 ∈ (1,∞) when 𝜌 = 0 and 𝑞 = 2 when
𝜌 > 0. Let Φ be in S

∗
(R) and 𝑟 ∈ [𝑞,∞). Then for all 𝑠, 𝑡 ∈ R

such that 𝑡 < 𝑠 if 𝜌 = 0 and 𝑡 < 0 ≤ 𝑠 if 𝜌 > 0, the mapping

𝑊
𝑠,𝑞

𝐴
(R

+
) 󳨀→ 𝑊

𝑡,𝑟

𝐴
(R

+
)

𝑢 󳨃→ Φ𝑢

(90)

is compact.

Proof. Let (𝑢
𝑚
)
𝑚

be a sequence in 𝑊
𝑠,𝑞

𝐴
(R

+
) such that

‖𝑢
𝑚
‖
𝑊
𝑠,𝑞

𝐴
(R+)

≤ 1, for all 𝑚 ∈ N. Then, from Theorem 28,
we deduce that (𝑢

𝑚
)
𝑚

can be regarded as a sequence in
(𝑊

−𝑠,𝑞
󸀠

𝐴
(R

+
))

∗

, with (1/𝑞) + (1/𝑞
󸀠

) = 1, and using Holder
inequality, we obtain for all𝑚 ∈ N

󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩
(𝑊
−𝑠,𝑞󸀠

𝐴
(R+))

∗

= sup
𝜓∈𝑊
−𝑠,𝑞󸀠

𝐴 (R+)
‖𝜓‖

𝑊
−𝑠,𝑞󸀠

𝐴
(R+)

≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨(1 + 𝑥
2

)
𝑠

J (𝑢
𝑚
) ,

(1+𝑥
2

)
−𝑠

J (𝜓)⟩
𝐿
2
𝐴
(R+)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩𝑊
𝑠,𝑞

𝐴
(R+)

≤ 1.

(91)

Therefore, by virtue of Propositions 24 and 19(i),𝑊−𝑠,𝑞
󸀠

𝐴
(R

+
)

is a separable Banach space. Which implies, from Alaoglu
theorem (cf. [14]), that there exists a subsequence (𝑢

𝑚𝑘
)
𝑘

weakly converging in (𝑊−𝑠,𝑞
󸀠

𝐴
(R

+
))

∗. We denote by 𝑢 its weak
limit. Using Lemma 26, for all 𝑘 ∈ N, we have

J [Φ (𝑢
𝑚𝑘

− 𝑢)] (𝑥) = [J (𝑢
𝑚𝑘

− 𝑢) ∗
𝐴
J (Φ)] (𝑥)

= ⟨J (𝑢
𝑚𝑘

− 𝑢) , 𝜏
𝑥
(J (Φ))⟩

= ⟨𝑢
𝑚𝑘

− 𝑢, 𝜑
(⋅)
(𝑥)Φ⟩ .

(92)

But (𝑢
𝑚𝑘
− 𝑢)

𝑘
is weakly converging to zero in (𝑊−𝑠,𝑞

󸀠

𝐴
(R

+
))

∗,
then it follows that for all 𝑥 ∈ Rlim

𝑘→∞
J(Φ ⋅ (𝑢

𝑚𝑘
−𝑢)(𝑥) =

0.

Now, according toTheorem 27, for all 𝑘 ∈ N,Φ⋅(𝑢
𝑚𝑘
−𝑢) ∈

𝑊
𝑠,∞

𝐴
(R

+
) and using (82) we get

∀𝑘 ∈ N, ∀𝑥 ∈ R,

󵄨󵄨󵄨󵄨󵄨󵄨
(1 + 𝑥

2

)
𝑠

J (Φ ⋅ (𝑢
𝑚𝑘

− 𝑢)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2
|𝑠|

(1 + ‖𝑢‖
𝑊
𝑠,𝑞

𝐴
(R+)

) ⋅ ‖Φ‖
𝑊
|𝑠|,𝑞󸀠

𝐴
(R+)

.

(93)

Hence, by Lebesgue’s theorem, we deduce that for all 𝑅 > 0,

lim
𝑘→∞

∫

𝑅

0

(1 + 𝑥
2

)
𝑟𝑡󵄨󵄨󵄨󵄨󵄨
J (Φ ⋅ (𝑢

𝑚𝑘
− 𝑢)) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝐴 (𝑥) 𝑑𝑥 = 0,

𝑟 ∈ [𝑞,∞) .

(94)

On the other hand, for 𝜌 = 0 with 𝑡 < 𝑠, 𝑞 ∈ (1,∞), and
𝑟 ∈ [𝑞,∞), it follows fromTheorem 27(i) that for 𝑝 ∈ [1,∞]

and satisfying (1/𝑝) + (1/𝑞) − 1 = 1/𝑟, we have

∫

∞

𝑅

(1 + 𝑥
2

)
𝑟𝑡󵄨󵄨󵄨󵄨󵄨
J (Φ ⋅ (𝑢

𝑚𝑘
− 𝑢)) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝐴 (𝑥) 𝑑𝑥

≤

󵄩󵄩󵄩󵄩󵄩
Φ ⋅ (𝑢

𝑚𝑘
− 𝑢)

󵄩󵄩󵄩󵄩󵄩

𝑟

𝑊
𝑠,𝑟

𝐴 (R+)

(1 + 𝑅2)
𝑟(𝑠−𝑡)

≤ 𝐶

(1 + ‖𝑢‖
𝑊
𝑠,𝑞

𝐴
(R+)

)
𝑟

‖Φ‖
𝑟

𝑊
|𝑠|,𝑝

𝐴 (R+)

(1 + 𝑅2)
𝑟(𝑠−𝑡)

.

(95)

And for 𝜌 > 0with 𝑡 < 0 ≤ 𝑠, 𝑞 = 2, and 𝑟 ∈ [2,∞), we obtain
fromTheorem 27(iv)

∫

∞

𝑅

(1 + 𝑥
2

)
𝑟𝑡󵄨󵄨󵄨󵄨󵄨
J (Φ ⋅ (𝑢

𝑚𝑘
− 𝑢)) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝐴 (𝑥) 𝑑𝑥

≤

󵄩󵄩󵄩󵄩󵄩
Φ ⋅ (𝑢

𝑚𝑘
− 𝑢)

󵄩󵄩󵄩󵄩󵄩

𝑟

𝑊
0,𝑟

𝐴 (R+)

(1 + 𝑅2)
−𝑟𝑡

≤

{{{{{{{

{{{{{{{

{

𝐶

(1 + ‖𝑢‖
𝑊
𝑠,2

𝐴
(R+)

)
𝑟

‖Φ‖
𝑟

𝐿
2𝑟/(𝑟−2)
𝛾 (R+)

(1 + 𝑅2)
−𝑟𝑡

, for 𝑟 ̸= 2

𝐶

(1 + ‖𝑢‖
𝑊
𝑠,2

𝐴
(R+)

)
2

‖Φ‖
2

𝐿
∞
𝛾 (R+)

(1 + 𝑅2)
−2𝑡

, for 𝑟 = 2.

(96)

Which implies that these last integrals, (95) and (96), tend to
zero when 𝑅 tends to ∞ uniformly with respect to 𝑘 ∈ N

and so, by virtue of (94), we conclude that (Φ ⋅ (𝑢
𝑚𝑘

− 𝑢))
𝑘
is

strongly converging in𝑊𝑡,𝑟

𝐴
(R

+
); that is, lim

𝑘→∞
‖ Φ.(𝑢

𝑚𝑘
−

𝑢)‖
𝑊
𝑡,𝑟

𝐴
(R+)

= 0.This achieves the proof of Proposition 29.

Notation. Let 𝐾 be a compact contained in R. We denote by
𝑊

𝑠,𝑞

𝐴,𝐾
(R

+
) the subspace of𝑊𝑠,𝑞

𝐴
(R

+
) defined by

𝑊
𝑠,𝑞

𝐴,𝐾
(R

+
) = {𝑢 ∈ 𝑊

𝑠,𝑞

𝐴
(R

+
) ; supp 𝑢 ⊂ 𝐾} . (97)
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As a consequence of Proposition 29, with 𝜑 ∈ S
∗
(R)

supported on a bounded set𝑉 containing the compact𝐾 and
satisfying 𝜑 = 1 on 𝐾, we deduce the main result of this
section.

Theorem 30 (Reillich-type theorem). Let 𝑞 ∈ (1,∞) when
𝜌 = 0 and 𝑞 = 2 when 𝜌 > 0. Let 𝐾 be a compact contained
in R and let 𝑟 ∈ [𝑞,∞). Then for all 𝑠, 𝑡 ∈ R such that 𝑡 < 𝑠

if 𝜌 = 0 and 𝑡 < 0 ≤ 𝑠 if 𝜌 > 0, the canonical imbedding
𝑊

𝑠,𝑞

𝐴,𝐾
(R

+
) 󳨅→ 𝑊

𝑡,𝑟

𝐴,𝐾
(R

+
) is compact.

Using Reillich-type theorem, we prove the following
inequalities.

Corollary 31. Let 𝐾 be a compact contained in R and 𝑠 ≥ 0.
Then, for 𝑞 ∈ (1,∞) when 𝜌 = 0 and 𝑞 = 2 when 𝜌 > 0, there
exists 𝐶 > 0 such that, for all 𝑢 ∈ 𝑊𝑠,𝑞

𝐴,𝐾
(R

+
), we have

1

𝐶
‖𝑢‖

𝑊
𝑠,𝑞

𝐴
(R+)

≤ ̇𝐽
𝑠
(𝑢) ≤ 𝐶‖𝑢‖

𝑊
𝑠,𝑞

𝐴
(R+)

, (98)

where ̇𝐽
𝑠
(𝑢) = (∫

∞

0

𝑥
𝑞𝑠

|J(𝑢)(𝑥)|
𝑞

𝐴(𝑥)𝑑𝑥)
1/𝑞

.

Proof. It is clear that, for all 𝑢 ∈ 𝑊
𝑠,𝑞

𝐴,𝐾
(R

+
), J(𝑢) ∈ 𝐿

𝑞

𝐴
(R

+
)

and we have
̇𝐽
𝑠
(𝑢) ≤ ‖𝑢‖

𝑊
𝑠,𝑞

𝐴
(R+)

. (99)
Now, let us prove the left hand side inequality. Suppose that
for all positive integer 𝑘, there exists 𝑢

𝑘
∈ 𝑊

𝑠,𝑞

𝐴,𝐾
(R

+
) such that

1

𝑘

󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝑊
𝑠,𝑞

𝐴
(R+)

> ̇𝐽
𝑠
(𝑢

𝑘
) . (100)

Without loss of generality, one can suppose that ‖𝑢
𝑘
‖
𝑊
𝑠,𝑞

𝐴
(R+)

=

1. Then we have
lim

𝑘→∞

̇𝐽
𝑠
(𝑢

𝑘
) = 0 (101)

and, by using Reillich-type theorem, we deduce that there
exists a subsequence (𝑢

𝑘𝑛
)
𝑛
of (𝑢

𝑘
)
𝑘
strongly converging in

𝑊
𝑡,𝑞

𝐴
(R

+
), 𝑡 < 0. Let 𝑢 be its strong limit. Therefore, by (101)

and the fact that for 𝑅 > 0

(∫

𝑅

0

𝑥
2𝑞𝑠

|J (𝑢) (𝑥)|
𝑞

𝐴 (𝑥) 𝑑𝑥)

1/𝑞

≤ (1 + 𝑅
2

)
𝑠−𝑡󵄩󵄩󵄩󵄩󵄩

𝑢 − 𝑢
𝑘𝑛

󵄩󵄩󵄩󵄩󵄩𝑊
𝑡,𝑞

𝐴
(R+)

+ ̇𝐽
𝑠
(𝑢

𝑘𝑛
) ,

(102)

it follows that ̇𝐽
𝑠
(𝑢) = 0. This implies that J(𝑢) = 0 and so

𝑢 = 0. On the other hand, there exists a positive constant 𝐶
such that

1 =
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘𝑛

󵄩󵄩󵄩󵄩󵄩𝑊𝑠
𝐴,𝐾

(R+)

≤ 𝐶{(∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨
(1 + 𝑥

2

)
𝑡

J (𝑢
𝑘𝑛
) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

𝐴 (𝑥) 𝑑𝑥)

1/𝑞

+(∫

∞

1

󵄨󵄨󵄨󵄨󵄨
𝑥
2𝑠

J (𝑢
𝑘𝑛
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝐴 (𝑥) 𝑑𝑥)

1/𝑞

} .

≤ 𝐶{
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘𝑛

󵄩󵄩󵄩󵄩󵄩𝑊
𝑡,𝑞

𝐴
(R+)

+ ̇𝐽
𝑠
(𝑢

𝑘𝑛
)} .

(103)

Hence, by tending 𝑛 to infinity and from (101), it follows that
1 ≤ 0 which is impossible. Thus, the required inequality is
satisfied. Combining the left hand side inequality of (98) and
(99), we obtain

1

𝐶
‖𝑢‖

𝑊
𝑠,𝑞

𝐴
(R+)

≤ ̇𝐽
𝑠
(𝑢) ≤ 𝐶‖𝑢‖

𝑊
𝑠,𝑞

𝐴
(R+)

. (104)

This completes the proof.

4. Applications

4.1. Weierstrass Transform on the Dual of the Chébli-Trimèche
Hypergroup. This subsection is devoted to define and estab-
lish some properties for theWeierstrass transformT𝑠

𝐴
, on the

dual of theChébli-Trimèche hypergroup, whichwe need later.

Definition 32. Let 𝑠 ≥ 0. We define the generalized Weier-
strass transform of order 𝑠 on 𝑆󸀠

∗
(R) as follows:

T
𝑠

𝐴
(𝑢) = F (𝑒

−𝑠(𝜆
2
+𝜌
2
)

F
−1

(𝑢)) . (105)

For 1 ≤ 𝑝 < ∞, we denote by

W
𝑠,𝑝

𝐴
(R

+
) := {𝜙 ∈ S

󸀠

∗
(R) : T

𝑠

𝐴
(𝜙) ∈ 𝐿

𝑝

𝛾
(R

+
)} . (106)

The norm inW
𝑠,𝑝

𝐴
(R

+
) is given by

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩W
𝑠,𝑝

𝐴
(R+)

=
󵄩󵄩󵄩󵄩T

𝑠

𝐴
(𝜙)

󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)
. (107)

Remark 33. Let 𝑠 > 0. For all 𝜆 ∈ R, we have

𝑒
−𝑠(𝜆
2
+𝜌
2
)

=
1

(𝜆2 + 𝜌2)
𝑛
F (𝑤

𝑛
(𝑠, ⋅)) (𝜆) , (108)

where 𝑤
𝑛
(𝑠, ⋅), 𝑛 ∈ N, are the heat functions on the Chébli-

Trimèche hypergroup (R
+
, ∗

𝐴
). In particular, 𝑤

𝑛
(𝑠, ⋅) = 𝐸

𝑠
is

the Gaussian kernel on (R
+
, ∗

𝐴
), see [15].

In the case of the Bessel-Kingman hypergroup (when the
function 𝐴 is of the form 𝐴(𝑥) = 𝑥

2𝛼+1 and 𝜌 = 0), the
Weierstrass transform associated with the Hankel transform
is studied in [16]. For the classical Weierstrass transform, one
can see [17–19].

In the following, we show some properties for T𝑠

𝐴
and

W
𝑠,𝑝

𝐴
(R

+
).

Proposition 34. (i) Let 𝑠, 𝑡 ≥ 0. For all 𝑓 ∈ S󸀠

∗
(R),

T
𝑠

𝐴
(T

𝑡

𝐴
(𝑓)) = T

𝑠+𝑡

𝐴
(𝑓) , T

0

𝐴
(𝑓) = 𝑓. (109)

(ii) For all 𝑓 ∈ 𝐿
2

𝛾
(R

+
), we have

lim
𝑠→0
+
T

𝑠

𝐴
(𝑓) = 𝑓, in 𝐿

2

𝛾
(R

+
) . (110)

(iii) Let 1 ≤ 𝑝 < ∞ and 𝑠 ≥ 𝑡 ≥ 0. Then, for all 𝜙 ∈ W
𝑠,𝑝

𝐴
(R

+
),

we have
󵄩󵄩󵄩󵄩󵄩
T

𝑡

𝐴
(𝜙)

󵄩󵄩󵄩󵄩󵄩W
𝑠−𝑡,𝑝

𝐴
(R+)

=
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩W
𝑠,𝑝

𝐴
(R+)

. (111)
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(iv) Let 𝑠 ≥ 𝑡 ≥ 0. Then,W𝑡,2

𝐴
(R

+
) ⊂ W𝑠,2

𝐴
(R

+
). Moreover, for

all 𝑢 ∈ W𝑡,2

𝐴
(R

+
), we have

‖𝑢‖W𝑠,2
𝐴

(R+)
≤ ‖𝑢‖W𝑡,2

𝐴
(R+)

. (112)

Proof. (i) For all 𝑓 ∈ S󸀠

∗
(R), we have

T
𝑠

𝐴
(T

𝑡

𝐴
(𝑓)) = F (𝑒

−𝑠(𝜆
2
+𝜌
2
)

𝑒
−𝑡(𝜆
2
+𝜌
2
)

F
−1

(𝑓))

= F (𝑒
−(𝑡+𝑠)(𝜆

2
+𝜌
2
)

F
−1

(𝑓))

= T
𝑠+𝑡

𝐴
(𝑓)

(113)

andT0

𝐴
(𝑓) = F(F−1

(𝑓)) = 𝑓.
(ii) Clear.
(iii) Let 𝜙 ∈ W

𝑠,𝑝

𝐴
(R

+
). By (i) andDefinition 32, we obtain

󵄩󵄩󵄩󵄩󵄩
T

𝑡

𝐴
(𝜙)

󵄩󵄩󵄩󵄩󵄩W
𝑠−𝑡,𝑝

𝐴
(R+)

=
󵄩󵄩󵄩󵄩󵄩
T

𝑠−𝑡

𝐴
(T

𝑡

𝐴
(𝜙))

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)
=
󵄩󵄩󵄩󵄩T

𝑠

𝐴
(𝜙)

󵄩󵄩󵄩󵄩𝐿
𝑝

𝛾(R+)

=
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩W
𝑠,𝑝

𝐴
(R+)

.

(114)

(iv) We deduce the result by using Proposition 4(ii).

Now, under a sufficient condition on 𝑝 and 𝑞, we shall
prove that T𝑠

𝐴
is a bounded operator from 𝑊

𝑡,𝑝

𝐴
(R

+
) into

W
𝑠,𝑞

𝐴
(R

+
).

Proposition 35. Let 𝑠 > 0 and 𝑡 ∈ R. Then, for all 𝑞 ≥ 2 and
𝑝 ≥ 𝑞/(𝑞 − 1), there exists a positive constant 𝐶

𝑠,𝑡
(𝑝, 𝑞) such

that for all 𝑓 ∈ 𝑊
𝑡,𝑝

𝐴
(R

+
), we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩W
𝑠,𝑞

𝐴
(R+)

≤ 𝐶
𝑠,𝑡
(𝑝, 𝑞)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊
𝑡,𝑝

𝐴
(R+)

. (115)

Proof. According to Lemma 21 and Definition 32, we obtain
the result by using Proposition 6 and applying Holder
inequality.

4.2. Kernel Reproducing. Let 𝑠 ∈ R. The space H𝑠

𝐴
(R

+
) =

𝑊
𝑠,2

𝐴
(R

+
) provided with the inner product,

⟨𝑓, 𝑔⟩
H𝑠
𝐴
(R+)

= ∫
R+

(1 + 𝑥
2

)
2𝑠

J (𝑓) (𝑥)J (𝑔) (𝑥) 𝐴 (𝑥) 𝑑𝑥,

(116)

and the norm ‖𝑓‖
2

H𝑠
𝐴
(R+)

= ⟨𝑓, 𝑓⟩H𝑠
𝐴
(R+)

, is a Hilbert space.

Proposition 36. For 𝑠 > 3/4 when 𝜌 > 0 and 𝑠 > (𝛼 + 1)/2

when 𝜌 = 0, the Hilbert space H𝑠

𝐴
(R

+
) admits the following

reproducing kernel:

𝐾
𝑠
(𝑥, 𝑦) = ∫

R+

𝜑
𝑥
(𝜉) 𝜑

𝑦
(𝜉) 𝐴 (𝜉) 𝑑𝜉

(1 + 𝜉2)
2𝑠

; (117)

that is,

(i) for all 𝑦 > 0, the function 𝑥 󳨃→ 𝐾
𝑠
(𝑥, 𝑦) belongs

to H𝑠

𝐴
(R

+
).

(ii) The reproducing property: for all𝑓 ∈ H𝑠

𝐴
(R

+
) and 𝑦 >

0,

𝑓 (𝑦) = ⟨𝑓,𝐾
𝑠
(𝑥, 𝑦)⟩

H𝑠
𝐴
(R+)

. (118)

Proof. (i) It is clear from Lemma 21 and relations (9) and (10)
that, for all 𝑦 > 0, the function

Θ
𝑦
: 𝜉 󳨃󳨀→

𝜑
𝑦
(𝜉)

(1 + 𝜉2)
2𝑠

(119)

belongs to 𝐿1

𝐴
(R

+
) ∩ 𝐿

2

𝐴
(R

+
) when 𝑠 > 3/4 when 𝜌 > 0 and

𝑠 > (𝛼 + 1)/2 when 𝜌 = 0. Thus, the function 𝐾
𝑠
(⋅, 𝑦) is well

defined and we can write

𝐾
𝑠
(𝑥, 𝑦) = F (Θ

𝑦
) (𝑥) , ∀𝑥 ∈ R

+
. (120)

Moreover, from Proposition 4, we can see that the function
𝐾

𝑠
(⋅, 𝑦) belongs to 𝐿2

𝛾
(R

+
), and we have

J (𝐾
𝑠
(⋅, 𝑦)) (𝜉) =

𝜑
𝑦
(𝜉)

(1 + 𝜉2)
2𝑠
, ∀𝜉 ∈ R

+
. (121)

Therefore, according to Lemma 21 and using relations (9) and
(10), we deduce that

󵄩󵄩󵄩󵄩𝐾𝑠
(⋅, 𝑦)

󵄩󵄩󵄩󵄩

2

H𝑠
𝐴(R+)

< ∞. (122)

This proves that for all 𝑦 > 0, the function𝐾
𝑠
(⋅, 𝑦) belongs to

H𝑠

𝐴
(R

+
).

(ii) Let 𝑓 be inH𝑠

𝐴
(R

+
) and 𝑦 > 0. Then by (121), we get

⟨𝑓,𝐾
𝑠
(⋅, 𝑦)⟩

H𝑠
𝐴
(R+)

= ∫
R+

J (𝑓) (𝜉) 𝜑
𝑦
(𝜉) 𝐴 (𝜉) 𝑑𝜉, (123)

and from inversion formula, we obtain the reproducing
property

𝑓 (𝑦) = ⟨𝑓,𝐾
𝑠
(𝑥, 𝑦)⟩

H𝑠
𝐴
(R+)

. (124)

This completes the proof of the theorem.

Definition 37. For all positive real numbers 𝑟, 𝑠, and 𝑡,
we define the Hilbert space H𝑟,𝑠,𝑡

𝐴
(R

+
) as the subspace of

H𝑠

𝐴
(R

+
) with the inner product:

⟨𝑓, 𝑔⟩
H𝑟,𝑠,𝑡
𝐴

(R+)
= 𝑟⟨𝑓, ℎ⟩

H𝑠
𝐴
(R+)

+ ⟨T
𝑡

𝐴
𝑓,T

𝑡

𝐴
𝑔⟩

𝐿
2
𝛾
(R+)

,

𝑓, 𝑔 ∈ H
𝑠

𝐴
(R

+
) .

(125)

The norm associated to the inner product is defined by
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

H𝑟,𝑠,𝑡
𝐴 (R+)

:= 𝑟
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

H𝑠
𝐴(R+)

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

W𝑡,2
𝐴 (R+)

. (126)

Proposition 38. Let 𝑠 > 3/4 when 𝜌 > 0 and 𝑠 > (𝛼 + 1)/2

when 𝜌 = 0. For all 𝑟, 𝑡 > 0, theHilbert spaceH𝑟,𝑠,𝑡

𝐴
(R

+
) admits

the following reproducing kernel:

K
𝑡

𝑟,𝑠
(𝑥, 𝑦) = ∫

R+

𝜑
𝑥
(𝜉) 𝜑

𝑦
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

𝐴 (𝜉) 𝑑𝜉. (127)
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Proof. As in Proposition 36, we can deduce that for all 𝑦 > 0,
there exists a function 𝑥 󳨃→ K𝑡

𝑟,𝑠
(𝑥, 𝑦) in 𝐿

2

𝛾
(R

+
) such that

we have

J (K
𝑡

𝑟,𝑠
(⋅, 𝑦)) =

𝜑
𝑦

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

,

󵄩󵄩󵄩󵄩󵄩
K

𝑡

𝑟,𝑠
(⋅, 𝑦)

󵄩󵄩󵄩󵄩󵄩

2

H𝑟,𝑠
𝐴 (R+)

< ∞.

(128)

This proves that for all 𝑦 > 0 the function K𝑡

𝑟,𝑠
(⋅, 𝑦) belongs

toH𝑟,𝑠,𝑡

𝐴
(R

+
).

On the other hand, for𝑓 inH𝑟,𝑠,𝑡

𝐴
(R

+
) and 𝑦 > 0, we have

⟨𝑓,K
𝑡

𝑟,𝑠
(⋅, 𝑦)⟩

H𝑟,𝑠,𝑡
𝐴

(R+)
= 𝑟𝐼

1
+ 𝐼

2
, (129)

where

𝐼
1
= ⟨𝑓,K

𝑡

𝑟,𝑠
(⋅, 𝑦)⟩

H𝑠
𝐴
(R+)

,

𝐼
2
= ⟨T

𝑡

𝐴
𝑓,T

𝑡

𝐴
(K

𝑡

𝑟,𝑠
(⋅, 𝑦))⟩

𝐿
2
𝛾
(R+)

.

(130)

But from (116) and (128), we have

𝐼
1
= ∫

R+

(1 + 𝜉
2

)
2𝑠

J (𝑓) (𝜉) 𝜑
𝑦
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

𝐴 (𝜉) 𝑑𝜉. (131)

and from (128), it follows, by using Parseval formula for the
transformF, that

𝐼
2
= ∫

R+

F (𝑒
−𝑡(𝑥
2
+𝜌
2
)

J (𝑓)) (𝜆)F

× (𝑒
−𝑡(𝑥
2
+𝜌
2
)

J (K
𝑡

𝑟,𝑠
(⋅, 𝑦))) (𝜆) 𝑑𝛾 (𝜆)

= ∫
R+

𝑒
−2𝑡(𝜉
2
+𝜌
2
)J (𝑓) (𝜉) 𝜑

𝑦
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

𝐴 (𝜉) 𝑑𝜉.

(132)

Thus, by virtue of (129), and combining (131) and (132), we
deduce that

⟨𝑓,K
𝑡

𝑟,𝑠
(⋅, 𝑦)⟩

H𝑟,𝑠,𝑡
𝐴

(R+)
= 𝑓 (𝑦) , a.e. (133)

4.3. Extremal Function for GeneralizedWeierstrass Transform.
In this subsection, we show the existence and unicity of
the extremal function related to the generalized Weierstrass
transform T𝑡

𝐴
. We start with the following fundamental

theorem (cf. [20]).

Theorem 39. Let 𝐻
𝐾
be a Hilbert space admitting the repro-

ducing kernel 𝐾(𝑝, 𝑞) on a set 𝐸 and let 𝐻 be a Hilbert space.
Let 𝐿 : 𝐻

𝐾
→ 𝐻 be a bounded linear operator on𝐻

𝐾
into𝐻.

For 𝑟 > 0, we introduce the inner product in𝐻
𝐾
and we call it

𝐻
𝐾𝑟

as

⟨𝑓
1
, 𝑓

2
⟩
𝐻𝐾𝑟

= 𝑟⟨𝑓
1
, 𝑓

2
⟩
𝐻𝐾

+ ⟨𝐿𝑓
1
, 𝐿𝑓

2
⟩
𝐻
. (134)

Then,

(i) 𝐻
𝐾𝑟

is a Hilbert space with the reproducing kernel
𝐾

𝑟
(𝑝, 𝑞) on 𝐸 and satisfying the equation

𝐾(⋅, 𝑞) = (𝑟𝐼 + 𝐿
∗

𝐿)𝐾
𝑟
(⋅, 𝑞) , (135)

where 𝐿∗ is the adjoint operator of 𝐿 : 𝐻
𝐾
→ 𝐻.

(ii) For any 𝑟 > 0 and for any ℎ in𝐻, the infinitum

inf
𝑓∈𝐻𝐾

{𝑟
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻𝐾

+
󵄩󵄩󵄩󵄩𝐿𝑓 − ℎ

󵄩󵄩󵄩󵄩

2

𝐻
} (136)

is attained by a unique function 𝑓
∗

𝑟,ℎ
in 𝐻

𝐾
and this

extremal function is given by

𝑓
∗

𝑟,ℎ
(𝑝) = ⟨ℎ, 𝐿𝐾

𝑟
(⋅, 𝑝)⟩

𝐻
. (137)

We can now state the main result of this paragraph.

Theorem 40. Let 𝑠 > 3/4 when 𝜌 > 0 and 𝑠 > (𝛼 + 1)/2 when
𝜌 = 0.

(i) For any 𝑔 ∈ 𝐿
2

𝛾
(R

+
) and for any 𝑟 > 0, the best

approximate function 𝑓∗

𝑟,𝑔
in the sense

inf
𝑓∈H𝑠
𝐴(R+)

{𝑟
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

H𝑠
𝐴(R+)

+
󵄩󵄩󵄩󵄩󵄩
𝑔 −T

𝑡

𝐴
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝛾(R+)

}

= 𝑟
󵄩󵄩󵄩󵄩󵄩
𝑓

∗

𝑟,𝑔

󵄩󵄩󵄩󵄩󵄩

2

H𝑠
𝐴(R+)

+
󵄩󵄩󵄩󵄩󵄩
𝑔 −T

𝑡

𝐴
𝑓

∗

𝑟,𝑔

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝛾(R+)

(138)

exists uniquely and 𝑓∗

𝑟,𝑔
is represented by

𝑓
∗

𝑟,𝑔
(𝑦) = ∫

R+

𝑔 (𝑥)𝑄
𝑟
(𝑥, 𝑦) 𝑑𝛾 (𝑥) , (139)

where

𝑄
𝑟
(𝑥, 𝑦) = ∫

R+

𝑒
−2𝑡(𝜉
2
+𝜌
2
)

𝜑
𝑥
(𝜉) 𝜑

𝑦
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

𝐴 (𝜉) 𝑑𝜉. (140)

(ii) Let 𝑓 ∈ H𝑠

𝐴
(R

+
). Then, If we take 𝑔 = T𝑡

𝐴
𝑓, we have

𝑓
∗

𝑟,𝑔
󳨀→ 𝑓 𝑎𝑠 𝑟 󳨀→ 0

+

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦. (141)

(iii) Let 𝛿 > 0 and let 𝑔 and 𝑔
𝛿
satisfy ‖𝑔 − 𝑔

𝛿
‖
𝐿
2
𝛾
(R+)

≤ 𝛿.
Then

󵄩󵄩󵄩󵄩󵄩
𝑓

∗

𝑟,𝑔
− 𝑓

∗

𝑟,𝑔𝛿

󵄩󵄩󵄩󵄩󵄩H𝑠
𝐴
(R+)

≤
𝛿

√𝑟
. (142)

Proof. (i) By Proposition 38 and Theorem 39(ii), the infini-
tum given by (138) is attained by a unique function 𝑓∗

𝑟,𝑔
, and

the extremal function 𝑓∗

𝑟,𝑔
is represented by

𝑓
∗

𝑟,𝑔
(𝑦) = ⟨𝑔,T

𝑡

𝐴
(K

𝑡

𝑔,𝑟
(⋅, 𝑦))⟩

𝐿
2
𝛾
(R+)

, 𝑦 > 0, (143)

where K𝑡

𝑔,𝑟
is the kernel given by Proposition 38. Hence, by

(128), we obtain the expression (140) of 𝑄
𝑟
(𝑥, 𝑦).
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(ii) From Proposition 35, the function 𝑔 belongs to
𝐿
2

𝛾
(R

+
). According to Lemma 21 and relations (9) and (10), it

can be observed, using Cauchy-Schwartz inequality, that for
all 𝑦 > 0 the function

𝜉 󳨃󳨀→ J (𝑓) (𝜉) 𝜑
𝑦
(𝜉) (144)

belongs to𝐿1

𝐴
(R

+
), which implies, from inversion formula for

the transformJ, that

𝑓 (𝑦) = ∫
R+

J (𝑓) (𝜉) 𝜑
𝑦
(𝜉) 𝐴 (𝜉) 𝑑𝜉. (145)

Therefore, by (132), it follows that

(𝑓
∗

𝑟,𝑔
− 𝑓) (𝑦) = ∫

R+

−𝑟(1 + 𝜉
2

)
2𝑠

J (𝑓) (𝜉) 𝜑
𝑦
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

𝐴 (𝜉) 𝑑𝜉.

(146)

Hence, by dominated convergence theorem we deduce the
result.

(iii) It is clear, from (140), that

𝑄
𝑟
(𝑥, 𝑦) = F(

𝑒
−2𝑡(𝜉
2
+𝜌
2
)

𝜑
𝑥
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

)(𝑦) , (147)

then, using Parseval formula for the Fourier transformF, it
follows, by (139), that

𝑓
∗

𝑟,𝑔
(𝑥) = ∫

R+

𝑒
−2𝑡(𝜉
2
+𝜌
2
)J (𝑔) (𝜉) 𝜑

𝑥
(𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

𝐴 (𝜉) 𝑑𝜉 (148)

and so

J (𝑓
∗

𝑟,𝑔
) (𝜉) =

𝑒
−2𝑡(𝜉
2
+𝜌
2
)J (𝑔) (𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

. (149)

Hence,

J (𝑓
∗

𝑟,𝑔
− 𝑓

∗

𝑟,𝑔𝛿
) (𝜉) =

𝑒
−2𝑡(𝜉
2
+𝜌
2
)J (𝑔 − 𝑔

𝛿
) (𝜉)

𝑟(1 + 𝜉2)
2𝑠

+ 𝑒−2𝑡(𝜉
2
+𝜌
2
)

. (150)

Using the inequality (𝑥 + 𝑦)2 ≥ 4𝑥𝑦, we obtain

(1 + 𝜉
2

)
2𝑠󵄨󵄨󵄨󵄨󵄨
J (𝑓

∗

𝑟,𝑔
− 𝑓

∗

𝑟,𝑔𝛿
) (𝜉)

󵄨󵄨󵄨󵄨󵄨

2

≤
1

4𝑟

󵄨󵄨󵄨󵄨J (𝑔 − 𝑔
𝛿
) (𝜉)

󵄨󵄨󵄨󵄨

2

.

(151)

Thus, and from Proposition 4(ii), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑓

∗

𝑟,𝑔
− 𝑓

∗

𝑟,𝑔𝛿

󵄩󵄩󵄩󵄩󵄩

2

H𝑠
𝐴(R+)

≤
1

4𝑟

󵄩󵄩󵄩󵄩J (𝑔 − 𝑔
𝛿
)
󵄩󵄩󵄩󵄩

2

𝐿
2
𝐴(R+)

=
1

4𝑟

󵄩󵄩󵄩󵄩𝑔 − 𝑔𝛿

󵄩󵄩󵄩󵄩

2

𝐿
2
𝛾(R+)

,

(152)

which gives the desired result.
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