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The class A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍) and generalized 𝐾𝐾𝑀 mapping are introduced, and some generalized 𝐾𝐾𝑀 theorems are proved.
As applications, Ky Fan’s matching theorem and Fan-Browder fixed-point theorem are extended, and some existence theorems of
solutions for the generalized vector equilibrium problems are established under noncompact setting, which improve and generalize
some known results.

1. Introduction and Preliminaries

In 1929, Knaster, Kurnatoaski, and Mazurkiewicz proved the
well-known 𝐾𝐾𝑀 theorem on 𝑛-simplex. In 1961, Fan [1]
generalized the 𝐾𝐾𝑀 theorem from Euclid space to infinite
dimensional topological vector spaces by introducing 𝐾𝐾𝑀

mapping. In 1989, Park [2] introduced 𝑠-𝐾𝐾𝑀 mapping
which is a generalized form of the 𝐾𝐾𝑀 mapping and
obtained some new 𝐾𝐾𝑀 theorems. In 1991, Chang and
Zhang [3] improved fundamentally Ky Fan’s 𝐾𝐾𝑀 mapping
that makes𝐾𝐾𝑀 theory have great development. Since then,
many results related to 𝐾𝐾𝑀 principle were obtained and
applied universally in the fields of nonlinear analysis (see [4–
17]).

Let𝑋 and 𝑍 be topological spaces, let ⟨𝑋⟩ and 2
𝑋 denote

the nonempty finite subset of 𝑋 and the set of the nonempty
subsets of 𝑋, respectively, let 𝐴 ⊂ 𝐵 ⊂ 𝑋, int

𝐵
𝐴 denote

the interior of 𝐴 in 𝐵, and let cl
𝐵
𝐴 be the closure of 𝐴 in

𝐵 (when 𝐵 = 𝑋, int
𝐵
𝐴 = int𝐴, and cl

𝐵
𝐴 = cl𝐴). 𝐴 is

said to be compactly closed (resp., compactly open) in 𝑋 if,
for every nonempty compact subset 𝐾 of 𝑋, 𝐴 ∩ 𝐾 is closed
(resp., open) in𝐾.The compact closure of𝐴 and the compact
interior of 𝐴 (see [10]) are defined, respectively, by

ccl𝐴
= ⋂{𝐵 ⊂ 𝑋 : 𝐴 ⊂ 𝐵 and 𝐵 is compactly closed in 𝑋} ,

cint𝐴

= ⋃{𝐵 ⊂ 𝑋 : 𝐵 ⊂ 𝐴 and 𝐵 is compactly open in 𝑋} .

(1)

It is easy to see that ccl(𝑋 \ 𝐴) = 𝑋 \ cint𝐴, int𝐴 ⊂

cint𝐴 ⊂ 𝐴, 𝐴 ⊂ ccl𝐴 ⊂ cl𝐴. For every nonempty subset
𝐾 of 𝑋, the subset ccl𝐴 ∩ 𝐾 is closed in 𝐾 and cint𝐴 ∩ 𝐾

is open in 𝐾. The multivalued mapping 𝐹 : 𝑋 → 2
𝑍 is

said to be transfer compactly open valued (resp., transfer
compactly closed valued) on 𝑋, if, for every 𝑥 ∈ 𝑋 and for
each nonempty compact subset 𝐾 of 𝑍, 𝑧 ∈ 𝐹(𝑥) ∩ 𝐾 (resp.,
𝑧 ∉ 𝐹(𝑥) ∩ 𝐾) implies that there exists 𝑥 ∈ 𝑋 such that
𝑧 ∈ int

𝐾
(𝑇(𝑥) ∩ 𝐾) (resp., 𝑧 ∉ cl

𝐾
(𝑇(𝑥) ∩ 𝐾)) (see [10]).

The mappings 𝐹
𝑐

: 𝑋 → 2
𝑍 and 𝐹

−1
: 𝑍 → 2

𝑋 are
defined as 𝐹

𝑐
(𝑥) = 𝑍 \ 𝐹(𝑥) = {𝑧 ∈ 𝑍 : 𝑧 ∉ 𝐹(𝑥)} and

𝐹
−1
(𝑧) = {𝑥 ∈ 𝑋 : 𝑧 ∈ 𝐹(𝑥)}, respectively.
Recently, many scholars (see [18–21]) not only studied

further the𝐾𝐾𝑀 theorem involving𝐾𝐾𝑀mapping, but also
established some new 𝐾𝐾𝑀 theorem, fixed-point theorems,
and coincidence theorems and utilized them to research the
existence of solution to generalized vector equilibria, which
makes the𝐾𝐾𝑀 theory more perfect and rich.

In this paper, we first introduce the new generalized class
𝐾𝐾𝑀(𝑋, 𝑌, 𝑍) consisting of all multifunctions 𝑇 : 𝑌 → 2

𝑍
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that have the generalized 𝐾𝐾𝑀 property and prove some
𝐾𝐾𝑀 theorems forA-𝐾𝐾𝑀mapping. Applying these𝐾𝐾𝑀

theorems, the Ky Fan matching theorems and the Fan-
Browder fixed-point theorems are generalized. Finally, we
establish some new existence theorems of solutions for
generalized vector equilibrium problems under noncompact
setting.These theorems improve and generalize many known
results in the literature.

Definition 1. Let𝑋 be a nonempty set, 𝑌 a nonempty convex
subset of a linear space, and 𝑍 a topological space, and let
𝑆 : 𝑋 → 2

𝑌, 𝑇 : 𝑌 → 2
𝑍, and 𝐹 : 𝑋 → 2

𝑍 be three
multivalued mappings. 𝐹 is said to be a A-𝐾𝐾𝑀 mapping
with respect to 𝑇 if, for any {𝑥

0
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, there exists

𝑦
𝑖
∈ 𝑆(𝑥

𝑖
) (𝑖 = 0, 1, . . . , 𝑛), such that, for any {𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂

{𝑦
0
, . . . , 𝑦

𝑛
}, one has

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) . (2)

The multivalued mapping 𝑇 : 𝑌 → 2
𝑍 is said to have the

A-𝐾𝐾𝑀property, if, for anyA-KKMmapping𝐹with respect
to 𝑇, the family {𝐹(𝑥) : 𝑥 ∈ 𝑋} has the finite intersection
property. Let the set {𝑇 : 𝑇 has the A-𝐾𝐾𝑀 property} be
denoted byA-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍).

Remark 2. A-𝐾𝐾𝑀 mapping with respect to 𝑇 is strictly
weaker than the generalized 𝑆-𝐾𝐾𝑀mappingwith respect to
𝑇 in [5]. It is easy to see that Definition 1 is not the degenerate
form of Definition 1 in [11] and Definition 3 in [6] and not a
special case of Definition 1 in [6] and Definition 2 in [7].

Example 3. Let 𝑋 = 𝑌 = 𝑍 = 𝑅, 𝑇, 𝑆, 𝐹 : 𝑅 → 2
𝑅 be three

mappings defined as follows:

𝑇 (𝑥) = [𝑥, +∞) , 𝐹 (𝑥) = [𝑥 − 1, +∞) ,

𝑆 (𝑥) = [𝑥 − 2, 𝑥 + 2] .

(3)

Then 𝐹 is A-𝐾𝐾𝑀 mapping with respect to 𝑇. In fact,
for any {𝑥

0
, . . . , 𝑥

𝑛
} ∈ ⟨𝑅⟩, take 𝑦

𝑖
= 𝑥
𝑖
∈ 𝑆(𝑥

𝑖
). For any

{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂ {𝑦

0
, . . . , 𝑦

𝑛
}, it is easy to know that

co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} = [min {𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
} ,max {𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
}] .

(4)

Therefore, by the definition of 𝑇 and 𝐹, we have

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) = [min {𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
} , +∞)

= [min {𝑥
𝑖0
, . . . , 𝑥

𝑖𝑘
} , +∞) ,

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) = [min {𝑥

𝑖0
, . . . , 𝑥

𝑖𝑘
} − 1, +∞) .

(5)

It follows that

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) =

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) . (6)

However, for {𝑥
0
, . . . , 𝑥

𝑛
} ∈ ⟨𝑅⟩, 𝑆({𝑥

0
, . . . , 𝑥

𝑛
}) = ⋃

𝑛

𝑖=0
[𝑥
𝑖
−

2, 𝑥
𝑖
+ 2], 𝑇(co(𝑆(𝑥

0
, . . . , 𝑥

𝑛
)) = [min{𝑥

𝑖
− 2}, +∞). Hence

𝑇 (co (𝑆 ({𝑥
0
, . . . , 𝑥

𝑛
}))) ̸⊆

𝑛

⋃

𝑖=0

𝐹 (𝑥
𝑖
) . (7)

Hence, 𝐹 is not a generalized 𝑆-𝐾𝐾𝑀 mapping with respect
to 𝑇.

Lemma 4 (see [12]). Let 𝑋 and 𝑍 be topological spaces and
𝐹 : 𝑋 → 2

𝑍 a set-valued mapping with 𝐹(𝑋) = 𝑍. Then the
following conditions are equivalent:

(i) 𝐹 is transfer compactly open valued,
(ii) for each compact subset 𝐾 of 𝑍 and for each 𝑧 ∈ 𝐾,

there exists 𝑥 ∈ 𝑋 such that 𝑧 ∈ cint𝐹(𝑥)⋂𝐾 and
⋃
𝑥∈𝑋

(𝐹(𝑥) ∩ 𝐾) = ⋃
𝑥∈𝑋

(cint𝐹(𝑥) ∩ 𝐾).

Lemma 5 (see [13]). Let 𝑋 and 𝑍 be topological spaces and
𝐹 : 𝑋 → 2

𝑍 a set-valued mapping with 𝑋 ̸= 𝐹
−1
(𝑧) for each

𝑧 ∈ 𝑍. Then the following conditions are equivalent:

(i) 𝐹 is transfer compactly closed valued,
(ii) the mapping 𝐹𝑐 : 𝑋 → 2

𝑌 defined by 𝐹𝑐(𝑥) = 𝑌\𝐹(𝑥)

for each 𝑥 ∈ 𝑋 is transfer compactly open valued,
(iii) for each compact subset 𝐾 of 𝑍, ⋃

𝑥∈𝑋
(𝐹
𝑐
(𝑥) ∩ 𝐾) =

⋃
𝑥∈𝑋

(cint𝐹𝑐(𝑥) ∩ 𝐾),
(iv) for each compact subset 𝐾 of 𝑍, ⋂

𝑥∈𝑋
(𝐹(𝑥) ∩ 𝐾) =

⋂
𝑥∈𝑋

(ccl𝐹(𝑥) ∩ 𝐾).

Lemma 6. Let 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), and let 𝑋
1
be a

nonempty subset of 𝑋 and 𝑌
1
a nonempty convex subset of

𝑌, 𝑆
1
= 𝑆|
𝑋1
; then 𝑇|

𝑌1
∈ A
1
-𝐾𝐾𝑀(𝑋

1
, 𝑌
1
, 𝑍).

Proof. Suppose that 𝐹
1
: 𝑋
1

→ 2
𝑍 is a A

1
-𝐾𝐾𝑀 mapping

with respect to 𝑇|
𝑌1
. Then, for each {𝑥

0
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋

1
⟩,

there exists 𝑦
𝑖
∈ 𝑆
1
(𝑥
𝑖
) (𝑖 = 0, 1, . . . , 𝑛), such that, for any

{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂ {𝑦

0
, . . . , 𝑦

𝑛
}, we have 𝑇|

𝑌1
(co{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂

⋃
𝑘

𝑗=0
𝐹
1
(𝑥
𝑖𝑗
). We define a set-valuedmapping 𝐹 : 𝑋 → 2

𝑍 by

𝐹 (𝑥) = {
𝐹
1 (𝑥) , if 𝑥 ∈ 𝑋

1
;

𝑍, if 𝑥 ∈ 𝑋 \ 𝑋
1
.

(8)

Obviously, 𝐹 is also a A-𝐾𝐾𝑀 mapping with respect to 𝑇.
Since 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), the family {𝐹(𝑥) : 𝑥 ∈ 𝑋} has
the finite intersection property which implies that the family
{𝐹
1
(𝑥) : 𝑥 ∈ 𝑋

1
} has the finite intersection property.

2. General 𝐾𝐾𝑀 Theorems

Theorem 7. Let 𝑋 be a topological space, 𝑌 a convex space,
and 𝑍 a Hausdorff space. Suppose that : 𝑋 → 2

𝑌
, 𝑇 : 𝑌 →

2
𝑍, and 𝐹 : 𝑋 → 2

𝑍 are three multifunctions satisfying the
following:

(1) 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍) such that𝑇(co 𝑆(𝑋)) is compact
in 𝑍,
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(2) 𝐹 is transfer compactly closed values,
(3) 𝐹 is aA-𝐾𝐾𝑀mapping with respect to 𝑇.

Then 𝑇(co 𝑆(𝑋)) ∩ (⋂
𝑥∈𝑋

𝐹(𝑥)) ̸= 0.

Proof. Define 𝐹∗ : 𝑋 → 2
𝑍 by

𝐹
∗
(𝑥) = 𝑇 (co 𝑆 (𝑋))⋂ ccl𝐹 (𝑥) ∀𝑥 ∈ 𝑋. (9)

By (3), for any {𝑥
0
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, there exists 𝑦

𝑖
∈ 𝑆(𝑥
𝑖
) (𝑖 =

0, 1, . . . , 𝑛), such that, for any {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂ {𝑦

0
, . . . , 𝑦

𝑛
},

we have 𝑇(co{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂ ⋃

𝑘

𝑗=0
ccl𝐹(𝑥

𝑖𝑗
). It follows from

𝑇(co{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂ 𝑇(co 𝑆(𝑋)) that we have

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂

𝑘

⋃

𝑗=0

(𝑇 (co 𝑆 (𝑋)) ∩ ccl𝐹(𝑥
𝑖𝑗
))

=

𝑘

⋃

𝑗=0

𝐹
∗
(𝑥
𝑖𝑗
) ⊂

𝑘

⋃

𝑗=0

ccl𝐹∗ (𝑥
𝑖𝑗
) .

(10)

This shows that 𝐹∗ is a A-𝐾𝐾𝑀 mapping with respect to
𝑇, and so {𝐹

∗
(𝑥) : 𝑥 ∈ 𝑋} has finite intersection property.

Since 𝐹(𝑥) is transfer compactly closed by (1) and so ccl𝐹(𝑥)
is compactly closed and 𝑇(co 𝑆(𝑋)) is compact in 𝑍 by (1),
consequently 𝐹

∗
(𝑥) is closed in compact subset 𝑇(co 𝑆(𝑋))

of Hausdorff space 𝑍. Therefore,

𝑇 (co 𝑆 (𝑋)) ∩ (⋂ {ccl𝐹 (𝑥) : 𝑥 ∈ 𝑋}) = ⋂

𝑥∈𝑋

𝐹
∗
(𝑥) ̸= 0.

(11)

By Lemma 5, we have that 𝑇(co 𝑆(𝑥) ∩ (⋂
𝑥∈𝑋

𝐹(𝑥)) =

𝑇(co 𝑆(𝑥) ∩ (⋂
𝑥∈𝑋

ccl𝐹(𝑥)) ̸= 0 holds.

Remark 8. Theorem 7 improves Theorem 4.3 of Chang et al.
[5] in the following two aspects: (1) the generalized 𝑆-𝐾𝑀𝑀

mapping is generalized to A-𝐾𝐾𝑀 mapping with respect to
𝑇; (2) the compactly closed values property is replaced by the
transfer compactly closed values property.

Theorem9. Let𝑋 be a topological space,𝑌 a topological vector
space, and𝑍 aHausdorff space. Suppose that 𝑆 : 𝑋 → 2

𝑌
, 𝑇 :

𝑌 → 2
𝑍, and 𝐹 : 𝑋 → 2

𝑍 are three multivalued mappings
satisfying the following:

(1) 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍),
(2) 𝐹 is transfer compactly closed values,
(3) 𝐹 is aA-𝐾𝐾𝑀mapping with respect to 𝑇,

(4) for each compact subset𝑀
1
of𝑋, 𝑇(𝑆(𝑀

1
)) is compact

in 𝑍, and for each convex subset 𝑀
2
of 𝑋, 𝑆(𝑀

2
) is

convex,
(5) there exists a nonempty compact subset 𝐾 of 𝑍 such

that, for each 𝑁 ∈ ⟨𝑋⟩, there exists compact convex
subset 𝐿

𝑋

𝑁
of 𝑋 including 𝑁 such that 𝑇(𝑆(𝐿

𝑋

𝑁
) ∩

(⋂
𝑥∈𝐿
𝑋

𝑁

ccl𝐹(𝑥) ⊂ 𝐾. Then⋂
𝑥∈𝑋

𝐹(𝑥) ̸= 0.

Proof. Suppose that the conclusion is not true; then
∩
𝑥∈𝑋

𝐹(𝑥) = 0. Define 𝐺 : 𝑋 → 2
𝑍 by 𝐺(𝑥) = 𝑍 \ 𝐹(𝑥)

for each 𝑥 ∈ 𝑋; then 𝐺(𝑥) is nonempty for all 𝑥 ∈ 𝑋.
From (2) and Lemma 5, it follows that 𝐺 is transfer
compactly open mapping on 𝑋. Since 𝐾 is compact
in 𝑍, by Lemma 4, we have 𝐾 = ∪

𝑥∈𝑋
cint𝐺(𝑥) ∩ 𝐾.

Hence there exists 𝑁 = {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} such that

𝐾 ⊂ ∪
𝑛

𝑖=0
cint𝐺(𝑥

𝑖
) ∩ 𝐾 = ∪

𝑛

𝑖=0
cint𝐺(𝑥

𝑖
). By (5), there

exists compact convex subset 𝐿𝑋
𝑁
of𝑋 including𝑁 such that

𝑇 (𝑆 (𝐿
𝑋

𝑁
)) ∩ ( ⋂

𝑥∈𝐿
𝑋

𝑁

ccl𝐹 (𝑥))𝐾 (12)

and 𝑇(𝑆(𝐿
𝑋

𝑁
)) \ 𝐾 ⊂ ⋃

𝑥∈𝐿
𝑋

𝑁

cint𝐺(𝑥). Since {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} ⊂

𝐿
𝑋

𝑁
, we have 𝐾 ⊂ ⋃

𝑛

𝑖=0
cint𝐺(𝑥

𝑖
) ⊂ ⋃

𝑥∈𝐿
𝑋

𝑁

cint𝐺(𝑥), so
𝑇(𝑆(𝐿

𝑋

𝑁
)) ⊂ ⋃

𝑥∈𝐿
𝑋

𝑁

cint𝐺(𝑥). Therefore,

𝑇 (𝑆 (𝐿
𝑋

𝑁
)) ∩ ( ⋂

𝑥∈𝐿
𝑋

𝑁

ccl𝐹 (𝑥))

= 𝑇 (𝑆 (𝐿
𝑋

𝑁
)) ∩ ( ⋂

𝑥∈𝐿
𝑋

𝑁

ccl (𝑍 \ 𝐺 (𝑥)))

= 𝑇 (𝑆 (𝐿
𝑋

𝑁
)) ∩ ( ⋂

𝑥∈𝐿
𝑋

𝑁

(𝑍 \ cint𝐺 (𝑥))) = 0.

(13)

Since 𝑆(𝐿𝑋
𝑁
) is a convex subset of𝑌, by Lemma 6,𝑇|

𝑆(𝐿
𝑋

𝑁
)
∈ A-

𝐾𝐾𝑀(𝐿
𝑋

𝑁
, 𝑆(𝐿
𝑋

𝑁
), 𝑍). Define set-valued mapping 𝐹

∗
, 𝐺
∗

:

𝐿
𝑋

𝑁
→ 2
𝑇(𝑆(𝐿

𝑋

𝑁
)) by 𝐹

∗
(𝑥) = 𝐹(𝑥) ∩ 𝑇(𝑆(𝐿

𝑋

𝑁
)) and 𝐺

∗
(𝑥) =

𝑇(𝑆(𝐿
𝑋

𝑁
)) \ 𝐹

∗
(𝑥) for each 𝑥 ∈ 𝐿

𝑋

𝑁
. Then we have 𝐺

∗
(𝑥) =

𝑇(𝑆(𝐿
𝑋

𝑁
)) \ (𝐹(𝑥) ∩ 𝑇(𝑆(𝐿

𝑋

𝑁
))) = 𝑇(𝑆(𝐿

𝑋

𝑁
)) ∩ (𝑍 \ 𝐹(𝑥)) =

𝑇(𝑆(𝐿
𝑋

𝑁
)) ∩ 𝐺(𝑥), and

𝑇 (𝑆 (𝐿
𝑋

𝑁
)) = ⋃

𝑥∈𝐿
𝑋

𝑁

(cint𝐺 (𝑥) ∩ 𝑇 (𝑆 (𝐿
𝑋

𝑁
))) = ⋃

𝑥∈𝐿
𝑋

𝑁

𝐺
∗
(𝑥) .

(14)

By Lemma 4, we have that 𝐺
∗ is transfer compactly open

valued on 𝐿
𝑥

𝑁
. Hence it follows from Lemma 5 that 𝐹

∗ is
transfer compactly closed valued on 𝐿

𝑋

𝑁
.

We claim that 𝐹∗ is a A|
𝐿
𝑋

𝑁

-𝐾𝐾𝑀 mapping with respect
to 𝑇|
𝑆(𝐿
𝑋

𝑁
)
. Since 𝐹 is a A-𝐾𝐾𝑀 mapping with respect to 𝑇,

for any {𝑥
0
, . . . , 𝑥

𝑛
} ∈ ⟨𝐿

𝑋

𝑁
⟩ ⊂ ⟨𝑋⟩, there exists 𝑦

𝑖
∈ 𝑆(𝑥

𝑖
) =

𝑆(𝑥
𝑖
) ∩ 𝑆(𝐿

𝑋

𝑁
) = 𝑆|

𝐿
𝑋

𝑁

(𝑥
𝑖
) (𝑖 ∈ {0, 1, . . . , 𝑛}) such that, for any

{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂ {𝑦

0
, . . . , 𝑦

𝑛
} ∈ ⟨𝑌⟩,

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) . (15)

Since 𝑆(𝐿
𝑋

𝑁
) is convex in 𝑌 and 𝑦

𝑖𝑗
∈ 𝑆(𝐿

𝑋

𝑁
) for each 𝑗 =

0, 1, . . . , 𝑘, we have
𝑇|𝑆(𝐿𝑋

𝑁
)
(co {𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
})

= 𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) .

(16)
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Hence 𝑇|
𝐿
𝑋

𝑁

(co{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ⊂ ⋃

𝑘

𝑗=0
(𝐹(𝑥
𝑖𝑗
) ∩ 𝑇(𝑆(𝐿

𝑋

𝑁
))) =

∪
𝑘

𝑗=0
𝐹
∗
(𝑥
𝑖𝑗
). Therefore, 𝐹∗ is a A|

𝐿
𝑋

𝑁

-𝐾𝐾𝑀 mapping with
respect to 𝑇|

𝑆(𝐿
𝑋

𝑁
)
. By Theorem 7, we have 𝑇(𝑆(𝐿

𝑋

𝑁
)) ∩

(⋂
𝑥∈𝐿
𝑋

𝑁

ccl𝐹(𝑥)) = 𝑇(𝑆(𝐿
𝑋

𝑁
)) ∩ (⋂

𝑥∈𝐿
𝑋

𝑁

𝐹(𝑥)) = 𝑇(𝑆(𝐿
𝑋

𝑁
)) ∩

(⋂
𝑥∈𝐿
𝑋

𝑁

𝐹
∗
(𝑥)) ̸= 0, which is a contradiction. Therefore,

⋂
𝑥∈𝑋

𝐹(𝑥) ̸= 0.

Remark 10. Theorem 9 generalizes Theorem 3.3 of Lin and
Wan [14] in the following two aspects: (1) from transfer closed
values to transfer compactly closed values; (2) from general-
ized𝐾𝐾𝑀mapping toA-𝐾𝐾𝑀mapping with respect to 𝑇.

Theorem 11. Let𝑋,𝑌 be two convex spaces and𝑍 a Hausdorff
space. Suppose that 𝑆 : 𝑋 → 2

𝑌
, 𝑇 : 𝑌 → 2

𝑍, and 𝐹 : 𝑋 →

2
𝑍 are three multivalued mappings and 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍)

satisfying the following:
(1) 𝑆(𝐶) is a compact convex subset of 𝑌 if 𝐶 is a compact

convex subset of𝑋,
(2) for any compact subset 𝑄 of 𝑌, 𝑇(𝑄) is compact in 𝑍,
(3) 𝐹 is a A-𝐾𝐾𝑀 mapping with respect to 𝑇 such that 𝐹

is transfer compactly closed,
(4) there exist a nonempty compact convex subset 𝐿 of 𝑋

and a compact subset 𝐾 of 𝑍 such that

⋂

𝑥∈𝐿

ccl𝐹 (𝑥) ⊆ 𝐾. (17)

Then 𝑇(co 𝑆(𝑋)) ∩ (⋂{𝐹(𝑥) : 𝑥 ∈ 𝑋}) ̸= 0.

Proof. Assume that 𝑇(co 𝑆(𝑥)) ∩ (⋂{𝐹(𝑥) : 𝑥 ∈ 𝑋}) = 0;
then we have 𝑍 = 𝑇(co 𝑆(𝑋))

𝑐

∪ (⋃{𝐹
𝑐
(𝑥) : 𝑥 ∈ 𝑋}), and

𝐾 ⊂ 𝑇(co 𝑆(𝑋))
𝑐

∪ (⋃{𝐹
𝑐
(𝑥) ∩ 𝐾 : 𝑥 ∈ 𝑋}). It follows from

Lemma 5 that

⋃{𝐹
𝑐
(𝑥) ∩ 𝐾 : 𝑥 ∈ 𝑋} = ∪ {cint𝐹𝑐 (𝑥) ∩ 𝐾 : 𝑥 ∈ 𝑋} . (18)

Since 𝐹
𝑐 is transfer compactly open (by condition (3)), 𝐾 ⊂

𝑇(co 𝑆(𝑋))
𝑐

∪ (⋃{cint𝐹𝑐(𝑥) ∩ 𝐾 : 𝑥 ∈ 𝑋}) = (𝑇(co 𝑆(𝑋))
𝑐

∩

𝐾) ∪ (⋃{cint𝐹𝑐(𝑥) ∩ 𝐾 : 𝑥 ∈ 𝑋}), where cint𝐹𝑐(𝑥) ∩ 𝐾 is
open in 𝐾 for each 𝑥 ∈ 𝑋 and (𝑇(co 𝑆(𝑋))

𝑐

∩ 𝐾) is open in
𝐾.Therefore, there exists a finite subset {𝑥

0
, . . . , 𝑥

𝑛
} of𝑋 such

that

𝐾 ⊆ (𝑇 (co 𝑆 (𝑋))
𝑐

∩ 𝐾) ∪ (

𝑛

⋃

𝑖=0

cint𝐹𝑐 (𝑥
𝑖
) ∩ 𝐾)

⊆ 𝑇 (co 𝑆 (𝑋))
𝑐

∪ (

𝑛

⋃

𝑖=0

cint𝐹𝑐 (𝑥
𝑖
)) .

(19)

By (4), we have

𝐾
𝑐
⊆ ⋃

𝑥∈𝐿

cint𝐹𝑐 (𝑥) . (20)

Let 𝑀 = co(𝐿 ∪ {𝑥
0
, . . . , 𝑥

𝑛
}); then 𝑀 is a compact convex

subset of𝑋 such that

𝑍 = 𝑇 (co 𝑆 (𝑥))
𝑐

∪ ( ⋃

𝑥∈𝑀

cint𝐹𝑐 (𝑥)) ; (21)

that is,

𝑇 (co 𝑆 (𝑥)) ∩ ( ⋂

𝑥∈𝑀

ccl𝐹 (𝑥)) = 0. (∗)

Define 𝐹∗ : 𝑀 → 2
𝑍 by

𝐹
∗
(𝑥) = 𝑇 (𝑆 (𝑀)) ∩ ccl𝐹 (𝑥) . (22)

Since 𝐹 is a A-𝐾𝐾𝑀 mapping with respect to 𝑇, for any
{𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} ∈ 𝑀, there exists 𝑦

𝑖
∈ 𝑆(𝑥
𝑖
) such that, for any

{𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊂ {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
}, 𝑇(co{𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊆

∪
𝑘

𝑗=0
𝐹(𝑥
𝑗
). It follows that

𝑇 (co {𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
}) ⊆ 𝑇 (𝑆 (𝑀))⋂

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑗
)

⊂ 𝑇 (𝑆 (𝑀))⋂

𝑘

⋃

𝑗=0

ccl𝐹 (𝑥
𝑗
)

⊂

𝑘

⋃

𝑗=0

𝐹
∗
(𝑥
𝑖𝑗
) ,

(23)

which shows that 𝐹∗ is a A-𝐾𝐾𝑀 mapping with respect to
𝑇 for the triple (𝑀, 𝑌, 𝑍). Since 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), it
follows easily that 𝑇 ∈ A-𝐾𝐾𝑀(𝑀,𝑌, 𝑍). Moreover, since
𝑆(𝑀) is compact convex, we have co 𝑆(𝑀) ⊆ 𝑆(𝑀), and
𝑇(co 𝑆(𝑀)) ⊆ 𝑇(𝑆(𝑀)). Conditions (1) and (2) imply that
𝑇(𝑆(𝑀)) is compact in 𝑍. Then the compactness of 𝑇(𝑆(𝑀))

implies that𝑇(𝑆(𝑀)) is compact in𝑍. ApplyingTheorem 7 to
𝑆, 𝑇, and 𝐹

∗, we obtain that

𝑇 (co 𝑆 (𝑀)) ∩ (⋂{𝐹
∗
(𝑥) : 𝑥 ∈ 𝑀}) ̸= 0,

𝑇 (co 𝑆 (𝑋)) ∩ (⋂ {ccl𝐹 (𝑥) : 𝑥 ∈ 𝑀}) ̸= 0,

(24)

which contradicts (∗). This completes the proof.

Remark 12. Theorem 11 improvesTheorem 5.1 of Chang et al.
[5] in the following two aspects: (1) the generalized 𝑆-𝐾𝑀𝑀

mapping is generalized to A-𝐾𝐾𝑀 mapping with respect to
𝑇; (2) the compactly closed values property is replaced by the
transfer compactly closed values property.

3. Matching Theorems and
Fixed-Point Theorems

In order to apply the above theorem to show the fixed-point
theorems, we first establish the following generalization of the
Ky Fan’s matching theorem.

Theorem 13. Let 𝑋 be a nonempty set, 𝑌 a convex space, and
𝑍 a Hausdorff space. Suppose that 𝑆 : 𝑋 → 2

𝑌, 𝑇 : 𝑌 → 2
𝑍,

and 𝐹 : 𝑋 → 2
𝑍 are three multivalued mappings satisfying

the following:

(1) 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍) such that𝑇(co 𝑆(𝑋)) is compact
in 𝑍,
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(2) 𝐹 is transfer compactly open in 𝑍,
(3) 𝑇(co 𝑆(𝑋)) ⊆ 𝐹(𝑋).

Then there exists {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩ such that

𝑇 (co 𝑆 (𝑋)) ∩ (

𝑛

⋂

𝑖=0

𝐹 (𝑥
𝑖
)) ̸= 0. (25)

Proof. Assume that, for any {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} ∈

⟨𝑋⟩, 𝑇(co 𝑆(𝑋)) ∩ (⋂
𝑛

𝑖=0
𝐹(𝑥
𝑖
)) = 0. Then 𝑇(co 𝑆(𝑋)) ⊆

∪
𝑛

𝑖=0
𝐹
𝑐
(𝑥
𝑖
) for any {𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩. Noting that 𝐹𝑐 is

transfer compactly closed, we have that the conditions of
Theorem 7 are satisfied for the mappings 𝑆, 𝑇, and 𝐹

𝑐. Thus

𝑇 (co 𝑆 (𝑋)) ∩ (⋂{𝐹
𝑐
(𝑥) : 𝑥 ∈ 𝑋}) ̸= 0, (26)

which implies that 𝑇(co 𝑆(𝑋)) ̸⊆ 𝐹(𝑋); this contradicts with
(3). So there exists a nonempty finite subset 𝑀 ⊂ ⟨𝑋⟩ such
that 𝑇(co 𝑆(𝑋)) ∩ {𝐹(𝑥) : 𝑥 ∈ 𝑀} ̸= 0.

Remark 14. Theorem 13 implies that Theorem 7 holds and if
not then 𝑇(co 𝑆(𝑋)) ⊆ ∪

𝑥∈𝑋
𝐹
𝑐
(𝑥) = 𝐺(𝑋), where 𝐺 : 𝑋 →

2
𝑍 is defined by 𝐺(𝑥) = 𝐹

𝑐
(𝑥). Theorem 13 shows that there

exists𝑀 ∈ 𝑋 such that

𝑇 (co 𝑆 (𝑀)) ∩ (⋂{𝐺 (𝑥) : 𝑥 ∈ 𝑀}) ̸= 0, (27)

which implies that 𝑇(co 𝑆(𝑀) ̸⊆ 𝐹(𝑀), contradicting the fact
that 𝐹 is aA-𝐾𝐾𝑀mapping with respect to 𝑇.

Theorem 15. Let𝑋 be a nonempty subset of a compact convex
space 𝑌 and 𝑍 a Hausdorff space. Suppose that 𝐴 : 𝑋 → 2

𝑍

satisfies the following:

(1) 𝐴 is transfer compactly open in 𝑍,
(2) 𝐴(𝑋) = 𝑍.

Then for any𝑓 ∈ C(𝑌, 𝑍) there exist a finite subset {𝑥
0
, . . . , 𝑥

𝑛
}

of𝑋 and an 𝑥 ∈ co{𝑥
0
, . . . , 𝑥

𝑛
} such that 𝑓(𝑥) ∈ ∩

𝑛

𝑖=0
𝐴𝑥
𝑖
.

Proof. Let 𝑆 : 𝑋 → 2
𝑌be defined by 𝑆(𝑥) = {𝑥} for 𝑥 ∈ 𝑋.

Then 𝑓 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍). Since 𝑓(co(𝑆(𝑋)) ⊆ 𝑓(𝑌) and
𝑓(𝑌) is compact, 𝑓(co(𝑆(𝑋)) is compact in 𝑍. Furthermore,
by (2) we have that

𝑓(co (𝑆 (𝑋)) ⊆ 𝑓 (𝑌) ⊆ 𝐴 (𝑋) . (28)

So all of the conditions of Theorem 13 are satisfied for the
mappings 𝑆, 𝑓, and 𝐴. Thus, there exists a finite subset
{𝑥
0
, . . . , 𝑥

𝑛
} of𝑋 such that

𝑓 (co {𝑥
0
, . . . , 𝑥

𝑛
}) ∩ (

𝑛

⋂

𝑖=1

𝐴 (𝑥
𝑖
)) ̸= 0. (29)

Remark 16. If𝐴(𝑥) is compactly open in𝑍 for each 𝑥 ∈ 𝑋, 𝑋
is a subset of a convex subset𝑌 of a topological vector space𝐸,
and 𝑓 is the inclusion mapping of𝑋 into 𝑌, thenTheorem 15
reduces to Lemma 1 by Fan in [15].

In the sequel, we give the famous Fan-Browder type fixed-
point theorem. We first give the following conclusion.

Theorem 17. Suppose that 𝑋,𝑌 are two convex spaces and 𝑍

is a Hausdorff space. Assume that 𝑆 : 𝑋 → 2
𝑌, 𝐺 : 𝑍 → 2

𝑌,
and 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍) are three functions satisfying the
following:

(1) 𝑆(𝐶) is a compact convex subset of 𝑌 if 𝐶 is a compact
convex subset of𝑋,

(2) 𝑇(𝑄) is compact in 𝑍 if 𝑄 is compact in 𝑌,
(3) for any 𝑧 ∈ 𝑇(𝑆(𝑋)), 𝐺(𝑧) is a nonempty convex subset

of 𝑌,
(4) there exists a transfer compactly open values mapping

𝐻 : 𝑋 → 2
𝑍 such that any 𝑥 ∈ 𝑋, 𝐻(𝑥) ⊂ 𝐺

−1
(𝑆(𝑥)),

and ∪
𝑥∈𝑋

𝐻(𝑥) = 𝑍,
(5) there exist a nonempty compact convex subset 𝐿 of 𝑋

and a compact subset 𝐾 of 𝑍 such that

𝑀 = ⋂

𝑥∈𝐿

𝐻
𝑐
(𝑥) ⊂ 𝐾. (30)

Then there exists a finite subset {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} of 𝑋; for any

𝑦
𝑖

∈ 𝑆(𝑥
𝑖
) (𝑖 = 0, 1, . . . , 𝑛) there exist {𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊂

{𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑛
}, 𝑧 ∈ 𝑇(co{𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
}) such that, for

any 𝑗 = 0, 1, . . . , 𝑘, there exists 𝑦
󸀠

𝑖𝑗
∈ 𝑆(𝑥

𝑖𝑗
) such that

co{𝑦󸀠
𝑖0
, 𝑦
󸀠

𝑖1
, . . . , 𝑦

󸀠

𝑖𝑘
} ⊂ 𝐺(𝑧).

Proof. Define 𝐹 : 𝑋 → 2
𝑍 by 𝐹(𝑥) = 𝐻

𝑐
(𝑥) for 𝑥 ∈ 𝑋. Then

𝐹(𝑥) is transfer compactly closed in 𝑍.
(i) Suppose that𝑀 = 0. In this case, it is easy to know that

𝑇(co(𝑆(𝑋))) ∩ (⋂{𝐹(𝑥) : 𝑥 ∈ 𝑋}) = 0. Then it follows from
Theorem 11 that 𝐹 is not a A-𝐾𝐾𝑀 mapping with respect to
𝑇; that is, there exists a finite subset {𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
} of 𝑋; for

any 𝑦
𝑖
= 𝑆(𝑥
𝑖
) (𝑖 = 0, 1, . . . , 𝑛), there exists {𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊂

{𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑛
} such that𝑇(co{𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
}) ̸⊆ ⋃

𝑘

𝑗=0
𝐹(𝑥
𝑖𝑗
).

Choose 𝑧 ∈ 𝑇(co{𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
}) such that 𝑧 ∉ ⋃

𝑘

𝑗=0
𝐹(𝑥
𝑖𝑗
).

Then ∈ 𝐻(𝑥
𝑖𝑗
) ⊂ 𝐺

−
(𝑆(𝑥
𝑖𝑗
)), and 𝑆(𝑥

𝑖𝑗
)⋂𝐺(𝑧) ̸= 0 for any

𝑗 = 0, 1, . . . , 𝑘. Thus for any 𝑗 = 0, 1, . . . , 𝑘, there is 𝑦
󸀠

𝑖𝑗
∈

𝑆(𝑥
𝑖𝑗
) such that 𝑦󸀠

𝑖𝑗
∈ 𝐺(𝑧). Since 𝐺(𝑧) is convex, we see that

co{𝑦󸀠
𝑖0
, 𝑦
󸀠

𝑖1
, . . . , 𝑦

󸀠

𝑖𝑘
} ⊂ 𝐺(𝑧).

(ii) Suppose that 𝑀 ̸= 0. Checking the proof of
case (i), it suffices to show that 𝐹 is not a A-𝐾𝐾𝑀

mapping. On the contrary, assume that, for any
{𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, there exists 𝑦

𝑖
∈ 𝑆(𝑥

𝑖
) such

that, for any {𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊂ {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
}, we have

𝑇(co({𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
})) ⊂ ∪

𝑘

𝑗=0
𝐹(𝑥
𝑖𝑗
). Then 𝐹 is a A-𝐾𝐾𝑀

mapping with respect to 𝑇, and so byTheorem 11, we have

𝑇 (co (𝑆 (𝑋))) ∩ (⋂ {𝐹 (𝑥) : 𝑥 ∈ 𝑋}) ̸= 0. (31)

In particular,⋂
𝑥∈𝑋

𝐻
𝑐
(𝑥) ̸= 0; that is,

⋃

𝑥∈𝑋

𝐻(𝑥) ̸= 𝑍 (32)

which contradicts the assumption that ⋃
𝑥∈𝑋

𝐻(𝑥) = 𝑍. This
completes the proof.
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Remark 18. Theorem 17 improves Corollary 5.2 of Chang et
al. [5] in the following three aspects: (1) from generalized
𝑆-𝐾𝑀𝑀 mapping to A-𝐾𝐾𝑀 mapping with respect to
𝑇; (2) from compactly closed values to transfer compactly
closed values; (3) from the single-valued mapping 𝑠 to the
multivalued mapping 𝑆.

For Theorem 17, if 𝑆 : 𝑋 → 2
𝑌 reduces to a single-value

mapping 𝑠 : 𝑋 → 𝑌, we have the following conclusion.

Theorem 19. Suppose that 𝑋, 𝑌 are two convex spaces and 𝑍

is a Hausdorff space. Assume that 𝑠 : 𝑋 → 𝑌, 𝐺 : 𝑍 → 2
𝑌,

and 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍) are three mappings satisfying the
following conditions:

(1) 𝑠(𝐶) is a compact convex subset of 𝑌 if 𝐶 is a compact
convex subset of𝑋,

(2) 𝑇(𝑄) is compact in 𝑍 if 𝑄 is compact in 𝑌,
(3) for any 𝑧 ∈ 𝑇(𝑠(𝑋)),𝐺(𝑧) is a nonempty convex subset

of 𝑌,
(4) there exists a transfer compactly open values mapping

𝐻 : 𝑋 → 2
𝑍 such that any 𝑥 ∈ 𝑋, 𝐻(𝑥) ⊂ 𝐺

−1
(𝑠(𝑥)),

and ∪
𝑥∈𝑋

𝐻(𝑥) = 𝑍,
(5) there exist a nonempty compact convex subset 𝐿 of 𝑋

and a compact subset 𝐾 of 𝑍 such that

𝑀 = ⋂

𝑥∈𝐿

𝐻
𝑐
(𝑥) ⊂ 𝐾. (33)

Then there exists a finite subset {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} of 𝑋, 𝑦

𝑖
=

𝑠(𝑥
𝑖
) (𝑖 = 0, 1, . . . , 𝑛), such that, for any {𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊂

{𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑛
}, there exists 𝑧 ∈ 𝑇(co{𝑠(𝑥

𝑖0
), 𝑠(𝑥
𝑖1
), . . . , 𝑠(𝑥

𝑖𝑘
)})

such that co{𝑠(𝑥
𝑖0
), 𝑠(𝑥
𝑖1
), . . . , 𝑠(𝑥

𝑖𝑘
)} ⊂ 𝐺(𝑧).

Proof. The proof is similar to Theorem 17.

Corollary 20. Suppose that 𝑋 is a compact convex space.
Assume that 𝑠 : 𝑋 → 𝑋, 𝐺 : 𝑋 → 2

𝑋, and 𝑇 ∈ S-
𝐾𝐾𝑀(𝑋,𝑋,𝑋) are three functions satisfying the following:

(1) 𝑠(𝐶) is a compact convex subset of 𝑋 if 𝐶 is a compact
convex subset of𝑋,

(2) 𝑇(𝑄) is compact in𝑋 if 𝑄 is compact in𝑋,
(3) for any 𝑧 ∈ 𝑇(𝑠(𝑋)), 𝐺(𝑧) is a nonempty convex subset

of𝑋,
(4) there exists a transfer compactly open values mapping

𝐻 : 𝑋 → 2
𝑍 such that any 𝑥 ∈ 𝑋, 𝐻(𝑥) ⊂ 𝐺

−1
(𝑠(𝑥)),

and ∪
𝑥∈𝑋

𝐻(𝑥) = 𝑍.

Then there exists a finite subset 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
of 𝑋, 𝑦

𝑖
=

𝑠(𝑥
𝑖
) (𝑖 = 0, 1, . . . , 𝑛), such that, for any {𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊂

{𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑛
}, there exists 𝑧 ∈ 𝑇(co{𝑠(𝑥

𝑖0
), 𝑠(𝑥
𝑖1
), . . . , 𝑠(𝑥

𝑖𝑘
)})

such that co{𝑠(𝑥
𝑖0
), 𝑠(𝑥
𝑖1
), . . . , 𝑠(𝑥

𝑖𝑘
}) ⊂ 𝐺(𝑧).

Corollary 21. Let 𝑋 be a compact convex space. Suppose that
𝐺 : 𝑋 → 2

𝑋 satisfies the following:
(1) for any 𝑦 ∈ 𝑋, 𝐺(𝑦) is a nonempty convex subset of𝑋,

(2) 𝐺− is transfer open in𝑋.
Then there is an 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐺(𝑥).

Proof. Let 𝑠 and𝑇 be the identitymapping id
𝑋
; it follows from

Corollary 20 that there exist a finite subset {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} of

𝑋 and 𝑧 ∈ co{𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
} such that co{𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
} ⊂

𝐺(𝑧). Furthermore, 𝑧 ∈ 𝐺(𝑧). This completes the proof.

Remark 22. If 𝑋 is a nonempty compact convex subset of a
topological vector space and for any 𝑥 ∈ 𝑋, 𝐺−(𝑥) is open
in 𝑋, the above corollary is just the Fan-Browder type fixed-
point theorem 1 in [16].

4. Generalized Vector Equilibrium Problems

In this section, we will introduce some definitions and
conclusions and show the existence of solutions to the
generalized vector equilibrium problems.

Definition 23. Let 𝑌, 𝑍 be two topological spaces and 𝑋

nonempty sets. Let 𝐻 : 𝑍 × 𝑋 → 2
𝑌, 𝐶 : 𝑍 → 2

𝑌, 𝑄 :

𝑍 → 2
𝑊 be multivalued mapping. A generalized vector

equilibrium problem (𝑋, 𝑌, 𝑍;𝐻, 𝐶) is to find 𝑧̂ ∈ 𝑍 such
that 𝐻(𝑧̂, 𝑥) ∩ 𝐶(𝑧̂) ̸= 0, for all 𝑥 ∈ 𝑋. A generalized vector
equilibrium problem (𝑋, 𝑌, 𝑍; 𝑄,𝐻, 𝐶) is to find 𝑧̂ ∈ 𝑍 such
that, for each 𝑦 ∈ 𝑌, there exists 𝑤 ∈ 𝑄(𝑧) satisfying
𝜓(𝑧, 𝑤, 𝑦) ∩ 𝐶(𝑧) ̸= 0.

Lemma 24. Let 𝑌 be a topological vector space and 𝑋,𝑍

nonempty sets. Let 𝑆 : 𝑋 → 2
𝑌, 𝑇 : 𝑌 → 2

𝑍, 𝐻 : 𝑍 × 𝑋 →

2
𝑌, 𝐶 : 𝑍 → 2

𝑌, 𝐺 : 𝑍 × 𝑌 → 2
𝑋, 𝐷 : 𝑍 → 2

𝑋. Suppose
that the following conditions are satisfied:

(1) for each𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐺(𝑧, 𝑦)∩

𝐷(𝑧) = 0,
(2) for each 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such

that𝐻(𝑧, 𝑥)∩𝐶(𝑧) = 0 implies that𝐺(𝑧, 𝑦)∩𝐷(𝑧) ̸= 0

whenever 𝑦 ∈ 𝑆(𝑥) and 𝑧 ∈ 𝑇(𝑦),
(3) for each 𝑦 ∈ 𝑌, 𝑅(𝑦) = {𝑦 ∈ 𝑌 : 𝐺(𝑧, 𝑦) ∩

𝐷(𝑧) ̸= 0, ∀𝑧 ∈ 𝑇(𝑦)} is convex.

Then 𝐹 : 𝑋 → 2
𝑍defined by 𝐹(𝑥) = {𝑧 ∈ 𝑍 : 𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) ̸= 0} is aA-𝐾𝐾𝑀mapping with respect to 𝑇.

Proof. If the conclusion does not hold, then there exists
{𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
}, ∀𝑦
𝑖
∈ 𝑆(𝑥
𝑖
), ∃{𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
} such that

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ̸⊆

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) . (34)

Therefore, there exist 𝑦 ∈ co{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} and 𝑧 ∈ 𝑇(𝑦) such

that, for each 𝑗 = 0, . . . , 𝑘, 𝑧 ∉ 𝐹
1
(𝑥
𝑖𝑗
). By the definition of 𝐹

1
,

we have

𝐻(𝑧, 𝑥
𝑖𝑗
) ∩ 𝐶 (𝑧) = 0, ∀𝑗 = 0, . . . , 𝑘. (35)

By condition (2), for all 𝑧 ∈ 𝑇(𝑦
𝑖𝑗
) and 𝑗 = 0, . . . , 𝑘, we have

𝐺(𝑧, 𝑦
𝑖𝑗
) ∩ 𝐷 (𝑧) ̸= 0. (36)
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Thus 𝑦
𝑖𝑗
∈ 𝑅(𝑦), and 𝑦 ∈ co{𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂ 𝑅(𝑦). Therefore,

𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) ̸= 0, ∀𝑧 ∈ 𝑇(𝑦); this contradicts with (1). The
proof is completed.

Lemma 25. Let 𝑌 be a topological vector space and 𝑋,𝑍

nonempty sets. Let 𝑆 : 𝑋 → 2
𝑌
, 𝑇 : 𝑌 → 2

𝑍, 𝐻 : 𝑍 × 𝑋 →

2
𝑌, 𝐶 : 𝑍 → 2

𝑌, 𝐺 : 𝑍 × 𝑌 → 2
𝑋, 𝐷 : 𝑍 → 2

𝑋. Suppose
that the following conditions are satisfied:

(1) for each 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑇(𝑦), 𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) ̸= 0,
(2) for each 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such that

𝐻(𝑧, 𝑥) ∩ 𝐶(𝑧) = 0 implies that 𝐺(𝑧, 𝑦) ∩𝐷(𝑧) = 0 for
all 𝑦 ∈ 𝑆(𝑥) and some 𝑧 ∈ 𝑇(𝑦),

(3) for each 𝑦 ∈ 𝑌, 𝑅(𝑦) = {𝑦 ∈ 𝑌 : ∃𝑧 ∈ 𝑇(𝑦) such that
𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) = 0} is convex.

Then 𝐹 : 𝑋 → 2
𝑍 defined by 𝐹(𝑥) = {𝑧 ∈ 𝑍 : 𝐹(𝑧, 𝑥) ∩

𝐶(𝑧) ̸= 0} is aA-𝐾𝐾𝑀mapping with respect to 𝑇.

Proof. There exists {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
}, ∀𝑦
𝑖

∈ 𝑆(𝑥
𝑖
), ∃{𝑦

𝑖0
, . . .,

𝑦
𝑖𝑘
} such that

𝑇 (co {𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
}) ̸⊆

𝑘

⋃

𝑗=0

𝐹 (𝑥
𝑖𝑗
) . (37)

Therefore, there exist 𝑦 ∈ co{𝑦
𝑖0
, . . . , 𝑦

𝑖𝑘
} and 𝑧 ∈ 𝑇(𝑦) such

that, for each 𝑗 = 0, . . . , 𝑘, 𝑧 ∉ 𝐹
1
(𝑥
𝑖𝑗
). By the Definition of 𝐹,

we have

𝐻(𝑧, 𝑥
𝑖𝑗
) ∩ 𝐶 (𝑧) = 0, ∀𝑗 = 0, . . . , 𝑘. (38)

By the condition (2), there exists 𝑧 ∈ 𝑍 such that, for each
𝑗 = 0, . . . , 𝑘, we have that 𝑧 ∈ 𝑇(𝑦

𝑖𝑗
) and

𝐺(𝑧, 𝑦
𝑖𝑗
) ∩ 𝐷 (𝑧) = 0. (39)

Thus 𝑦
𝑖𝑗
∈ 𝑅(𝑦), and 𝑦 ∈ co{𝑦

𝑖0
, . . . , 𝑦

𝑖𝑘
} ⊂ 𝑅(𝑦). Therefore,

𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) = 0 for some 𝑧 ∈ 𝑇(𝑦); this contradicts with
(i). The proof is completed.

Remark 26. To avoid the structure of the space, Lemmas 24
and 25 generalize Lemmas 2.4 and 2.5 of X. P. Ding and T. M.
Ding [13] from the following two aspects: (1) fromgeneralized
𝐾𝐾𝑀 mapping with respect to 𝑇 to A-𝐾𝐾𝑀 mapping with
respect to 𝑇; (2) condition (2) in our results is obviously
weaker than that in [13].

Definition 27 (see [13]). Let𝑌 and𝑍 be topology spaces and𝑋

nonempty set. Let𝐻 : 𝑍 × 𝑋 → 2
𝑌 and 𝐶 : 𝑍 → 2

𝑌 be set-
valuedmappings.𝐻(𝑧, 𝑥) is said to be a𝐶-transfer compactly
continuous mapping of the generalized vector equilibrium
problem (𝑋, 𝑌, 𝑍;𝐻, 𝐶) in first argument if, for any compact
subset 𝐾 of 𝑍 and any 𝑧 ∈ 𝐾, there exists 𝑥 ∈ 𝑋 such that
𝐻(𝑧, 𝑥) ∩ 𝐶(𝑧) = 0; then there is a point 𝑥󸀠 ∈ 𝑋 such that
𝑧 ∈ cint{𝑥 ∈ 𝑍 : 𝐻(𝑧, 𝑥

󸀠
) ∩ 𝐶(𝑧) = 0}.

Proposition 28 (see [13]). Let 𝑌 and 𝑍 be topological spaces
and 𝑋 nonempty set. Let 𝐻 : 𝑍 × 𝑋 → 2

𝑌 and 𝐶 :

𝑍 → 2
𝑌 be set-valued mappings. 𝐻(𝑧, 𝑥) is said to be a

𝐶-transfer compactly continuous mapping of the generalized
vector equilibrium problem (𝑋, 𝑌, 𝑍;𝐻, 𝐶) in first argument if
and only if the mapping 𝐹 : 𝑋 → 2

𝑍 defined by 𝐹(𝑥) = {𝑧 ∈

𝑍 : 𝐻(𝑧, 𝑥) ∩ 𝐶(𝑧)} ̸= 0 is a transfer compactly closed-valued
mapping.

Proposition 29 (see [13]). Let 𝑋, 𝑌, and 𝑍 be topological
spaces. Let 𝐻 : 𝑍 × 𝑋 → 2

𝑌 and 𝐶 : 𝑍 → 2
𝑌 be set-valued

mappings such that

(i) 𝐶 has closed (resp., open) graph;
(ii) for each 𝑥 ∈ 𝑋, 𝐻(⋅, 𝑥) is upper semicontinuous on

each compact subset of 𝑍.

Then the mapping 𝐹 : 𝑥 → 2
𝑍 defined by 𝐹(𝑥) = {𝑧 ∈ 𝑍 :

𝐻(𝑧, 𝑥) ∩ 𝐶(𝑧) ̸= 0} has compactly closed values.

Theorem 30. Let 𝑋 be a topological space, 𝑌 a topological
vector space, and𝑍 aHausdorff space; let 𝑆 : 𝑋 → 2

𝑌, 𝑇 ∈ A-
𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), 𝐻 : 𝑍×𝑋 → 2

𝑌, 𝐶 : 𝑍 → 2
𝑌
, 𝐺 : 𝑍×𝑌 →

2
𝑋, 𝐷 : 𝑍 → 2

𝑋 be multivalued mappings. Suppose that the
following conditions are satisfied:

(1) 𝐻(𝑧, 𝑥) is a 𝐶-transfer compactly continuous map-
ping of the generalized vector equilibrium problem
(𝑋, 𝑌, 𝑍;𝐻, 𝐶),

(2) for each𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐺(𝑧, 𝑦)∩

𝐷(𝑧) = 0,
(3) for each 𝑥, 𝑦, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) = 0 which implies that 𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) ̸= 0

whenever 𝑦 ∈ 𝑆(𝑥) and 𝑧 ∈ 𝑇(𝑦),
(4) for each 𝑦 ∈ 𝑌, the set 𝑅(𝑦) = {𝑦 ∈ 𝑌 : 𝐺(𝑧, 𝑦) ∩

𝐷(𝑧) ̸= 0, ∀𝑧 ∈ 𝑇(𝑦)} is a convex subset of 𝑌,

(5) for each compact subset𝑀
1
of𝑋, 𝑇(𝑆(𝑀

1
)) is compact

in 𝑍, and for each convex subset 𝑀
2
of 𝑋, 𝑆(𝑀

2
) is

convex,
(6) setting 𝐹 : 𝑋 → 2

𝑍 by 𝐹(𝑥) = {𝑧 ∈ 𝑋 : 𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) ̸= 0}, there exists a nonempty compact subset𝐾 of
𝑍 such that, for each 𝑁 ∈ ⟨𝑋⟩, there exists compact
convex subset𝐿𝑋

𝑁
of𝑋 including𝑁 such that𝑇(𝑆(𝐿𝑋

𝑁
)∩

(⋂
𝑥∈𝐿
𝑋

𝑁

ccl𝐹
1
(𝑥)) ⊂ 𝐾.

Then there exists 𝑧̂ ∈ 𝑍 such that 𝐻(𝑧̂, 𝑥) ∩ 𝐶(𝑧̂) ̸= 0; that is,
𝑧̂ is a solution to the generalized vector equilibrium problem
(𝑋, 𝑌, 𝑍;𝐻, 𝐶).

Proof. By condition (1),𝐹 is transfer compactly closed-valued
mapping from Proposition 28. By conditions (2)–(4) and
Lemma 24, we know that 𝐹 is a A-𝐾𝐾𝑀 mapping with
respect to 𝑇. Conditions (5) and (6) imply that conditions (4)
and (5) of Theorem 9 hold. From Theorem 9, it follows that
∩
𝑥∈𝑋

𝐹(𝑥) ̸= 0 and𝐻(𝑧̂, 𝑥) ∩ 𝐶(𝑧̂) ̸= 0 for all 𝑥 ∈ 𝑋.

Theorem 31. Let 𝑋 be a topological space, 𝑌 a topological
vector space, and 𝑍 a Hausdorff space, and let 𝑆 : 𝑋 →

2
𝑌, 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), 𝐻 : 𝑍 × 𝑋 → 2

𝑌, 𝐶 : 𝑍 →
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2
𝑌, 𝐺 : 𝑍×𝑌 → 2

𝑋, 𝐷 : 𝑍 → 2
𝑋 be multivalued mappings.

Suppose that the following conditions are satisfied:

(1) 𝐻(𝑧, 𝑥) is a 𝐶-transfer compactly continuous map-
ping of the generalized vector equilibrium problem
(𝑋, 𝑌, 𝑍;𝐻, 𝐶),

(2) for each 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑇(𝑦), 𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) ̸= 0,
(3) for each 𝑥, 𝑦, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) = 0 implies that 𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) = 0 for all 𝑦 ∈

𝑆(𝑥) and some 𝑧 ∈ 𝑇(𝑦),
(4) for each 𝑦 ∈ 𝑌, 𝑅(𝑦) = {𝑦 ∈ 𝑌 : ∃𝑧 ∈ 𝑇(𝑦) such that

𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧)} = 0 is convex,
(5) for each compact subset𝑀

1
of𝑋, 𝑇(𝑆(𝑀

1
)) is compact

in 𝑍, and for each convex subset 𝑀
2
of 𝑋, 𝑆(𝑀

2
) is

convex,
(6) setting 𝐹 : 𝑋 → 2

𝑍 by 𝐹
1
(𝑥) = {𝑧 ∈ 𝑋 : 𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) ̸= 0}, there exists a nonempty compact subset𝐾 of
𝑍 such that, for each 𝑁 ∈ ⟨𝑋⟩, there exists compact
convex subset𝐿𝑋

𝑁
of𝑋 including𝑁 such that𝑇(𝑆(𝐿𝑋

𝑁
)∩

(⋂
𝑥∈𝐿
𝑋

𝑁

ccl𝐹(𝑥)) ⊂ 𝐾.

Then there exists 𝑥 ∈ 𝑋 such that 𝐻(𝑧̂, 𝑥) ∩ 𝐶(𝑧̂) ̸= 0; that is,
𝑧̂ is a solution to the generalized vector equilibrium problem
(𝑋, 𝑌, 𝑍;𝐻, 𝐶).

Proof. By condition (1), 𝐹 is transfer compactly closed-
valued mapping from Proposition 29. By conditions (2)–(4)
and Lemma 25, we have that 𝐹 is a generalized A-𝐾𝐾𝑀

mapping with respect to 𝑇. Conditions (5) and (6) imply that
conditions (4) and (5) of Theorem 9 hold. From Theorem 9,
it follows that ∩

𝑥∈𝑋
𝐹(𝑥) ̸= 0 and 𝐻(𝑧̂, 𝑥) ⊂ 𝐶(𝑧̂) for all 𝑥 ∈

𝑋.

Theorem 32. Let 𝑋 be a topological space, 𝑌 a topological
vector space, and 𝑍 a Hausdorff space, and let 𝑆 : 𝑋 →

2
𝑌, 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), 𝐻 : 𝑍 × 𝑋 → 2

𝑌, 𝐶 : 𝑍 →

2
𝑌, 𝐺 : 𝑍×𝑌 → 2

𝑋, 𝐷 : 𝑍 → 2
𝑋 be multivalued mappings.

Suppose that the following conditions are satisfied:

(1) 𝐶 has closed graph,
(2) for each 𝑥 ∈ 𝑋, 𝐻(⋅, 𝑥) is upper semicontinuous

on each compact subset of 𝑍 with nonempty compact
values on 𝑍,

(3) for each𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐺(𝑧, 𝑦)∩

𝐷(𝑧) = 0,
(4) for each 𝑥, 𝑦, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) = 0 implies that 𝐺(𝑧, 𝑦) ∩𝐷(𝑧) ̸= 0 whenever 𝑦 ∈

𝑆(𝑥) and 𝑧 ∈ 𝑇(𝑦),
(5) for each 𝑦 ∈ 𝑌, 𝑅(𝑦) = {𝑦 ∈ 𝑌 : ∃𝑧 ∈ 𝑇(𝑦) such that

𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) = 0} is convex,
(6) for each compact subset𝑀

1
of𝑋, 𝑇(𝑆(𝑀

1
)) is compact

in 𝑍, and for each convex subset 𝑀
2
of 𝑋, 𝑆(𝑀

2
) is

convex,
(7) setting 𝐹 : 𝑋 → 2

𝑍 by 𝐹(𝑥) = {𝑧 ∈ 𝑋 : 𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) ̸= 0}, there exists a nonempty compact subset𝐾 of
𝑍 such that, for each 𝑁 ∈ ⟨𝑋⟩, there exists compact

convex subset𝐿𝑋
𝑁
of𝑋 including𝑁 such that𝑇(𝑆(𝐿𝑋

𝑁
)∩

(⋂
𝑥∈𝐿
𝑋

𝑁

ccl𝐹(𝑥)) ⊂ 𝐾.

Then there exists 𝑥 ∈ 𝑋 such that 𝐻(𝑧̂, 𝑥) ∩ 𝐶(𝑧̂) ̸= 0; that is,
𝑧̂ is a solution to the generalized vector equilibrium problem
(𝑋, 𝑌, 𝑍;𝐻, 𝐶).

Proof. By condition (1) and Proposition 29, 𝐹 has compactly
closed values and so it is a transfer compactly closed-valued
mapping. Hence the conclusion of Theorem 32 holds from
Theorem 30.

Theorem 33. Let 𝑋 be a topological space, 𝑌 a topological
vector space, and 𝑍 a Hausdorff space, and let 𝑆 : 𝑋 →

2
𝑌, 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), 𝐻 : 𝑍 × 𝑋 → 2

𝑌, 𝐶 : 𝑍 →

2
𝑌, 𝐺 : 𝑍×𝑌 → 2

𝑋, 𝐷 : 𝑍 → 2
𝑋 be multivalued mappings.

Suppose that the following conditions are satisfied:

(1) 𝐶 has closed graph,
(2) for each 𝑥 ∈ 𝑋, 𝐻(⋅, 𝑥) is upper semicontinuous

on each compact subset of 𝑍 with nonempty compact
values on 𝑍,

(3) for each𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐺(𝑧, 𝑦)∩

𝐷(𝑧) ̸= 0,
(4) for each 𝑥, 𝑦, there exists 𝑧 ∈ 𝑇(𝑦) such that𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) = 0 implies that 𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧) = 0 for all 𝑦 ∈

𝑆(𝑥) and some 𝑧 ∈ 𝑇(𝑦),
(5) for each 𝑦 ∈ 𝑌, 𝑅(𝑦) = {𝑦 ∈ 𝑌 : ∃𝑧 ∈ 𝑇(𝑦) such that

𝐺(𝑧, 𝑦) ∩ 𝐷(𝑧)} = 0 is convex,

(6) for each compact subset𝑀
1
of𝑋, 𝑇(𝑆(𝑀

1
)) is compact

in 𝑍, and for each convex subset 𝑀
2
of 𝑋, 𝑆(𝑀

2
) is

convex,
(7) setting 𝐹 : 𝑋 → 2

𝑍 by 𝐹(𝑥) = {𝑧 ∈ 𝑋 : 𝐻(𝑧, 𝑥) ∩

𝐶(𝑧) ̸= 0}, there exists a nonempty compact subset𝐾 of
𝑍 such that, for each 𝑁 ∈ ⟨𝑋⟩, there exists compact
convex subset𝐿𝑋

𝑁
of𝑋 including𝑁 such that𝑇(𝑆(𝐿𝑋

𝑁
)∩

(⋂
𝑥∈𝐿
𝑋

𝑁

ccl𝐹(𝑥)) ⊂ 𝐾.

Then there exists 𝑥 ∈ 𝑋 such that𝐻(𝑧̂, 𝑥) ∩ 𝐶(𝑧̂) ̸= 0.

Proof. By condition (1) and Proposition 29, 𝐹 has compactly
closed values and so it is a transfer compactly closed-valued
mapping. Hence the conclusion of Theorem 33 holds from
Theorem 31.

The following result is a simplicity version of Theorem 1
in [17].

Lemma 34. Let 𝑋, 𝑌,𝑊, and 𝑍 be topological spaces. Let 𝜓 :

𝑍 × 𝑊 × 𝑌 → 2
𝑋 and 𝑄 : 𝑍 → 2

𝑊 be set-valued mappings.

(1) If, for each fixed 𝑦 ∈ 𝑌, (𝑧, 𝑤) → 𝜓(𝑧, 𝑤, 𝑦) and 𝑄

are both lower semicontinuous, then the mapping 𝐻 :

𝑍 ×𝑋 → 2
𝑌 defined by𝐻(𝑧, 𝑥) = ⋃

𝑤∈𝑄(𝑥)
𝜓(𝑧, 𝑤, 𝑦)

satisfies that, for each 𝑥 ∈ 𝑋, 𝑧 → 𝐻(𝑧, 𝑥) is lower
semicontinuous on 𝑍.
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(2) If, for each fixed𝑦 ∈ 𝑌, (𝑧, 𝑤) → 𝜓(𝑧, 𝑤, 𝑦) and𝑄 are
both upper semicontinuous with compact values, then,
for each 𝑥 ∈ 𝑋, 𝑧 → 𝐻(𝑧, 𝑥) is upper semicontinuous
on 𝑍 with nonempty compact values.

Theorem 35. Let 𝑋 be a topological space, 𝑌 a topological
vector space, and 𝑍 a Hausdorff space, and let 𝑆 : 𝑋 →

2
𝑌, 𝑇 ∈ A-𝐾𝐾𝑀(𝑋, 𝑌, 𝑍), 𝐶 : 𝑍 → 2

𝑌, 𝐷 : 𝑍 → 2
𝑋, 𝜙 :

𝑍 × 𝑊 × 𝑋 → 2
𝑌, 𝜓 : 𝑍 × 𝑊 × 𝑌 → 2

𝑋, 𝑄 : 𝑍 → 2
𝑊 be

multivalued mappings. Suppose that the following conditions
are satisfied:

(1) 𝐶 has closed graph,

(2) for each 𝑦 ∈ 𝑌, (𝑧, 𝑤) → 𝜓(𝑧, 𝑤, 𝑦) and 𝑄 are both
upper semicontinuous compact values on 𝑍,

(3) for each 𝑦 ∈ 𝑌, there exists 𝑧 ∈ 𝑇(𝑦) such that
(⋃
𝑤∈𝑄(𝑧)

𝜙(𝑧, 𝑤, 𝑦)) ∩ 𝐷(𝑧) ̸= 0,

(4) for each 𝑥, 𝑦, there exists 𝑧 ∈ 𝑇(𝑦) such that
(⋃
𝑤∈𝑄(𝑧)

𝜙(𝑧, 𝑤, 𝑦)) ∩ 𝐶(𝑧) = 0 implies that
(⋃
𝑤∈𝑄(𝑧)

𝜓(𝑧, 𝑤, 𝑦)) ∩ 𝐷(𝑧) = 0 whenever 𝑦 ∈ 𝑆(𝑥)

and 𝑧 ∈ 𝑇(𝑦),

(5) for each 𝑦 ∈ 𝑌, 𝑅(𝑦) = {𝑦 ∈ 𝑌 : ⋃
𝑤∈𝑄(𝑧)

𝜙(𝑧, 𝑤, 𝑦) ∩

𝐷(𝑧) ̸= 0, ∀𝑧 ∈ 𝑇(𝑦)} is convex,

(6) for each compact subset𝑀
1
of𝑋, 𝑇(𝑆(𝑀

1
)) is compact

in 𝑍, and for each convex subset 𝑀
2
of 𝑋, 𝑆(𝑀

2
) is

convex,

(7) setting 𝐹 : 𝑋 → 2
𝑍 by 𝐹(𝑥) = {𝑧 ∈ 𝑋 :

⋃
𝑤∈𝑄(𝑧)

𝜓(𝑧, 𝑤, 𝑦)∩𝐶(𝑧) ̸= 0}, there exists a nonempty
compact subset 𝐾 of 𝑍 such that, for each 𝑁 ∈ ⟨𝑋⟩,
there exists compact convex subset 𝐿𝑋

𝑁
of 𝑋 including

𝑁 such that 𝑇(𝑆(𝐿𝑋
𝑁
) ∩ (⋂

𝑥∈𝐿
𝑋

𝑁

ccl𝐹(𝑥)) ⊂ 𝐾.

Then there exists 𝑧 ∈ 𝑍 such that, for each 𝑦 ∈ 𝑌, there
exists 𝑤 ∈ 𝑄(𝑧) satisfying 𝜓(𝑧, 𝑤, 𝑦) ∩ 𝐶(𝑧) ̸= 0; that is, 𝑧̂
is a solution to the generalized vector equilibrium problem
(𝑋, 𝑌, 𝑍; 𝑄,𝐻, 𝐶).

Proof. Define set-valued mappings 𝐻 : 𝑍 × 𝑋 → 2
𝑌
, 𝐺 :

𝑍 × 𝑌 → 2
𝑋 by 𝐻(𝑧, 𝑥) = ⋃

𝑤∈𝑄(𝑧)
𝜓(𝑧, 𝑤, 𝑦) and 𝐺(𝑧, 𝑦) =

⋃
𝑤∈𝑄(𝑧)

𝜙(𝑧, 𝑤, 𝑦)) for each (𝑧, 𝑥) ∈ 𝑍×𝑋 and (𝑧, 𝑦) ∈ 𝑍×𝑌,
respectively. By Lemma 34 andTheorem 32, the rest is similar
to the proof of Theorem 4.7 in [13].

Remark 36. For the above results, Theorems 30 and 31
generalize Propositions 4.3 and 4.4 of Lin and Wan in [14] in
the following two aspects: (1) from transfer closed values to
transfer compactly closed values; (2) from generalized𝐾𝐾𝑀

mapping toA-𝐾𝐾𝑀mapping with respect to𝑇. To avoid the
structure of the space, condition (3) in our results is more
general than that inTheorems 4.1, 4.2, 4.3, 4.5, and 4.7 of [13].
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