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Inventory management is a sequential decision problem that can be solved with reinforcement learning (RL). Although RL in
its conventional form does not require domain knowledge, exploiting such knowledge of problem structure, usually available in
inventory management, can be beneficial to improving the learning quality and speed of RL. Ruminative reinforcement learning
(RRL) has been introduced recently based on this approach. RRL is motivated by how humans contemplate the consequences of
their actions in trying to learn how to make a better decision. This study further investigates the issues of RRL and proposes new
RRL methods applied to inventory management. Our investigation provides insight into different RRL characteristics, and our
experimental results show the viability of the new methods.

1. Introduction

Inventory management is a crucial business activity and
can be modeled as a sequential decision problem. Bertsimas
and Thiele [1], among others, addressed the need for an
efficient and flexible inventory solution that is also simple to
implement in practice. This may be among the reasons for
extensive studies of reinforcement learning (RL) application
to inventory management.

RL [2, 3] is an approach to solve sequential decision
problems based on learning the underlying state value or
state-action value. Relying on learning mechanism, RL in its
typical form does not require knowledge of a structure of the
problem. Therefore, RL has been studied in wide range of
sequential decision problems, for example, virtual machine
configuration [4], robotics [5], helicopter control [6], ventila-
tion, heating and air conditioning control [7], electricity trade
[8], financial management [9], water resource management
[10], and inventory management [11]. Acceptance of RL is
credited to RL’s effectiveness, potential possibilities [12], link

to mammal learning processes [13, 14], and its model-free
property [15].

Despite fascination with RL’s model-free property, most
inventorymanagement problems can naturally be formulated
into a well-structured part interacting with another part that
is less understood. That is, replenishment cost, holding cost,
and penalty cost can be determined precisely in advance. On
the other hand, customer demand or, in some cases, delivery
time or availability of supplies is usually less predictable.
However, once a value of a less predictable variable is known,
the period cost can be determined precisely. Specifically, a
warehouse would know its period inventory cost after its
replenishment has arrived and all demand orders in the
period have been observed. Calculation of a period cost
is a well-defined formula, while another part, for example,
demand, is less predictable. Knowledge about the well-
structured part can be exploited, while a learningmechanism
can be used to handle the less understood part.

Utilizing this knowledge, Kim et al. [16] proposed asyn-
chronous action-reward learning, which used simulation to
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evaluate consequences of actions not taken in order to accel-
erate the learning process in a stateless system. Extending the
idea to state-based system, Katanyukul [17] developed rumi-
native reinforcement learning (RRL) methods, that is, rumi-
native SARSA (RSarsa) and policy-weighted RSarsa (PRS).
The RRL approach is motivated by how humans contemplate
consequences of their actions to improve their learning
hoping to make a better decision. His study of RRL reveals
good potential of the approach. However, existing individual
methods show strengths in different scenarios: RSarsa is
shown to have fast learning but leads to inferior learning
quality in a long-term run. PRS is shown to lead to superior
learning quality in a long-term run, but with slower rate.

Our proposed method here is developed to exploit the
fast learning characteristic of RSarsa and good learning
quality in a long-term run of PRS. Our experimental results
show effectiveness of the proposed method and support our
assumption underlying development of RRL.

2. Background

An objective of a sequential inventory management is to
minimize a long-term cost, 𝐶
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be posed as a Markov decision problem (MDP) (see [15] for
details). In this case, what we seek is an optimal policy, which
maps each state to an optimal action. Given an arbitrary
policy𝜋, the long-term state cost for that policy can bewritten
as
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where 𝑟
𝜋
(𝑠) is an expected period state cost, 𝑝𝜋(𝑠 | 𝑠)

is a transition probability—the probability of the next state
being 𝑠when the current state is 𝑠.The superscript 𝜋 notation
indicates dependence on the policy 𝜋. In practice, exact
solution to (1) is difficult to find. Reinforcement learning (RL)
[2] provides a framework to find an approximate solution.
An approximate long-term cost of state 𝑠 is obtained by
summation of the period cost and a long-term cost of the next
state 𝑄(𝑠) = 𝑟(𝑠) + 𝛾𝑄(𝑠).

The RL approach is based on temporal difference (TD)
learning, which uses temporal difference error 𝜓 (2) to
estimate the long-term cost (3):

𝜓 = 𝑟 + 𝛾𝑄 (𝑠

, 𝑎

) − 𝑄 (𝑠, 𝑎) (2)

𝑄
(new)
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(old)

(𝑠, 𝑎) + 𝛼 ⋅ 𝜓, (3)

where 𝑟 is the period cost, which corresponds to taking action
𝑎 in state 𝑠, 𝛼 is a learning rate, and 𝑠 and 𝑎 are the state and
action taken in the next period, respectively.

Once the values of 𝑄(𝑠, 𝑎) are thoroughly learned, they
are good approximations of long-term costs. We often refer
to 𝑄(𝑠, 𝑎) as the “Q-value.” Most RL methods determine the
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Figure 1: SARSA agent and interacting variables (this figure is
adapted from Figure 6.15 of Sutton and Barto [2]).

actions to take based on Q-values. These methods include
SARSA [2], a widely used RL algorithm. We use SARSA as
a benchmark, representing a conventional RL method, to
compare with other methods under investigation. In each
period, given observed state 𝑠, action taken 𝑎, observed
period cost 𝑟, observed next state 𝑠, and anticipating next
action taken 𝑎

, the SARSA algorithm updates the Q-value
based on TD learning (2) and (3).

Based on the Q-value, we can define a policy 𝜋 to
determine an action to take at each state.The policy is usually
stochastic, defined by a probability 𝑝(𝑎 | 𝑠) to take an
action 𝑎 given a state 𝑠. The policy has to balance between
taking the best action based on the currently learnedQ-value
and trying another alternative. Trying another alternative
gives the learning agent a chance to explore thoroughly the
consequences of its state-action space. This helps to create
a constructive cycle of improving the quality of learned Q-
values, which in turn will help the agent to choose better
actions and reduce the chance to get stuck in a local optimum.
This is an issue of balancing between exploitation and explo-
ration, as discussed in Sutton and Barto [2]. (Since the RL
algorithm is autonomous and interacts with its environment,
we sometimes use the term “learning agent.”).

An 𝜖-greedy policy is a general RL policy, which also is
easy to implement. With probability 𝜖, the policy chooses
an action randomly from 𝑎 ∈ 𝐴(𝑠), where 𝐴(𝑠) is a set
of allowable actions given state 𝑠. Otherwise, it takes an
action corresponding to the minimal current Q-value, 𝑎∗ =
argmin

𝑎
𝑄(𝑠, 𝑎).

3. Ruminative Reinforcement Learning

The conventional RL approach, SARSA, assumes that the
agent knows only the current state 𝑠, the action 𝑎 it takes,
the period cost 𝑟, the next state 𝑠, and the action 𝑎

 it will
take in the next state. Each period, the SARSA agent updates
the Q-value based on the TD error calculated with these
five variables. Figure 1 illustrates the SARSA agent, the five
variables it needs to update the Q-value, and its interaction
with its environment.
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Figure 2: Environment, knowledge of its structure, and rumination.

However, in inventorymanagement problems, we usually
have extra knowledge about the environment. That is, the
problem structure can naturally be formulated such that the
period cost 𝑟 and next state 𝑠 are determined by a function
𝑘 : 𝑠, 𝑎, 𝜉 → 𝑟, 𝑠

, where 𝜉 is an extra information variable.
This variable 𝜉 captures the stochastic aspect of the problem.
The process generating 𝜉may be unknown, but the value of 𝜉
is fully observable after the period is over. Given a value of 𝜉,
along with 𝑠 and 𝑎, the deterministic function 𝑘 can precisely
determine 𝑟 and 𝑠.

Without this extra knowledge, each period, the SARSA
agent updates only one value of 𝑄(𝑠, 𝑎) corresponding to
current state 𝑠 and action taken 𝑎. However, with the function
𝑘 and an observed value of 𝜉, we can do “rumination”:
evaluating the consequences of other actions 𝑎, even those
that were not taken. Figure 2 illustrates rumination and its
associated variables. Given the rumination mechanism, we
can provide information required by SARSA’s TD calculation
for any underlying action. Katanyukul [17] introduced this
rumination idea and incorporated it into the SARSA algo-
rithm, resulting in the ruminative SARSA (RSarsa) algorithm.
Algorithm 1 shows the RSarsa algorithm. It should be noted
that RSarsa is similar to SARSA, but with inclusion of
rumination from line 8 to line 13.

The experiments in [17] showed that RSarsa had per-
formed significantly better than SARSA in early periods
(indicating faster learning), but its performance was inferior
to SARSA in later periods (indicating poor convergence to the
appropriate long-term state cost approximation). Katanyukul
[17] attributed RSarsa’s poor long-term learning quality to its
lack of natural action visitation frequency.

TD learning (2) and (3) update theQ-value as an approx-
imation of the long-term state cost.The transition probability
𝑝
𝜋
(𝑠

| 𝑠) in (1) does not appear explicitly in the TD learning

calculation. Conventional RL relies on sampling trajectories
to reflect the natural frequency of visits to state-action pairs
corresponding to the transition probability. It updates only
the state-action pairs as they are actually visited; therefore, it
does not require explicit calculation of the transition proba-
bility and still eventually converges to a good approximation.

However, because RSarsa does rumination for all actions
ignoring their sampling frequency, this is equivalent to

(L00) Initialize 𝑄(𝑠, 𝑎).
(L01) Observe 𝑠.
(L02) Determine 𝑎 by policy 𝜋.
(L03) For each period,
(L04) observe 𝑟, 𝑠, and 𝜉;
(L05) determine 𝑎 by policy 𝜋;
(L06) calculate 𝜓 = 𝑟 + 𝛾𝑄(𝑠


, 𝑎

) − 𝑄(𝑠, 𝑎);

(L07) update 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ⋅ 𝜓;
(L08) for each 𝑎 ∈ 𝐴(𝑠),
(L09) calculate 𝑟, 𝑠 with 𝑘(𝑠, 𝑎, 𝜉),
(L10) determine 𝑎,
(L11) calculate 𝜓 = 𝑟 + 𝛾𝑄(𝑠


, 𝑎

) − 𝑄(𝑠, 𝑎),

(L12) update 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ⋅ 𝜓

(L13) until ruminated all 𝑎 ∈ 𝐴;
(L14) set 𝑠 ← 𝑠

 and 𝑎 ← 𝑎


(L15) until termination.

Algorithm 1: RSarsa algorithm.

disregarding the transition probability, which leads to
RSarsa’s poor long-term learning quality.

To address this issue, Katanyukul [17] proposed policy-
weighted RSarsa (PRS). PRS explicitly calculates probabilities
of actions to be ruminated and adjusts the weights of their
updates. PRS is similar to RSarsa, but the rumination update
(line 12 in Algorithm 1) is replaced by

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛽 ⋅ 𝜓, (4)

where 𝛽 = 𝛼 ⋅ 𝑝(𝑎) and 𝑝(𝑎) is the probability of taking
action 𝑎 in state 𝑠 with policy 𝜋. Given an 𝜖-greedy policy,
we have 𝑝(𝑎) = 𝜖/|𝐴(𝑠)| for 𝑎 ̸= 𝑎

∗ and 𝑝(𝑎) = 𝜖/|𝐴(𝑠)| +

(1 − 𝜖) otherwise, where |𝐴(𝑠)| is a number of allowable
actions. PRS has been shown to performwell in early and later
periods, compared to SARSA. However, RSarsa is reported to
significantly outperform PRS in early periods.

4. New Methods

According to the results of [17], although RSarsa may
converge to a wrong approximation, RSarsa was shown to
perform impressively in the very early periods. This suggests
that if we jump-start the learning agent with RSarsa and then
later switch to PRS, before the Q-values settle into bad spots,
we may be able to achieve both faster learning and good
approximation for a long-term run.

PRS.Beta. We first introduce a straightforward idea, called
PRS.Beta, where we will use a varying ruminative learn-
ing rate as a mechanism to shift from full rumination
(RSarsa) to policy-weighted rumination (PRS). Similar to
PRS, the rumination update is determined by (4). However,
the value of the rumination learning rate 𝛽 is determined by

𝛽 = 𝛼 ⋅ {1 − (1 − 𝑝 (𝑎)) ⋅ 𝑓} , (5)

where 𝑓 is a function having a value between 0 and 1. When
𝑓 → 0, 𝛽 → 𝛼 and the algorithm will behave like RSarsa.
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When 𝑓 → 1, 𝛽 → 𝛼 ⋅ 𝑝(𝑎) and the algorithm will behave
like PRS. We want 𝑓 to start out close to 0 and grow to 1

at a proper rate. By examining our preliminary experiments,
the TD error will get smaller as the learning converges. This
is actually a property of TD learning. Given this property,
we can use the magnitude of the TD error |𝜓| to control the
shifting, such that

𝑓 (𝜓) = exp (−𝜏 ⋅ 𝜓
) , (6)

where 𝜏 is a scaling factor. Figure 3 illustrates the effects of
different values of 𝜏. Since the magnitude of 𝜏 should be
relative to |𝜓|, we set 𝜏 = |2/(𝑟 + 𝑄(𝑠, 𝑎))|, so that the
magnitude of 𝜏 will be in a proper scale relative to |𝜓| and
automatically adjusted.

RSarsa.TD. Building on the PRS.Beta method above, we next
propose another method, called RSarsa.TD. The underlying
idea is that since SARSA performs well in a long-term run
(see [2] for theoretical discussion of SARSA’s optimality
and convergence properties), then after we speed up the
early learning process with rumination, we can just switch
back to SARSA. This approach is to utilize the fast learning
characteristic of full rumination in early periods and to
avoid its poor long-term performance. In addition, as a
computational cost of rumination is proportional to the size
of the ruminative action space |𝐴(𝑠)|, this also helps to reduce
the computational cost incurred by rumination. It is also
intuitively appealing in the sense that we do rumination only
when we need it.

The intuition to selectively do ruminationwas introduced
in [17] in an attempt to reduce the extra computational cost
from rumination.There, the probability to do ruminationwas
a function of the magnitude of the TD error:

𝑝 (rumination) = 1 − exp(−


2𝜓

𝑟 + 𝑄 (𝑠, 𝑎)



) . (7)

However, Katanyukul [17] investigated this selective rumi-
nation only with the policy-weighted method and called it
PRS.TD. Although PRS.TD was able to improve the compu-
tational cost of the rumination approach, the inventory man-
agement performance of PRS.TDwas reported to have mixed
results, implying that incorporation of selective rumination
may deteriorate performance of PRS.

This performance deterioration may be due to using
𝑝(rumination) with policy weighted correction. Both
schemes use |𝜓| to control their effect of rumination; there-
fore, they might have an effect equivalent to overcorrecting
the state-transition probability. Unlike PRS, RSarsa does
not correct the state-transition probability. Incorporating
selective rumination (7) will be the only scheme controlling
rumination with |𝜓|. Therefore, we expect that this approach
may allow the advantage of RSarsa’s fast learning, while
maintaining the long-term learning quality of SARSA.

5. Experiments and Results

Our study uses computer simulations to conduct numeri-
cal experiments on three inventory management problem
settings (P1, P2, and P3). All problems are periodic review
single-echelon with nonzero setup cost. P1 and P2 have one-
period lead time. P3 has two-period lead time. The same
Markov model is used to govern all problem environments,
but with different settings. For P1 and P2, the problem state
space is I × {0, I+}, for on-hand and in-transit inventories: 𝑥
and 𝑏(1), respectively. P3’s state space is I × {0, I+} × {0, I+}, for
𝑥 and in-transit inventories 𝑏(1) and 𝑏(2). The action space is
{0, I+}, for replenishment order 𝑎.

The state transition is specified by

𝑥
𝑡+1

= 𝑥
𝑡
+ 𝑏
(1)

𝑡
− 𝑑
𝑡
,

𝑏
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= 𝑏
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𝑡
, for 𝑖 = 1, . . . , 𝐿 − 1,

𝑏
(𝐿)

𝑡+1
= 𝑎
𝑡
,

(8)

where 𝐿 is a number of lead time periods.
The inventory period cost is calculated from the equation

𝑟
𝑡
= 𝐾 ⋅ 𝛿 (𝑎

𝑡
) + 𝐺 ⋅ 𝑎

𝑡
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(9)

where 𝐾, 𝐺, 𝐻, and 𝐵 are setup, unit, holding, and penalty
costs, respectively, and 𝛿(⋅) is a step function. Five RL agents
are studied: SARSA, RSarsa, PRS, RSarsa.TD, and PRS.Beta.

Each experiment is repeated 10 times. In each repeti-
tion, an agent is initialized with all zero Q-values. Then,
the experiment is run consecutively for 𝑁

𝐸
episodes. Each

episode starts with initial state and action as follows: for all
problems, 𝑏(1)

1
and 𝑎

1
are initialized with values randomly

drawn between 0 and 100. In P1, 𝑥
1
is initialized to 50; in

P2,𝑥
1
is initialized from randomly drawn values between−50

and 400; in P3, 𝑥
1
is initialized to 100 and randomly drawn

values of 𝑏(2) between 0 and 100. Each episode ends when
𝑁
𝑃
periods are reached or an agent has visited a termination
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Table 1: Experimental results.

Line Methods
SARSA RSarsa PRS RSarsa.TD PRS.Beta

Relative computation time/epoch
1 P1 1 30 26 5 30
2 P2 1 20 21 3 19
3 P3 1 31 29 6 31

Average cost of early periods
4 P1 8,421 7,619 (W) 8,379 (p0.43) 7,597 (W) 7,450 (W)
5 P2 4,935 4,606 (W) 4,792 (p0.06) 4,685 (W) 4,411 (W)
6 P3 10,502 8,694 (W) 9,958 (p0.20) 9,390 (p0.07) 8,472 (W)

Average cost of later periods
7 P1 7,214 7,355 (p0.68) 7,051 (W) 7,110 (p0.11) 7,010 (W)
8 P2 4,308 4,388 (p0.90) 4,248 (p0.14) 4,375 (p0.84) 4,194 (W)
9 P3 8,613 8,139 (p0.29) 8,312 (p0.37) 8,486 (p0.43) 7,664 (p0.18)

state, which is a state lying outside a valid range of Q-value
implementation. The maximum number of periods in each
episode,𝑁

𝑃
, defines the length of the problem horizon, while

the number of episodes 𝑁
𝐸
specifies a variety of problem

scenarios, that is, different initial states and actions.
Three problem settings are used in our experiments.

Problem 1 (P1) has 𝑁
𝐸
= 100, 𝑁

𝑃
= 60, 𝐾 = 200, 𝐺 = 100,

𝐵 = 200, and 𝐻 = 20. Demand 𝑑
𝑡
is normally distributed,

with mean 50 and standard deviation 10, denoted as 𝑑
𝑡
∼

N(50, 10
2
). The environment state [𝑥, 𝑏(1)] is set as the RL

agent state 𝑠 = [𝑥, 𝑏
(1)
]. Problem 2 (P2) has 𝑁

𝐸
= 500,

𝑁
𝑃
= 60, 𝐾 = 200, 𝐺 = 50, 𝐵 = 200, and 𝐻 = 20, with

demand 𝑑
𝑡
∼ N(50, 10

2
). The RL agent state is set as the

inventory level 𝑠 = 𝑥 + 𝑏
(1). Therefore, the RL agent state is

one-dimensional. Problem 3 (P3) has 𝑁
𝐸
= 500, 𝑁

𝑃
= 60,

𝐾 = 200, 𝐺 = 50, 𝐵 = 200, and 𝐻 = 20. The demand 𝑑
𝑡
is

AR1/GARCH(1,1): 𝑑
𝑡
= 𝑎
0
+ 𝑎
1
⋅ 𝑑
𝑡−1

+ 𝜖
𝑡
; 𝜖
𝑡
= 𝑒
𝑡
⋅ 𝜎
𝑡
and

𝜎
2

𝑡
= ]
0
+ ]
1
⋅ 𝜖
2

𝑡−1
+ ]
2
⋅ 𝜎
2

𝑡−1
, where 𝑎

0
and 𝑎
1
are AR1 model

parameters; ]
0
, ]
1
, and ]

2
are GARCH(1,1) parameters; and 𝑒

𝑡

is white noise distributed according toN(0, 1). The values of
AR1/GARCH(1,1) in our experiments are 𝑎

0
= 2, 𝑎

1
= 0.8,

]
0
= 100, ]

1
= 0.1, and ]

2
= 0.8, with initial values 𝑑

1
= 50,

𝜎
2

1
= 100, and 𝜖

1
= 2. The RL agent state in P3 is three-

dimensional 𝑠 = [𝑥, 𝑏
(1)
, 𝑏
(2)
]. In all three problem settings,

the RL agent period cost and action are the inventory period
cost and replenishment order, respectively. For RSarsa, PRS,
RSarsa.TD, and PRS.Beta, the extra information required by
rumination is the inventory demand variable 𝜉 = 𝑑

𝑡
.

The Q-value is implemented using grid tile coding [2]
without hashing. Tile coding is a function approximation
method based on a linear combination of weights of activated
features, called “tiles.” The approximation function with
argument z is given by

𝑓 (z) = 𝑤
1
𝜙
1
(z) + 𝑤

2
𝜙
2
(z) + ⋅ ⋅ ⋅ + 𝑤

𝑀
𝜙
𝑀
(z) , (10)

where 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑀
are tile weights and 𝜙

1
(z), 𝜙
2
(z), . . . ,

𝜙
𝑀
(z) are tile activation functions 𝜙

𝑖
(z) = 1 only when z lies

inside the hypercube of the 𝑖th tile.

The tile configuration, that is, 𝜙
1
(z), . . . , 𝜙

𝑀
(z), is prede-

fined. Each Q-value is stored using tile coding through the
weights. Given a value𝑄 to store at any entry of z, the weights
are updated according to

𝑤
𝑖
= 𝑤
(old)
𝑖

+

(𝑄 − 𝑄
(old)

)

𝑁
, (11)

where 𝑤(old)
𝑖

and 𝑄
(old) are the weight (of the 𝑖th tile) and

approximation before the new update. Variable 𝑁 is for a
number of tiling layers.

For P1, we use a tile codingwith 10 tiling layers. Each layer
has 8 × 3 × 4 three-dimensional tiles, covering multidimen-
sional state-action space of [−300, 500] × [0, 150] × [0, 150]

corresponding to 𝑠 = [𝑥, 𝑏
(1)
] and 𝑎. This means that this tile

coding allows only a state lying in [−300, 500]×[0, 150] and a
value of action between 0 and 150. The dimensions, along 𝑥,
𝑏
(1), and 𝑎, are partitioned into 8, 3, and 4 partitions, creating
96 three-dimensional hypercubes for each tiling layer. All
layers are overlapping to constitute an entire tile coding set.
Layer overlapping is arranged randomly. For P2, we use a
tile coding with 5 tiling layers. Each tiling has 11 × 5 two-
dimensional tiles, covering the space of [−300, 650]× [0, 150]
corresponding to 𝑠 = (𝑥 + 𝑏

(1)
) and 𝑎. For P3, we use a tile

coding with 10 tiling layers. Each tiling has 8 × 3 × 3 × 4

four-dimensional tiles, covering the space of [−400, 1200] ×
[0, 150]×[0, 150]×[0, 150] corresponding to 𝑠 = [𝑥, 𝑏(1), 𝑏(2)]
and 𝑎.

All RL agents use the 𝜖-greedy policy with 𝜖 = 0.2. The
learning update uses the learning rate 𝛼 = 0.7 and discount
factor 𝛾 = 0.8.

Figures 4, 5, and 6 showmoving averages (of degree 1000)
of period costs, in P1, P2, and P3, obtained with different
learning agents, as indicated in the legends (“R.TD” is short
for RSarsa.TD). Figures 7 and 8 show box plots of average
costs obtained with the different methods in early and later
periods, respectively.

The results are summarized in Table 1. The computation
costs of the methods are measured by relative average
computation time per epoch, shown in lines 1–3. Average
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Figure 4: Moving average of period costs, P1.
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Figure 5: Moving average of period costs, P2.

costs are used as the inventory management performance
and they are shown in lines 4–6 for early periods (periods
1–2000 in P1 and P2 and periods 1–4000 in P3) and lines 7–9
for later periods (periods after early periods). The numbers
in each entry indicate average costs obtained from the
correspondingmethods. Parentheses reveal results from one-
sideWilcoxon’s rank sum tests: “W” indicates that the average
cost is significantly lower than an average cost obtained
from SARSA (𝑃 < 0.05); otherwise, the 𝑃 value is shown
instead.

The computation costs of RSarsa, PRS, and PRS.Beta (full
rumination) are about 20–30 times of SARSA (RL without
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Figure 6: Moving average of period costs, P3.

rumination). RSarsa.TD (selective rumination) dramatically
reduces the computation cost of rumination at scales of 5–7
times. An evaluation of the effectiveness of each method
(compared to SARSA) shows that RSarsa and PRS.Beta
significantly outperform SARSA in early periods for all 3
problems. Average costs obtained from RSarsa.TD are lower
than ones from SARSA, but significance tests can confirm
only results in P1 and P2. It should be noted that PRS
results do not show significant improvement over SARSA.
This agrees with results in a previous study [17]. With respect
to performance in later periods, average costs of PRS and
PRS.Beta are lower than SARSA’s in all 3 problems. However,
significance tests can confirmonly few results (P1 for PRS and
P1 and P2 for PRS.Beta).

Table 2 shows a summary of results from significance tests
comparing the previous study’s RRL methods (RSarsa and
PRS) to our proposed methods (RSarsa.TD and PRS.Beta).
The entries with “W” indicate that our proposed method
on the corresponding column significantly outperforms a
previous method on the corresponding row (𝑃 < 0.05).
Otherwise, the 𝑃 value is indicated.

6. Conclusions and Discussion

Our results have shown that PRS.Beta achieves our goal,
which is to address the slow learning rate of PRS, as it sig-
nificantly outperforms PRS in early periods in all 3 problems,
and to address the long-term learning quality of RSarsa, as it
significantly outperforms RSarsa in later periods in P1 and P2
and its average cost is lower than RSarsa’s in P3. It should be
noted that although the performance of RSarsa.TD may not
seem impressive when compared to PRS.Beta’s, RSarsa.TD
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requires less computational cost. Therefore, as RSarsa.TD
shows some improvement over SARSA, this reveals that
selective rumination is still worth further study.

It should be noted that PRS.Beta employs TD error to
control its behavior (6). The notion to extend TD error to
determine learning factors is not limited only to rumination.
It may be beneficial to use the TD error signal to determine
other learning factors, such as the learning rate, for an
adaptive-learning-rate agent. A high TD error indicates that
the agent has a lot to learn, that what it has learned is wrong,
or that things are changing. For each of these cases, the goal
is to make the agent learn more quickly. So, a high TD error
should be a clue to increase the learning rate, increase the
degree of rumination, or increase the chance to do more
exploration.

To address issues inRLworth investigation,more efficient
Q-value representations should be among the priorities.
Regardless of the action policy, every RL policy relies on Q-
values to determine the action to take. Function approxima-
tions suitable to represent Q-values should facilitate efficient
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Table 2: Experimental results.

Line RSarsa.TD PRS.Beta
Early periods

1 P1 RSarsa 0.49 0.16
2 PRS W W
3 P2 RSarsa 0.95 W
4 PRS 0.10 W
5 P3 RSarsa 0.80 0.37
6 PRS 0.26 W

Later periods
7 P1 RSarsa W W
8 PRS 0.63 0.14
9 P2 RSarsa 0.46 W
10 PRS 0.97 0.12
11 P3 RSarsa 0.66 0.26
12 PRS 0.60 0.18

realization of an action policy. For example, 𝜖-greedy policy
has to search for an optimal action. AQ-value representation
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suitable for an 𝜖-greedy policy should allow efficient search
for an optimal action given a state. Another general RL action
policy is the softmax policy [2]. Given a state, the softmax
policy has to evaluate the probabilities of candidate actions
based on their associated Q-values. A representation that
facilitates efficientmapping fromQ-values to the probabilities
would have great practical importance in this case. Due to
the interaction between the Q-value representation and the
action policy, there are considerable efforts to combine these
two concepts. This is an active research direction under the
rubric of policy gradient RL [18].

There are many issues in RL needed to be explored, the-
oretically and for application. Our findings reported in this
paper provide another step in understanding and applying RL
to practical inventory management problems. Even though
we only investigated inventory management problems here,
ourmethods can be applied beyond this specific domain.This
early step in the study of using TD error to control learning
factors, along with investigation of other issues in RL, would
yield a more robust learning agent that is useful in a wide
range of practical applications.
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