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The paper investigated an avian influenza virus propagation model with nonlinear incidence rate and delay based on SIR epidemic
model.We regard delay as bifurcating parameter to study the dynamical behaviors. At first, local asymptotical stability and existence
of Hopf bifurcation are studied; Hopf bifurcation occurs when time delay passes through a sequence of critical values. An explicit
algorithm for determining the direction of the Hopf bifurcations and stability of the bifurcation periodic solutions is derived
by applying the normal form theory and center manifold theorem. What is more, the global existence of periodic solutions is
established by using a global Hopf bifurcation result.

1. Introduction

In March 2013, new avian-origin influenza 𝐴(𝐻7𝑁9) virus
(𝐴 − 𝑂𝐼𝑉) broke out in Shanghai and the surrounding
provinces of China [1]. During the first week of April, this
virus had been detected in six provinces andmunicipal cities;
this virus has caused global concern as a potential pandemic
threat [2]. The virus fast took people’s life without timely
treatment. Therefore, strong measures should be taken to
control the spread of H7N9 viruses.

𝐻7𝑁9 is an infectious disease caused by influenza A
virus. Moreover, it is essential to study and to dominate the
spread of 𝐻7𝑁9. Mathematical models become important
instruments in the analysis and control of infectious diseases.
The present study evaluates the possible application of SIR
model for𝐻7𝑁9 spreading.

Let 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) be the population densities of sus-
ceptible, infective, and recovered, respectively. Recruitment
of new individuals is into the susceptible class at a constant
rate 𝐵 [3]. Parameters 𝜇

1
, 𝜇
2
, and 𝜇

3
are positive constants

which represent the death rate of the classes, respectively. 𝜏
is the length of the infectious period; 1/𝛾 is the average time
spent in class 𝐼 before recovery [3].

In 1979, Cooke [4] used mass action incidence 𝛽𝑆(𝑡)𝐼(𝑡 −
𝜏). In 2009, Xu andMa [5] developed themodel with the force

of infection given by 𝛽𝑆(𝑡)(𝐼(𝑡 − 𝜏)/(1 + 𝛼𝐼(𝑡 − 𝜏))), where 𝛼
determines the level at which the force of infection saturates
and 𝛽 is a contract [5]. Then, the avian influenza virus
propagation model based on SIR model has the following
form:

̇𝑆 (𝑡) = 𝐵 − 𝜇
1
𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
,

̇𝐼 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
− (𝜇
2
+ 𝛾) 𝐼 (𝑡) ,

𝑅̇ (𝑡) = 𝛾𝐼 (𝑡) − 𝜇
3
𝑅 (𝑡) .

(1)

Since 𝑅 does not appear in the first two equations, and
avoid excessive use of parentheses in some of the latter
calculations, the avian influenza virus propagation model is
transformed into the following form

̇𝑆 (𝑡) = 𝐵 − 𝜇
1
𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
,

̇𝐼 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
− (𝜇
2
+ 𝛾) 𝐼 (𝑡) ,

(2)

𝑅̇ (𝑡) = 𝛾𝐼 (𝑡) − 𝜇
3
𝑅 (𝑡) , (3)
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with the following initial condition:

𝑆 (0) ∈ 𝑅
+
, 𝐼 (𝜃) = 𝜙 (𝜃) for 𝜃 ∈ [−𝜏, 0] ,

where 𝜙 ∈ 𝐶 ([−𝜏, 0] , 𝑅
+
) ,

(4)

which was presented and studied in [3].
The steady state of themodel and the stability of epidemic

models have been studied in many papers. Zhang and Li
[6] studied the global stability of an SIR epidemic model
with constant infectious periods. Xu and Ma [5] showed the
global stability of the endemic equilibrium for the case of
the reproduction number 𝑅

0
> 1. McCluskey [3] shown

that the endemic equilibrium is globally asymptotically stable
whenever it exists. In this paper, we investigated the Hopf
bifurcation and the global existence of periodic solutions of
model (2), which have not been reported yet.

The organization of this paper is as follows. In Section 2,
we will investigate the local asymptotical stability and
existence of Hopf bifurcation by analyzing the associated
characteristic equation. In Section 3, an explicit algorithm
for determining the direction of the Hopf bifurcations and
stability of the bifurcation periodic solutions will be derived
by applying the normal form theory and center manifold
theorem. In Section 4, existence of global periodic solutions
will be established by using a global Hopf bifurcation result.
In Section 5, a brief discussion is offered to conclude this
work.

2. Local Stability and Hopf Bifurcation

Some results can be directly obtained from [3, 5]. The basic
reproduction number for the model is 𝑅

0
= 𝐵𝛽/𝜇

1
(𝜇
2
+

𝛾). System (2) always has a disease-free equilibrium 𝐸
1

=

(𝐵/𝜇
1
, 0). If 𝐵𝛽 > 𝜇

1
(𝜇
2
+𝛾), system (2) has a unique endemic

equilibrium 𝐸
∗
= (𝑆
∗
, 𝐼
∗
) = ((𝐵𝛼 + 𝜇

2
+ 𝛾)/(𝛽 + 𝛼𝜇

1
), (𝐵𝛽 −

𝜇
1
(𝜇
2
+𝛾))/(𝜇

2
+𝛾)(𝛽+𝛼𝜇

1
)) [3].The characteristic equation

of system (2) at the endemic equilibrium 𝐸
∗ is

𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ (𝑞
1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

= 0, (5)

where 𝑝
0

= (𝜇
2
+ 𝛾)(𝜇

1
+ 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
)), 𝑝
1

= 𝜇
1
+ 𝜇
2
+

𝛾 + 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑞
0
= −𝛽𝜇

1
𝑆
∗
/(1 + 𝛼𝐼

∗
)
2, and 𝑞

1
= −𝛽𝑆

∗
/

(1 + 𝛼𝐼
∗
)
2. If

𝑅
0
> 1 (𝑃

1
)

hold, when 𝜏 = 0, the endemic equilibrium 𝐸
∗ of system (2)

is locally stable [5].
If 𝑖𝜔 (𝜔 > 0) is a solution of system (2), separating real

and imaginary parts, we obtain the following:

𝑝
1
𝜔 = 𝑞

0
sin𝜔𝜏 − 𝑞

1
𝜔 cos𝜔𝜏,

𝜔
2
− 𝑝
0
= 𝑞
0
cos𝜔𝜏 + 𝑞

1
𝜔 sin𝜔𝜏.

(6)

Then, we get

cos𝜔𝜏 =
(𝑞
0
− 𝑝
1
𝑞
1
) 𝜔
2
− 𝑝
0
𝑞
0

𝑞
2

0
+ 𝑞
2

1
𝜔2

,

sin𝜔𝜏 =

𝑝
1
𝑞
0
𝜔 + (𝜔

2
− 𝑝
0
) 𝑞
1
𝜔

𝑞
2

0
+ 𝑞
2

1
𝜔2

.

(7)

It follows that

𝜔
4
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝜔
2
+ 𝑝
2

0
− 𝑞
2

0
= 0. (8)

Letting 𝑧 = 𝜔
2, we get

𝑧
2
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝑧 + 𝑝

2

0
− 𝑞
2

0
= 0. (9)

It is easy to show that

𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
= (𝜇
1
+

𝛽𝐼
∗

1 + 𝛼𝐼∗
)

2

+ (𝜇
2
+ 𝛾)
2

−
(𝜇
2
+ 𝛾)
2

(1 + 𝛼𝐼∗)
2
> 0,

𝑝
2

0
− 𝑞
2

0

= (𝜇
2
+ 𝛾) [(𝜇

2
+ 𝛾) (𝜇

1
+

𝛽𝐼
∗

1 + 𝛼𝐼∗
) +

𝛽𝜇
1
𝑆
∗

(1 + 𝛼𝐼∗)
2
]

× (𝜇
1
−

𝜇
1

1 + 𝛼𝐼∗
+

𝛽𝐼
∗

1 + 𝛼𝐼∗
) .

(10)

The case of

𝛽 ≥ 𝜇
1
𝛼 (𝐻

1
)

has been discussed in [5]. We obtain global asymptotic
stability of the endemic equilibrium when 𝑅

0
> 1. If

𝛽 < 𝜇
1
𝛼 (𝐻

2
)

hold, that is, (𝛽 − 𝜇
1
𝛼)𝐼
∗
/(1 + 𝛼𝐼

∗
) < 0, we have 𝑝2

0
− 𝑞
2

0
< 0.

Following the theorem given by Ruan [7], there exists critical
value

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

arccos
(𝜔
2

𝑘
− 𝑝
0
) 𝑞
0
− 𝑝
1
𝑞
1
𝜔
2

𝑘

𝑞
2

0
+ 𝑞
2

1
𝜔
2

𝑘

+
2𝑗𝜋

𝜔
𝑘

, (11)

with

𝜔
𝑗

=
[
[

[

2𝑝
0
+ 𝑝
2

1
− 𝑞
2

1
+ √(2𝑝

0
+ 𝑝
2

1
− 𝑞
2

1
)
2

− 4 (𝑝
2

0
− 𝑞
2

0
)

2

]
]

]

1/2

,

(12)

where 𝑘 = 1, 2, . . ., 𝑗 = 0, 1, 2, . . .. If (𝑃
1
) and (𝐻

2
) are

satisfied, (6) has a pair of purely imaginary roots ±𝜔
0
𝑖 when
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𝜏 = 𝜏
0
. Additionally, all roots of (6) have negative real parts

when 𝜏 ∈ [0, 𝜏
0
] and when 𝜏 > 𝜏

0
(5) has at least a pair

of roots with positive real part. In order to give the main
results, it is necessary to prove the transversality condition
Re(𝑑𝜆/𝑑𝜏)−1 > 0 holds. Denote 𝜆 = 𝛼(𝜏)+𝑖𝜔(𝜏) as the root of
(5) with 𝛼(𝜏) = 0, 𝜔(𝜏) = 𝜔

0
. Differentiating (5) with respect

to 𝜏 yields

[2𝜆 + 𝑝
1
+ (𝑞
1
− 𝜏 (𝑞

1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

)]
𝑑𝜆

𝑑𝜏
= 𝜆 (𝑞

1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

.

(13)

For the sake of simplicity denoting 𝜔
0
and 𝜏

0
by 𝜔, 𝜏,

respectively,

𝑑𝜆

𝑑𝜏
=

(𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒
−𝜆𝜏

2𝜆 + 𝑝
1
+ 𝑞
1
𝑒−𝜆𝜏 − ((𝑞

1
𝜆 + 𝑞
0
) 𝜏𝑒−𝜆𝜏)

(14)

in the following:

Re(𝑑𝜆

𝑑𝜏
)

−1

=
2𝜆 + 𝑝

1
+ 𝑞
1
𝑒
−𝜆𝜏

(𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒−𝜆𝜏

= ((𝑝
1
cos𝜔𝜏 − 2𝜔 sin𝜔𝜏 + 𝑞

1
)

+𝑖 (2𝜔 cos𝜔𝜏 + 𝑝
1
sin𝜔𝜏))

× (−𝑞
1
𝜔
2
+ 𝑖𝑞
0
𝜔)
−1

= (−𝑝
1
𝑞
1
𝜔
2 cos𝜔𝜏 + 2𝑞

1
𝜔
3 sin𝜔𝜏

−𝑞
2

1
𝜔
2
+ 2𝑞
0
𝜔
2 cos𝜔𝜏 + 𝑝

1
𝑞
0
𝜔 sin𝜔𝜏)

× (𝑞
0
𝜔
2
+ 𝜔
4
)
−1

= ((−𝑝
1
𝑞
1
𝜔
2
+ 2𝑞
0
𝜔
2
) (𝑞
0
− 𝑝
1
𝑞
1
) 𝜔
2
− 𝑝
0
𝑞
0

+ (2𝑞
1
𝜔
3
+ 𝑝
1
𝑞
0
𝜔)

× [𝑝
1
𝑞
0
𝜔 + (𝜔

2
− 𝑝
0
) 𝑞
1
𝜔] − 𝑞

2

0
𝑞
2

1
𝜔
2
− 𝑞
4

1
𝜔
2
)

× ((𝑞
2

0
+ 𝑞
2

1
𝜔
2
) (𝑞
0
𝜔
2
+ 𝜔
4
))
−1

= (2𝑞
2

1
𝜔
6
+ [2𝑞
2

0
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝑞
2

1
] 𝜔
4

+ (𝑝
2

1
+ 2𝑝
0
− 𝑞
2

1
) 𝑞
2

0
𝜔
2
)

× ((𝑞
2

0
+ 𝑞
2

1
𝜔
2
) (𝑞
0
𝜔
2
+ 𝜔
4
))
−1

.

(15)

From (10), we know 𝑝
2

1
−2𝑝
0
−𝑞
2

1
> 0; then, Re (𝑑𝜆/𝑑𝜏)−1 > 0

hold. Under this condition, we have the following theorem.

Theorem 1. (i) If (𝑃
1
) and (𝐻

1
) holds, the equilibrium

(𝑆
∗
, 𝐼
∗
) of system (2) is asymptotically stable for any 𝜏 > 0.

(ii) If (𝑃
1
) and (𝐻

2
) holds, (𝑆∗, 𝐼∗) is asymptotically stable

for 𝜏 ∈ [0, 𝜏
0
) and unstable for 𝜏 ∈ (𝜏

0
, +∞). System (2)

exhibits the Hopf bifurcation at the equilibrium (𝑆
∗
, 𝐼
∗
) for

𝜏 = 𝜏
𝑗
, 𝑗 = 0, 1, 2, . . ..

3. Direction and Stability of
the Bifurcating Periodic Solutions

In Section 2, we obtain the conditions under which a family
of periodic solutions bifurcate from the steady state at the
critical value of 𝜏. In this section, we investigate the direction
of the Hopf bifurcation and the stability of the bifurcating
periodic solution at critical values 𝜏

0
, using techniques of the

normal form theory and center manifold theorem.
Let 𝑢
1

= 𝑆(𝑡) − 𝑆
∗ and let 𝑢

2
= 𝐼(𝑡) − 𝐼

∗. The Taylor
expansion of system (2) at 𝐸∗ is

𝑢̇
1
(𝑡) = 𝑎

1
𝑢
1
(𝑡) − 𝑎

2
𝑢
2
(𝑡 − 𝜏)

+ 𝑎
6
𝑢
2
(𝑡)
2
(𝑡 − 𝜏) + 𝑎

7
𝑢
1
(𝑡) 𝑢
2
(𝑡 − 𝜏) ,

𝑢̇
2
(𝑡) = 𝑎

3
𝑢
1
(𝑡) + 𝑎

4
𝑢
2
(𝑡) + 𝑎

5
𝑢
2
(𝑡 − 𝜏)

− 𝑎
7
𝑢
1
(𝑡) 𝑢
2
(𝑡 − 𝜏) − 𝑎

6
𝑢
2

2
(𝑡 − 𝜏) ,

(16)

where 𝑎
1

= −𝜇
1
+ 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑎
2

= −𝛽𝑆
2
/(1 + 𝛼𝐼

∗
),

𝑎
3

= 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑎
4

= −𝜇
2
− 𝛾, 𝑎

5
− 𝛽𝑆
2
/(1 + 𝛼𝐼

∗
),

𝑎
6
= −𝛼𝛽𝑆

∗
/(1 + 𝛼𝐼

∗
)
3, 𝑎
7
= 𝛽/(1 + 𝛼𝐼

∗
)
2, 𝜏 = 𝜏

0
+ 𝜇, and

𝑢
𝑡
= 𝑢(𝑡 + 𝜃) ∈ 𝐶

1
for 𝜃 ∈ [−1, 0]. System (2) is transformed

into FDE as
𝑢̇ (𝑡) = 𝐿

𝜇
+ 𝐹 (𝑢

𝑡
, 𝜇) , (17)

with
𝐿
𝜇
(𝜙) = (𝜏

0
+ 𝜇) [𝐵

1
𝜙 (0) + 𝐵

2
𝜙 (−1)] ,

𝐹 (𝜙, 𝜇) = (𝜏
0
+ 𝜇) (

𝑎
6
𝜙
2

2
(−1) + 𝑎

7
𝜙
1
(0) 𝜙
2
(−1)

−𝑎
6
𝜙
1
(0) 𝜙
2
(−1) − 𝑎

7
𝜙
2

2
(−1)

) ,

(18)

where

𝐵
1
= (

𝑎
1

0

𝑎
3

𝑎
4

) , 𝐵
2
= (

0 𝑎
2

0 𝑎
5

) . (19)

By Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation, for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) for 𝜙 ∈ 𝐶. (20)

In fact, we can choose
𝜂 (𝜃, 𝜇) = (𝜏

0
+ 𝜇) [𝐵

1
𝛿 (𝜃) + 𝐵

2
𝛿 (𝜃 + 1)] , (21)

where 𝛿(𝜃) is a delta function.
For 𝜙 ∈ 𝐶

󸀠
[−1, 0], the operators 𝐴 and 𝑅 are defined as

follows:

𝐴 (𝜇) 𝜙 (𝜃) =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑 (𝜂 (𝑡, 𝜇) 𝜙 (𝑡)) , 𝜃 = 0,

(22)

𝑅 (𝜇) 𝜙 (𝜃) =
{

{

{

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜃) , 𝜃 = 0.

(23)
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The adjoint operator 𝐴∗(0) corresponding to 𝐴(0) is defined
as follows:

𝐴
∗
𝜓 (𝑠) =

{{{{

{{{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑 (𝜂
𝑇
(𝑡, 0) 𝜓 (−𝑡)) , 𝑠 = 0

(24)

and an adjoint bilinear is as follows:

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (25)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
From the preceding discussion, we know that 𝑞(𝜃) and

𝑞
∗
(𝜃) be the eigenvectors of𝐴 and𝐴

∗ corresponding to 𝑖𝜏
0
𝜔
0

and −𝑖𝜏
0
𝜔
0
, respectively. Next, we calculate 𝑞(𝜃) and 𝑞

∗
(𝑠) to

determine the normal form of operator 𝐴.

Proposition 2. Let 𝑞(𝜃) and 𝑞
∗
(𝑠) be eigenvectors of 𝐴 and

𝐴
∗ corresponding to 𝑖𝜏

0
𝜔
0
and −𝑖𝜏

0
𝜔
0
, respectively, satisfying

⟨𝑞
∗
, 𝑞⟩ = 1 and ⟨𝑞

∗
, 𝑞⟩ = 0.

Then,

𝑞 (𝜃) = (1, 𝛼)
𝑇
𝑒
𝑖𝜔0𝜏0𝜃 = (1,

𝜔
0
𝑖 − 𝑎
1

𝑎
2
𝑒−𝑖𝜔0𝜏0

)

𝑇

𝑒
𝑖𝜔0𝜏0𝜃,

𝑞
∗
(𝑠) = 𝐷 (1, 𝛽

∗
) 𝑒
−𝑖𝜔0𝜏0𝑠 = (1,

−𝜔
0
𝑖 − 𝑎
1

𝑎
3

)

𝑇

𝑒
−𝑖𝜔0𝜏0𝑠,

(26)

where

𝐷 =
1

1 + 𝛼𝛽
∗

− 𝜏
0
𝛼 (𝑎
2
+ 𝛽
∗

𝑎
5
) 𝑒−𝑖𝜔0𝜏0

. (27)

Proof. Without loss of generality, we just consider the eigen-
vector 𝑞(𝜃). By the definition of 𝐴 and 𝑞(𝜃) with 𝜃 ∈ [−1, 0),
we get 𝑞(𝜃) = (1, 𝛼)

𝑇
𝑒
𝑖𝜔0𝜏0 (here, 𝛼 is a parameter). In

what follows, notice that 𝑞(0) = (1, 𝛼)
𝑇 and 𝐴𝑞(0) =

∫
0

−1
𝑑(𝜂(𝑡, 𝜇)𝜙(𝑡)) = 𝑖𝜔

0
𝜏
0
𝑞(0); we have 𝛼 = (𝜔

0
𝑖 −

𝑎
1
)/𝑎
2
𝑒
−𝑖𝜔0𝜏0 . Using a proof procedure similar to that in [8],

by direct computation, we get 𝑞(𝜃) and 𝑞
∗
(𝑠). Bring 𝑞(𝜃) and

𝑞
∗
(𝑠) into ⟨𝑞

∗
, 𝑞⟩ = 1; it is not hard to obtain the parameter

𝐷. The detailed procedure of proof refers to [9]. The proof is
completed.

Then, we construct the coordinates of the centermanifold
𝐶
0
at 𝜇 = 0. Let

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(28)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊(𝑧 (𝑡) , 𝑧 (𝑡), 𝜃) , (29)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊
20

(𝜃)
𝑧
2

2
+ 𝑊
11

(𝜃) 𝑧𝑧 + 𝑊
02

𝑧
2

2
+ 𝑊
30

𝑧
3

6
, . . . ;

(30)

and 𝑧 and 𝑧 are local coordinates for the center manifold 𝐶
0

in the direction of 𝑞 and 𝑞
∗, respectively. Since 𝜇 = 0, we have

𝑧
󸀠
(𝑡) = 𝑖𝜏

0
𝜔
0
𝑧 (𝑡) + ⟨𝑞

∗
(𝜃) , 𝑓 (𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑞∗ (0)𝑓 (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑞∗ (0)𝑓

0
(𝑧, 𝑧) ,

(31)

where

𝑓
0
(𝑧, 𝑧) = 𝑓

𝑧
2

𝑧
2

2
+ 𝑓
𝑧
2

𝑧
2

2
+ 𝑓
𝑧𝑧
𝑧𝑧 + ⋅ ⋅ ⋅ . (32)

We rewrite this as

𝑧
󸀠
(𝑡) = 𝑖𝜏

0
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧) , (33)

with

𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝑓
0
(𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ ,

𝑔 (𝑧, 𝑧) = 𝐷𝜏
0
(1, 𝛽∗) (

𝑎
6
𝜙
2

2
(−1) + 𝑎

7
𝜙
1
(0) 𝜙
2
(−1)

−𝑎
6
𝜙
1
(0) 𝜙
2
(−1) − 𝑎

7
𝜙
2

2
(−1)

) ,

(34)

where

𝜙
1
(0) = 𝑧 + 𝑧 + 𝑊

(1)

20
(0)

𝑧
2

2
+ 𝑊
(1)

11
(0) 𝑧𝑧

+ 𝑊
(1)

02
(0)

𝑧

2
,

𝜙
2
(−1) = 𝑧𝛼𝑒

−𝑖𝜔0𝜏0 + 𝑧 𝛼𝑒
𝑖𝜔0𝜏0 + 𝑊

(2)

20
(−1)

𝑧
2

2

+ 𝑊
(2)

11
(−1) 𝑧𝑧 + 𝑊

(2)

02
(−1)

𝑧

2
.

(35)

Comparing the coefficients of the above equation with
(22), we obtain

𝑔
20

= 2𝐷𝜏
0
[(𝑎
6
− 𝛽∗𝑎

7
) 𝛼
2
𝑒
−2𝑖𝜔0𝜏0 + (𝑎

7
− 𝛽∗𝑎

6
) 𝛼𝑒
−𝑖𝜔0𝜏0] ,

𝑔
11

= 𝐷𝜏
0
[2 (𝑎
6
− 𝛽∗𝑎

7
) 𝛼𝛼 + (𝑎

7
− 𝛽∗𝑎

6
)

× (𝛼𝑒
𝑖𝜔0𝜏0 + 𝛼𝑒

−𝑖𝜔0𝜏0) ] ,

𝑔
02

= 2𝐷𝜏
0
[(𝑎
6
− 𝛽∗𝑎

7
) 𝛼2𝑒
2𝑖𝜔0𝜏0

+ (𝑎
7
− 𝛽∗𝑎

6
) 𝛼𝑒
−𝑖𝜔0𝜏0] ,
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𝑔
21

= 2𝐷𝜏
0
[(𝑎
6
− 𝛽∗𝑎

7
)

× [𝛼𝑒
𝑖𝜔0𝜏0𝑊

(2)

20
(−1) + 2𝛼𝑒

−𝑖𝜔0𝜏0𝑊
(2)

11
(−1)]

+ (𝑎
7
− 𝛽∗𝑎

6
)

× [
1

2
𝛼𝑒
𝑖𝜔0𝜏0𝑊

(1)

20
(0) + 𝛼𝑒

−𝑖𝜔0𝜏0𝑊
(1)

11
(0)

+
1

2
𝑊
(2)

20
(−1) + 𝑊

(2)

11
(−1) ] ,

(36)

𝑊̇ = 𝑢̇
𝑡
− 𝑧̇𝑞 − 𝑧̇ 𝑞

= {
𝐴𝑊 − 2Re 𝑞∗ (0) 𝑓

0
𝑞 (𝜃) , 𝜃 ∈ [−1, 0] ,

𝐴𝑊 − 2Re 𝑞∗ (0) 𝑓
0
𝑞 (𝜃) + 𝑓

0
, 𝜃 = 0.

≜ 𝐴𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(37)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20

(𝜃)
𝑧
2

2
+ 𝐻
11

(𝜃) 𝑧𝑧 + 𝐻
02

(𝜃)
𝑧
2

2
+ ⋅ ⋅ ⋅ .

(38)

Expanding the above series and comparing the coefficients,
we get

(𝐴 − 2𝑖𝜔
0
𝜏
0
𝐼)𝑊
20

(𝜃) = −𝐻
20

(𝜃) ,

𝐴𝑊
11

(𝜃) = −𝐻
11

(𝜃) ,

(𝐴 + 2𝑖𝜔
0
𝜏
0
𝐼)𝑊
02

(𝜃) = −𝐻
02

(𝜃) .

(39)

Comparing the coefficients with (38), we obtain

𝐻
20

(𝜃) = −𝑔
20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11

(𝜃) = −𝑔
11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(40)

It follows from (39), (40), and the definition of 𝐴 that we
have

𝑊̇
20

(𝜃) = 2𝑖𝜏
0
𝜔
0
𝑊
20

(𝜃) + 𝑔
20
𝑞 (𝜃) + 𝑔

20
𝑞 (𝜃) ,

𝑊̇
11

(𝜃) = 𝑔
11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) .

(41)

So,

𝑊
20

(𝜃) =
𝑖𝑔
20

𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏0𝜔0𝜃

−
𝑔
02

3𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏0𝜔0𝜃 + 𝐸

1
𝑒
2𝑖𝜏0𝜔0𝜃,

𝑊
11

(𝜃) = −
𝑖𝑔
11

𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏0𝜔0𝜃 +

𝑖𝑔
11

𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏0𝜔0𝜃 + 𝐸

2
,

(42)

where

𝐸
1
= 2(

2𝑖𝜔
0
− 𝑎
1

−𝑎
2
𝑒
−2𝑖𝜔0𝜏0

−𝑎
3

2𝑖𝜔
0
− 𝑎
4
− 𝑎
5
𝑒
−2𝑖𝜔0𝜏0

)

−1

× (
𝑎
6
𝛼
2
𝑒
−2𝑖𝜔0𝜏0 + 𝑎

7
𝛼𝑒
−𝑖𝜔0𝜏0

−𝑎
7
𝛼
2
𝑒
−2𝑖𝜔0𝜏0 − 𝑎

6
𝛼𝑒
−𝑖𝜔0𝜏0

) ,

𝐸
2
= (

−𝑎
1

−𝑎
2

−𝑎
3

−𝑎
4
− 𝑎
5

)

−1

× (
2𝑎
6
𝛼𝛼 + 𝑎

7
(𝛼𝑒
𝑖𝜔0𝜏0 + 𝛼𝑒

−𝑖𝜔0𝜏0)

−2𝑎
7
𝛼𝛼 − 𝑎

6
(𝛼𝑒
𝑖𝜔0𝜏0 + 𝛼𝑒

−𝑖𝜔0𝜏0)
) .

(43)

According to the discussion above, we can compute the
following parameters:

𝐶
1
(0) =

𝑖

2𝜏
0
𝜔
0

(𝑔
20
𝑔
11

− 2
󵄨󵄨󵄨󵄨𝑔11

󵄨󵄨󵄨󵄨 −
1

3

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨

2

) +
𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆󸀠 (𝜏
0
)}

,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
(Im {𝜆

󸀠
(𝜏
0
)})

𝜔
0

,

(44)

where 𝜇
2
determines the directions of the Hopf bifurcations,

𝛽
2
determines the stability of the bifurcation periodic solu-

tions, and 𝑇
2
determines the period of the bifurcating peri-

odic solutions [9]. By lemma (5), we know that Re{𝜆󸀠(𝜏
0
)} >

0; we have the following theorem.

Theorem 3. If Re{𝐶
1
(0)} < 0(> 0), the direction of the Hopf

bifurcation of the system (1) at the equilibrium (0, 0) when
𝜏 = 𝜏
0
is supercritical (subcritical) and the bifurcating periodic

solutions are orbitally asymptotically stable (unstable).

4. Global Existence of Periodic Solution

From the above discussion, we know that system (2) under-
goes a local Hopf bifurcation at 𝐸

∗
= (𝑆

∗
, 𝐼
∗
) when

𝜏 = 𝜏
𝑗
(𝑗 = 0, 1, 2, . . .). A natural question is that if the bifur-

cating periodic solutions of system (2) exist when is 𝜏 far away
from critical values? In this section, we will study the global
existence of periodic solutions of system (2).Through use of a
global Hopf bifurcation theorem given byWu [10], we obtain
the global continuation of periodic solutions bifurcating from
the points (𝐸∗, 𝜏

𝑗
) (𝑗 = 0, 1, 2, . . .). First of all, we define

𝑋 = 𝐶 ([−𝜏, 0] , 𝑅) ,

Σ = 𝐶𝑙 (𝑥, 𝜏, 𝑙) : (𝑥, 𝜏, 𝑙) ∈ 𝑋 × 𝑅
+
× 𝑅
+
,

𝑥 is a 𝑙-periodic solution of system,

𝑁 = (𝑥, 𝜏, 𝑙) : 𝑥 = 0 or V.

(45)

Let 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) denote the connected component of

𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) in Σ and Proj

𝜏
(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) its projec-

tion on 𝜏 component. From theorem (5), we know that
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𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) is nonempty. 𝜔

0
and 𝜏

𝑗
are defined in (10)

and (11).

Lemma 4. All periodic solutions of system (2) are uniformly
bounded.

Proof. Let (𝑆(𝑡), 𝐼(𝑡)) be a nonconstant periodic solution of
system (2), and let 𝑆(𝑡

1
), 𝑆(𝑡
2
) and 𝐼(𝑡

3
), 𝐼(𝑡
4
) be themaximum

and minimum of 𝑆(𝑡) and 𝐼(𝑡), respectively. Using a proof
procedure similar to that in [8], we can obtain

0 < 𝑆 (𝑡) <
𝐵

𝜇
1

, 0 < 𝐼 (𝑡) <
𝐵

𝜇
2
+ 𝛾

. (46)

It is shown that all periodic solutions of system (2) are
uniformly bounded. This completes the proof.

Lemma 5. System (2) has no nonconstant periodic solution of
period 𝜏.

Proof. For a contradiction, if system (5) has a 𝜏-periodic
solution, say (𝑆(𝑡), 𝐼(𝑡)), then it satisfies the ODES as follows:

̇𝑆 (𝑡) = 𝐵 − 𝜇
1
𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)
= 𝑃 (𝑆, 𝐼) ,

̇𝐼 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)
− (𝜇
2
+ 𝛾) 𝐼 (𝑡) = 𝑄 (𝑆, 𝐼) .

(47)

We can get

𝜕𝑃

𝜕𝑆
+

𝜕𝑄

𝜕𝐼
= −𝜇
1
−

𝛽𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)
−

1

(1 + 𝛼𝐼 (𝑡))
2
− (𝜇
2
+ 𝛾) < 0.

(48)

By Bendixson’s criterion, we know that system (2) has no
nonconstant periodic solutions, which prove the lemma.

Theorem 6. Suppose that the condition (𝐻
1
) and (𝑃

1
) is

satisfied. Then, for each 𝜏 > 𝜏
𝑗
, 𝑗 = 0, 1, 2, . . ., system (2) has

at least 𝑗 − 1 periodic solutions.

Proof. The characteristic matrix of system (2) at the equilib-
rium 𝑧 = [𝑧

(1)
, 𝑧
(2)

] ∈ 𝑅
2 is in the following form:

Δ (𝑧, 𝜏, 𝑙) (𝜆) = 𝜆𝐼 − 𝐷
𝜙
𝐹 (𝑧, 𝜏, 𝑙) (𝑒

𝜆
𝐼𝑑) ; (49)

that is,

Δ (𝑧, 𝜏, 𝑙)

= (

𝜆 + 𝜇
1
+

𝛽𝑧
(2)

𝑒
−𝜆𝜏

1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏

𝛽𝑧
(1)

(1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏)
2

−
𝛽𝑧
(2)

𝑒
−𝜆𝜏

1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏
𝜆 +

𝛽𝑧
(1)

(1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏)
2

).

(50)

Using a proof procedure similar to that in [9], it is easy to
obtain that (𝐸∗, 𝜏

𝑗
, 2𝜋/𝜔

0
), 𝑗 = 0, 1, 2, . . ., is an isolated center.

From the proof procedure of Lemmas 4 and 5, it is easy
to know that there exist 𝜀 > 0, 𝛿 > 0, smooth curve 𝜆 : (𝜏

𝑗
−

𝛿, 𝜏
𝑗
+ 𝛿) → 𝐶 such that

Δ (𝜆 (𝜏)) = Δ
(V,𝜏,𝑇) (𝜆 (𝜏)) = 0,

󵄨󵄨󵄨󵄨𝜆 (𝜏) − 𝑖𝜔
0

󵄨󵄨󵄨󵄨 < 𝜀, (51)

for all 𝜏 ∈ [𝜏
𝑗
− 𝛿, 𝜏
𝑗
+ 𝛿], and

𝜆 (𝜏
𝑗
) = 𝑖𝜔

0
,

𝑑Re (𝜆 (𝜏))

𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑗

> 0. (52)

Define 𝑙
𝑗
= 2𝜋/𝜔

0
, and let Ω

𝜀
= {(0, 𝑙) : 0 < 𝑢 < 𝜀, |𝑙 −

𝑙
𝑗
| < 𝜀}. Obviously, if |𝜏 − 𝜏

𝑗
| ≤ 𝛿 and (𝑢, 𝑙) ∈ 𝜕Ω

𝜀
such that

Δ
(𝐸
∗
,𝜏,𝑙)

(𝑢 + 2𝜋𝑖/𝑙) = 0, if and only if 𝜏 = 𝜏
𝑗
, 𝑢 = 0, 𝑙 = 𝑙

𝑗
, set

𝐻
±
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) (𝑢, 𝑙) = Δ
(𝐸
∗
,𝜏𝑗±𝛿,𝑙)

(𝑢 +
2𝜋𝑖

𝑙
) . (53)

We obtain the crossing number as follows:

𝛾
1
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) = deg
𝐵
(𝐻
−
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) ,Ω
𝜀
)

− deg
𝐵
(𝐻
+
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) ,Ω
𝜀
) = −1.

(54)

We conclude that

∑

(𝐸
∗
,𝜏,𝑙)∈𝐶(𝐸∗ ,𝜏𝑗,2𝜋/𝜔0)

𝛾
1
(𝐸
∗
, 𝜏, 𝑙) < 0. (55)

Since the first crossing number of each center is always −1,
by [10, Theorem 3.3], we conclude that 𝐶(𝐸

∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) is

unbounded. By the definition of 𝜏
𝑗
given in (10), we know

that, for 𝑗 ≥ 1, (𝜏
𝑗
/(𝑗 + 1)) < 2𝜋/𝜔

0
< 𝜏
𝑗
automatically hold.

Again, the population densities of susceptible and infec-
tive are ultimately uniformly bounded, implying that the
projection of 𝐶(𝐸

∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) onto the 𝜏-space is bounded.

Meanwhile, system (2) with 𝜏 = 0 has no nonconstant
periodic solutions; if there exits 𝜏

∗
> 0 such that the

projection of 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) onto the 𝜏-space ins (0, 𝜏

0
)

with 𝜏
∗

> 𝜏
𝑗
, then, the projection of 𝐶(𝐸

∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) onto

the 𝜏-space is bounded. Since (2𝜋/𝜔
0
) < 𝜏

𝑗
and from

Lemma 5, we can obtain 0 < 𝑙 < 𝜏
∗ for (𝐸, 𝜏, 𝑇) ∈

𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) with 𝑙 < 𝜏

∗; that is to say, 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
)

onto 𝑙-space is also bounded. Because 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) is

unbounded, Proj
𝜏
(𝐸, 𝜏
𝑗
, 2𝜋/𝜔

0
)must be unbounded. Conse-

quently, Proj
𝜏
(𝐸, 𝜏
𝑗
, 2𝜋/𝜔

0
) include [𝜏

𝑗
,∞) for 𝑗 ≥ 1. That is

to say, for each 𝜏 > 𝜏
𝑗
(𝑗 ≥ 1), system (2) at least has 𝑗 − 1

nonconstant period solutions. The proof is complete.

5. Conclusion

In this paper we have analytically studied an avian influenza
virus propagation model with nonlinear incidence rate and
time delay depending on SIR epidemicmodel. Some previous
efforts in epidemic models have been mainly concerned with
the global stability and asymptotical stability. However, it
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is a new idea to study the bifurcation periodic solutions
and global existence of periodic solutions. The theoretical
analysis for the avian influenza virus propagation models
is given. Then, Hopf bifurcation occurs when time delay
passes through a sequence of critical values. Furthermore,
bifurcations and stability of the bifurcation periodic solutions
are derived. Finally, global existence of periodic solutions is
established.
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