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We consider a class of neutral stochastic partial differential equations with infinite delay in real separable Hilbert spaces. We derive
the existence and uniqueness of mild solutions under some local Carathéodory-type conditions and also exponential stability in
mean square of mild solutions as well as its sample paths. Some known results are generalized and improved.

1. Introduction

The theory of stochastic partial differential equations
(SPDEs) has recently become an important area of
investigation stimulated by its numerous applications to
problems arising in natural and social sciences. There is
much current interest in studying qualitative properties for
SPDEs (see, e.g., Caraballo et al. [1], Liu [2], Luo and Liu [3],
Da Prato and Zabczyk [4], Peszat and Zabczyk [5], Wang and
Zhang [6], and references therein).We would like to mention
that the stochastic partial functional differential equations
(SPFDEs) have been considered intensively. For example,
under the global Lipschitz and linear growth conditions,
Govindan [7] showed by the stochastic convolution the
existence, uniqueness, and almost sure exponential stability
of neutral SPDEs with finite delays; Taniguchi et al. [8]
considered the existence and uniqueness of mild solutions
to SPDEs with finite delays by Banach fixed point theorem;
while by imposing a so-called Carathéodory condition on
the nonlinearities, Jiang and Shen [9] studied the existence
and uniqueness of mild solutions for neutral SPFDEs by
successive approximation; Samoilenko et al. [10] investigated
the existence, uniqueness, and controllability results for
neutral SPFDEs.

On the other hand, it is well known that infinite delay
(stochastic) equations have wide application in many areas

[11, 12]. However, as for neutral SPDEs with infinite delay,
as far as we know, there exist only a few results about the
existence and asymptotic behavior of mild solutions. We
mention here the recent papers by Ren and Sun [13] and Li
and Liu [14] considering the existence of solutions of second-
order stochastic evolution equations and neutral stochastic
differential inclusions with infinite delay, respectively; Cui
and Yan [15] investigated the existence and longtime behavior
of mild solutions for a class of neutral stochastic partial
differential equations with infinite delay in distribution,
while Taniguchi [16] concerned the existence and asymptotic
behavior for stochastic evolution equations with infinite
delay.

In this paper, inspired by the aforementioned papers
[13, 15], we consider a class of neutral stochastic partial
differential equations (NSPDEs) with infinite delay.The space
B((−∞, 0],H) (see Section 2) with some axioms proposed by
Hale and Kato [17] is employed as our phase space. We study
the existence and uniqueness of mild solutions to SPDEs with
infinite delay under some local Carathéodory conditionswith
the non-Lipschitz conditions in Bao and Hou [18] and Jiang
and Shen [9] being regarded as special cases and investigate
the longtime behavior of mild solutions as well.

The structure of this paper is as follows. In the next
section, we introduce some necessary notations and prelim-
inaries. The existence and uniqueness of mild solutions are
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discussed in Section 3. The exponential stability in mean
square of mild solutions as well as its sample paths are
presented in Section 4.

2. Preliminaries

For more details on this section, we refer to Da Prato
and Zabczyk [4] and Pazy [19]. Let (H, | ⋅ |H, ⟨⋅, ⋅⟩H) and
(K, | ⋅ |K, ⟨⋅, ⋅⟩K) be two separable Hilbert spaces. L(K,H)

stands for the set of all linear bounded operators fromK into
H, equipped with the usual operator norm ‖ ⋅ ‖. In this paper,
we use the symbol ‖⋅‖ to denote norms of operators regardless
of the spaces involved when no confusion possibly arises.

Let (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) be a filtered complete probability

space satisfying the usual condition, which means that the
filtration is a right continuous increasing family and F

0

contains all 𝑃-null sets. Let 𝑊 = (𝑊
𝑡
)
𝑡≥0

be a K-valued
Wiener process defined on (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃)with covariance

operator 𝑄; that is,

𝐸⟨𝑤 (𝑡) , 𝑥⟩K⟨𝑤 (𝑠) , 𝑦⟩K = (𝑡 ∧ 𝑠) ⟨𝑄𝑥, 𝑦⟩K, 𝑥, 𝑦 ∈ K,

(1)

where 𝑄 is a positive, self-adjoint, trace class operator on
K. Denote by L0

2
(K,H) the space of all 𝑄-Hilbert-Schmidt

operators from K to H with the norm
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

L0
2

:= tr (𝜉𝑄𝜉∗) < ∞, 𝜉 ∈L (K,H) . (2)

Let 𝐴 be the infinitesimal generator of an analytic semigroup
𝑆(𝑡) inH.Then (𝐴−𝛼𝐼) is invertible and generates a bounded
analytic semigroup for 𝛼 > 0 large enough. Suppose that
0 ∈ 𝜌(𝐴), where 𝜌(𝐴) denotes the resolvent set of 𝐴. Then,
for 𝛼 ∈ (0, 1], it is possible to define the fractional power
operator (−𝐴)𝛼 as a closed linear invertible operator on its
domain D((−𝐴)

𝛼
). Furthermore, the subspace D((−𝐴)𝛼) is

dense in H and the expression

‖𝑥‖
𝛼
=
󵄩󵄩󵄩󵄩(−𝐴)

𝛼
𝑥
󵄩󵄩󵄩󵄩 , 𝑥 ∈ D ((−𝐴)

𝛼
) , (3)

defines a norm on H
𝛼
:= D((−𝐴)

𝛼
).

Throughout this paper, we will employ an axiomatic
definition of the phase spaceB introduced by Hale and Kato
[17].

Definition 1. The axioms of the phase space B((−∞, 0],H)

(denoted by B simply) are established for F
0
-measurable,

continuous functions mapping (−∞, 0] intoH endowed with
a norm ‖ ⋅ ‖B, andB satisfies the following axioms:
(𝐻
1
) If 𝑥 : (−∞,𝑇] → H, 𝑇 > 0, is continuous on [0, 𝑇]
and 𝑥

0
∈ B, then, for every 𝑡 ∈ [0, 𝑇], the following

properties hold:

(1) 𝑥
𝑡
:= 𝑥(𝑡 + ⋅) ∈B;

(2) |𝑥(𝑡)| ≤ 𝐻‖𝑥
𝑡
‖B;

(3) ‖𝑥
𝑡
‖B ≤ 𝑀(𝑡)sup

0≤𝑠≤𝑡
|𝑥(𝑠)|+𝑁(𝑡)‖𝑥

0
‖B, where

𝐻 > 0 is a constant, 𝑀,𝑁 : [0, +∞) →

[1, +∞) are independent of 𝑥(⋅), and 𝑀 is
continuous and𝑁 is locally bounded.

(𝐻
2
) The spaceB is complete.

Remark 2. For convenience, we replace condition (3) in (𝐻
1
)

by

(3
󸀠
) ‖𝑥
𝑡
‖B ≤ sup

0≤𝑠≤𝑡
|𝑥(𝑠)| + 𝑁‖𝑥

0
‖B, where 𝑁 =

sup
0≤𝑠≤𝑇

𝑁(𝑠).

Example 3. Let (H, | ⋅ |H) be a Banach space and 𝜑 ∈

𝐶((−∞, 0],H). Assume that ℎ : (−∞, 0] → (0, +∞) is a
continuous function with 𝑙 = ∫0

−∞
ℎ(𝑡)𝑑𝑡 < +∞. Define

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨H = sup
𝜃≤0

(𝐸
󵄨󵄨󵄨󵄨𝜑 (𝜃)

󵄨󵄨󵄨󵄨
2

)
1/2

< ∞,

C
ℎ
= {𝜑 : (−∞, 0] 󳨀→ H,

∫
0

−∞

ℎ (𝑠) sup
𝑠≤𝜃≤0

(𝐸
󵄨󵄨󵄨󵄨𝜑 (𝜃)

󵄨󵄨󵄨󵄨
2

)
1/2

𝑑𝑠 < +∞} .

(4)

IfC
ℎ
is endowed with the norm

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩Cℎ

= ∫
0

−∞

ℎ (𝑠) sup
𝑠≤𝜃≤0

(𝐸
󵄨󵄨󵄨󵄨𝜑 (𝜃)

󵄨󵄨󵄨󵄨
2

)
1/2

𝑑𝑠, 𝜑 ∈ C
ℎ
, (5)

then (C
ℎ
, ‖ ⋅ ‖Cℎ) is a Banach space [14] and satisfies the

axioms in Definition 1 with𝑀 = 𝑙,𝑁 = 1.

Consider the following NSPDEs with infinite delay in the
form:

𝑑 [𝑥 (𝑡) + 𝐺 (𝑡, 𝑥
𝑡
)] = [𝐴𝑥 (𝑡) + 𝑏 (𝑡, 𝑥

𝑡
)] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥
𝑡
) 𝑑𝑊 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) ∈B, 𝑡 ≤ 0,

(6)

where 𝑥
𝑡
= {𝑥(𝑡 + 𝜃) : −∞ < 𝜃 ≤ 0} can be regarded as a

B-valued stochastic process. Assume that

𝐺, 𝑓 : R
+
×B 󳨀→ H, 𝜎 : R

+
×B 󳨀→L (K,H)

(7)

are appropriate mappings specified later.The initial value 𝜙 =
{𝜙(𝜃) : −∞ < 𝜃 ≤ 0} is anF

0
-measurableB-valued random

variable independent of𝑊 with finite second moment.
Nowwe present the definition of themild solution for (6).

Definition 4. An F
𝑡
-adapted H-valued stochastic process

𝑥(𝑡) defined on −∞ < 𝑡 ≤ 𝑇, 0 ≤ 𝑇 < ∞ is called the mild
solution for (6) if

(a) 𝑥(𝑡) is continuous and {𝑥
𝑡
: 0 ≤ 𝑡 ≤ 𝑇} is aB-valued

stochastic process;

(b) ∫𝑇
0
|𝑥(𝑢)|2H𝑑𝑢 < ∞ almost surely;
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(c) for arbitrary 𝑡 ∈ [0, 𝑇], 𝑥(𝑡) satisfies the following
integral equation:

𝑥 (𝑡) = 𝑆 (𝑡) (𝜙 (0) + 𝐺 (0, 𝜙)) − 𝐺 (𝑡, 𝑥
𝑡
)

− ∫
𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑏 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥
𝑠
) 𝑑𝑊 (𝑠) ,

𝑥
0
= 𝜙 ∈B.

(8)

We denote byM2((−∞,𝑇],H) the space of all H-valued,
continuous, and F

𝑡
-adapted processes 𝑥 = {𝑥(𝑡), −∞ < 𝑡 ≤

𝑇} such that

(1) 𝑥
0
= 𝜙 ∈B and 𝑥(𝑡) is continuous on [0, 𝑇];

(2) for all 𝑥 ∈M2((−∞,𝑇],H),

‖𝑥‖
2

M2 := 𝐸
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

B
+ 𝐸∫

𝑇

0

|𝑥 (𝑡)|
2

H𝑑𝑡 < ∞. (9)

It is obvious that the spaceM2((−∞,𝑇],H) is a Banach space
with the norm defined by (9).

3. The Existence and Uniqueness Theorem

In this section, we present our main results on the existence
and uniqueness of themild solution of (6).We first introduce
the following assumptions.

(𝐴
1
) Assume that𝐴 is the infinitesimal generator of an ana-
lytic semigroup of bounded linear operators {𝑆(𝑡), 𝑡 ≥
0} in H, satisfying

‖𝑆 (𝑡)‖ ≤ 𝑒
−𝛾𝑡
, 𝑡 ≥ 0 (10)

for some 𝛾 > 0.
(𝐴
2
) There exist some constants 𝛼 ∈ (1/2, 1] and 𝑀

𝐺
>

0 such that, for any 𝜉, 𝜙 ∈ B, 𝑡 ≥ 0, we have
𝐺(𝑡, 𝜉), 𝐺(𝑡, 𝜙) ∈ D((−𝐴)

𝛼
), and

󵄨󵄨󵄨󵄨(−𝐴)
𝛼
𝐺 (𝑡, 𝜉) − (−𝐴)

𝛼
𝐺 (𝑡, 𝜙)

󵄨󵄨󵄨󵄨H ≤ 𝑀𝐺
󵄩󵄩󵄩󵄩𝜉 − 𝜙

󵄩󵄩󵄩󵄩B, (11)

we further assume that 𝐺(𝑡, 0) ≡ 0, for all 𝑡 ≥ 0.
(𝐴
3
) (a) There exists a function 𝐹 : R+ ×R+ → R+ such

that 𝐹(𝑡, 𝑢) is locally integrable in 𝑡 for any fixed
𝑢 ≥ 0 and is continuous, nondecreasing, and
concave in 𝑢 for each fixed 𝑡 ∈ [0, 𝑇]. Moreover,
for any 𝑡 ∈ [0, 𝑇], 𝑥 ∈ B, the following
inequality holds:

|𝑏 (𝑡, 𝑥)|
2

H + |𝜎 (𝑡, 𝑥)|
2

L0
2

≤ 𝐹 (𝑡, ‖𝑥‖
2

B) . (12)

(b) For any 𝐶 > 0, the differential equation

𝑑𝑢

𝑑𝑡
= 𝐶𝐹 (𝑡, 𝑢) (13)

has a global solution for any initial value 𝑢
0
.

(𝐴
4
) (global conditions)

(a) There exists a function𝑍 : R+×R+ → R+ such
that𝑍(𝑡, 𝑢) is locally integrable in 𝑡 for any fixed
𝑢 ≥ 0 and is continuous nondecreasing and
concave in 𝑢 for each fixed 𝑡 ∈ [0, 𝑇],𝑍(𝑡, 0) = 0
for any 𝑡 ∈ [0, 𝑇]. Moreover, for any 𝑡 ∈ [0, 𝑇],
𝑥, 𝑦 ∈B, the following inequality holds:

󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨
2

H
+
󵄨󵄨󵄨󵄨𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨
2

L0
2

≤ 𝑍 (𝑡,
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

B
) .

(14)

(b) For any constant 𝐷 > 0, if a nonnegative
function 𝑢(𝑡) satisfies that

𝑢 (𝑡) ≤ 𝐷∫
𝑡

0

𝑍 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , (15)

then 𝑢(𝑡) ≡ 0 for any 𝑡 ∈ [0, 𝑇].

(𝐴󸀠
4
) (local conditions)

(a) For any integer 𝑁 > 0, there exists a function
𝑍
𝑁
: R+ × R+ → R+ such that 𝑍

𝑁
(𝑡, 𝑢) is

locally integrable in 𝑡 for any fixed 𝑢 ≥ 0 and
is continuous nondecreasing and concave in 𝑢
for each fixed 𝑡 ∈ [0, 𝑇], 𝑍

𝑁
(𝑡, 0) = 0 for any

𝑡 ∈ [0, 𝑇]. Moreover, for any 𝑡 ∈ [0, 𝑇], 𝑥, 𝑦 ∈B
with ‖𝑥‖B ≤ 𝑁, ‖𝑦‖B ≤ 𝑁, the following
inequality holds:

󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨
2

H
+
󵄨󵄨󵄨󵄨𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨
2

L0
2

≤ 𝑍
𝑁
(𝑡, ‖ 𝑥 − 𝑦‖

2

B) .

(16)

(b) For any constant 𝐷 > 0, if a nonnegative
function 𝑢(𝑡) satisfies that

𝑢 (𝑡) ≤ 𝐷∫
𝑡

0

𝑍
𝑁
(𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , (17)

then 𝑢(𝑡) ≡ 0 for any 𝑡 ∈ [0, 𝑇].

The following lemma that appeared in [19] is useful.

Lemma 5. Under the assumption of (𝐴
1
), for any 0 < 𝛽 ≤ 1,

the following equality holds:

𝑆 (𝑡) (−𝐴)
𝛽
𝑥 = (−𝐴)

𝛽
𝑆 (𝑡) 𝑥, 𝑥 ∈ D ((−𝐴)

𝛽
) , (18)

and there exists a positive constant𝑀
𝛽
such that, for any 𝑡 > 0,

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛽
𝑆 (𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
𝛽
𝑡
−𝛽
𝑒
−𝛾𝑡
. (19)

Lemma 6 (Liu [2]). Let 𝑇 > 0. Suppose 𝐴 generates a
pseudocontraction 𝐶

0
-semigroup 𝑆(𝑡). That is, ‖𝑆(𝑡)‖ ≤ 𝑒𝛼𝑡,

𝑡 ≥ 0, for some 𝛼 ∈ R. Then the process 𝑊𝜙
𝐴
(𝑡) = ∫

𝑡

0
𝑆(𝑡 −

𝑠)𝜙(𝑠)𝑑𝑊(𝑠) has a continuous modification and there exists a
constant 𝐾 > 0 such that

𝐸 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑊
𝜙

𝐴
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

H
≤ 𝐾𝐸∫

𝑡

0

󵄨󵄨󵄨󵄨𝜙 (𝑠)
󵄨󵄨󵄨󵄨
2

L0
2

𝑑𝑠, 𝑡 ∈ [0, 𝑇] . (20)
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Theorem 7. Let (𝐴
1
)–(𝐴
4
) hold. Then the system (6) admits

a unique mild solution 𝑥(𝑡) ∈M2((−∞,𝑇],H) provided that

0 <
8𝑀2
1−𝛼
𝑀2
𝐺
𝛾1−2𝛼Γ (2𝛼 − 1)

1 −𝑀
𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩

+ 2𝑀
𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩 < 1. (21)

Proof. Theproof is similar to the proof ofTheorem 3.1 in Jiang
and Shen [9], we omit the detail.

We now state our main theorem in this section.

Theorem 8. Let (𝐴
1
)–(𝐴
3
), (𝐴󸀠
4
) and (21) hold. Then the sys-

tem (6) admits a unique mild solution 𝑥(𝑡) ∈M2((−∞,𝑇],H)

provided that

𝐿 := 4𝑀
2

1−𝛼
𝑀
2

𝐺
𝛾
−2𝛼
Γ (2𝛼 − 1) + 4𝑀

2

𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩
2

< 1. (22)

Proof. Let 𝑁 be a positive integer and 𝑇
0
∈ (0, 𝑇). We intro-

duce the sequence of the functions {𝑏𝑁(𝑡, 𝑢)} and {𝜎𝑁(𝑡, 𝑢)},
(𝑡, 𝑢) ∈ [0, 𝑇] ×B as follows:

𝑏
𝑁
(𝑡, 𝑢) =

{{

{{

{

𝑏 (𝑡, 𝑢) , ‖𝑢‖B ≤ 𝑁;

𝑏 (𝑡,
𝑁𝑢

‖𝑢‖B
) , ‖𝑢‖B > 𝑁.

𝜎
𝑁
(𝑡, 𝑢) =

{{

{{

{

𝜎 (𝑡, 𝑢) , ‖𝑢‖B ≤ 𝑁;

𝜎(𝑡,
𝑁𝑢

‖𝑢‖B
) , ‖𝑢‖B > 𝑁.

(23)

Then the functions {𝑏𝑁(𝑡, 𝑢)} and {𝜎𝑁(𝑡, 𝑢)} satisfy assump-
tion (𝐴

3
), and for any 𝑥, 𝑦 ∈ B, 𝑡 ∈ [0, 𝑇], the following

inequality holds:
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑁
(𝑡, 𝑥) − 𝑏

𝑁
(𝑡, 𝑦)

󵄨󵄨󵄨󵄨󵄨

2

H
+
󵄨󵄨󵄨󵄨󵄨
𝜎
𝑁
(𝑡, 𝑥) − 𝜎

𝑁
(𝑡, 𝑦)

󵄨󵄨󵄨󵄨󵄨

2

L0
2

≤ 𝑍
𝑁
(𝑡,
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

B
) .

(24)

As a consequence of Theorem 7, there exist the unique mild
solutions 𝑥𝑁(𝑡) and 𝑥𝑁+1(𝑡), respectively, to the following
integral equations:

𝑥
𝑁
(𝑡) = 𝑆 (𝑡) (𝜙 (0) + 𝐺 (0, 𝜙)) − 𝐺 (𝑡, 𝑥

𝑁

𝑡
)

− ∫
𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥
𝑁

𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝑏
𝑁
(𝑠, 𝑥
𝑁

𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎
𝑁
(𝑠, 𝑥
𝑁

𝑠
) 𝑑𝑊 (𝑠) ,

𝑥
𝑁+1

(𝑡) = 𝑆 (𝑡) (𝜙 (0) + 𝐺 (0, 𝜙)) − 𝐺 (𝑡, 𝑥
𝑁+1

𝑡
)

− ∫
𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥
𝑁+1

𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝑏
𝑁+1

(𝑠, 𝑥
𝑁+1

𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎
𝑁+1

(𝑠, 𝑥
𝑁+1

𝑠
) 𝑑𝑊 (𝑠) .

(25)

Define the stopping time

𝛿
𝑁
:= 𝑇
0
∧ inf {𝑡 ∈ [0, 𝑇] : 󵄩󵄩󵄩󵄩󵄩𝑥

𝑁
(𝑡)
󵄩󵄩󵄩󵄩󵄩B

≥ 𝑁} ,

𝛿
𝑁+1

:= 𝑇
0
∧ inf {𝑡 ∈ [0, 𝑇] : 󵄩󵄩󵄩󵄩󵄩𝑥

𝑁+1
(𝑡)
󵄩󵄩󵄩󵄩󵄩B

≥ 𝑁 + 1} ,

𝜏
𝑁
:= 𝛿
𝑁
∧ 𝛿
𝑁+1

.

(26)

In view of Hölder’s inequality (25), we obtain

𝐸( sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑠) − 𝑥
𝑁
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

H
)

≤ 4𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨
𝑆 (𝑠) (𝐺 (𝑠, 𝑥

𝑁+1

𝑠
) − 𝐺 (𝑠, 𝑥

𝑁

𝑠
))
󵄨󵄨󵄨󵄨󵄨

2

H

+ 4𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝐴𝑆 (𝑠 − 𝑢) (𝐺 (𝑢, 𝑥
𝑁+1

𝑢
) − 𝐺 (𝑢, 𝑥

𝑁

𝑢
)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

+ 4𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢)

× (𝑏
𝑁+1

(𝑢, 𝑥
𝑁+1

𝑢
) − 𝑏
𝑁+1

(𝑢, 𝑥
𝑁

𝑢
)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

+ 4𝐸

× sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢)

× (𝜎
𝑁+1

(𝑢, 𝑥
𝑁+1

𝑢
) − 𝜎
𝑁+1

(𝑢, 𝑥
𝑁

𝑢
)) 𝑑𝑊 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

= 4

4

∑
𝑖=1

𝐼
𝑖
,

(27)

where we have used the fact that for 0 ≤ 𝑢 ≤ 𝜏
𝑁
,

𝑏
𝑁+1

(𝑢, 𝑥
𝑁

𝑢
) = 𝑏
𝑁
(𝑢, 𝑥
𝑁

𝑢
) ,

𝜎
𝑁+1

(𝑢, 𝑥
𝑁

𝑢
) = 𝜎
𝑁
(𝑢, 𝑥
𝑁

𝑢
) .

(28)

Note that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁+1

𝑠
− 𝑥
𝑁

𝑠

󵄩󵄩󵄩󵄩󵄩

2

B
≤ sup
0≤𝑢≤𝑠

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑢) − 𝑥
𝑁
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

H
. (29)

By assumption (𝐴
2
), we have

𝐼
1
≤
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

𝑀
2

𝐺
𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁+1

𝑠
− 𝑥
𝑁

𝑠

󵄩󵄩󵄩󵄩󵄩

2

B

≤
󵄩󵄩󵄩󵄩(−𝐴)

−𝛼󵄩󵄩󵄩󵄩
2

𝑀
2

𝐺
𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑠) − 𝑥
𝑁
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

H
.

(30)
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By virtue of Lemma 5, Hölder’s inequality together with
assumption (𝐴

2
) we have

𝐼
2

≤ 𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

[∫
𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝐴𝑆 (𝑠 − 𝑢) (𝐺 (𝑢, 𝑥

𝑁+1

𝑢
) − 𝐺 (𝑢, 𝑥

𝑁

𝑢
))
󵄨󵄨󵄨󵄨󵄨H
𝑑𝑢]

2

≤ 𝑀
2

𝐺
𝑀
2

1−𝛼
𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

∫
𝑠

0

(𝑠 − 𝑢)
2(𝛼−1)

𝑒
−𝛾(𝑠−𝑢)

𝑑𝑢

× ∫
𝑠

0

𝑒
−𝛾(𝑠−𝑢)󵄩󵄩󵄩󵄩󵄩

𝑥
𝑁+1

𝑢
− 𝑥
𝑁

𝑢

󵄩󵄩󵄩󵄩󵄩

2

B
𝑑𝑢

≤ 𝑀
2

𝐺
𝑀
2

1−𝛼
𝛾
−2𝛼
Γ (2𝛼 − 1) 𝐸 sup

0≤𝑠≤𝜏𝑁∧𝑡

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑠) − 𝑥
𝑁
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

H
.

(31)

Employing assumption (𝐴󸀠
4
), Hölder’s inequality, and Jensen’s

inequality, it follows that

𝐼
3
≤ 𝐸 sup
0≤𝑠≤𝜏𝑁∧𝑡

∫
𝑠

0

𝑒
−2𝛾(𝑠−𝑢)

𝑑𝑢

× ∫
𝑠

0

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑁+1

(𝑢, 𝑥
𝑁+1

𝑢
) − 𝑏
𝑁+1

(𝑢, 𝑥
𝑁

𝑢
)
󵄨󵄨󵄨󵄨󵄨

2

H
𝑑𝑢

≤
1

2𝛾
∫
𝜏𝑁∧𝑡

0

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑁+1

(𝑠, 𝑥
𝑁+1

𝑠
) − 𝑏
𝑁+1

(𝑠, 𝑥
𝑁

𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

H
𝑑𝑠

≤
1

2𝛾
∫
𝑡

0

𝑍
𝑁+1

(𝑠 ∧ 𝜏
𝑁
, 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁+1

𝑠∧𝜏𝑁
− 𝑥
𝑁

𝑠∧𝜏𝑁

󵄩󵄩󵄩󵄩󵄩

2

B
) 𝑑𝑠.

(32)

Combining Lemma 6 with Jensen’s inequality, there exists a
positive constant𝐾 such that

𝐼
4
≤ 𝐾∫

𝜏𝑁∧𝑡

0

𝐸
󵄨󵄨󵄨󵄨󵄨
𝜎
𝑁+1

(𝑠, 𝑥
𝑁+1

𝑠
) − 𝜎
𝑁+1

(𝑠, 𝑥
𝑁

𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

L0
2

𝑑𝑠

≤ 𝐾∫
𝑡

0

𝑍
𝑁+1

(𝑠 ∧ 𝜏
𝑁
, 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁+1

𝑠∧𝜏𝑁
− 𝑥
𝑁

𝑠∧𝜏𝑁

󵄩󵄩󵄩󵄩󵄩

2

B
) 𝑑𝑠.

(33)

Therefore, for all 𝑡 ∈ [0, 𝑇
0
], we have

𝐸( sup
0≤𝑠≤𝑡

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑠 ∧ 𝜏
𝑁
) − 𝑥
𝑁
(𝑠 ∧ 𝜏
𝑁
)
󵄨󵄨󵄨󵄨󵄨

2

H

)

≤
4 (1/2𝛾 + 𝐾)

1 − 𝐿
∫
𝑡

0

𝑍
𝑁+1

(𝑠 ∧ 𝜏
𝑁
, 𝐸
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁+1

𝑠∧𝜏𝑁
− 𝑥
𝑁

𝑠∧𝜏𝑁

󵄩󵄩󵄩󵄩󵄩

2

B
) 𝑑𝑠

≤
4 (1/2𝛾 + 𝐾)

1 − 𝐿

× ∫
𝑡

0

𝑍
𝑁+1

(𝑠 ∧ 𝜏
𝑁
,

𝐸 sup
0≤𝑢≤𝑠

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑢 ∧ 𝜏
𝑁
) − 𝑥
𝑁
(𝑢 ∧ 𝜏

𝑁
)
󵄨󵄨󵄨󵄨󵄨

2

H
)𝑑𝑠.

(34)

The assumption (𝐴󸀠
4
) indicates that

𝐸( sup
0≤𝑠≤𝑡

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑠 ∧ 𝜏
𝑁
) − 𝑥
𝑁
(𝑠 ∧ 𝜏
𝑁
)
󵄨󵄨󵄨󵄨󵄨

2

H
) = 0. (35)

Thus, for a.e. 𝜔,

𝑥
𝑁+1

(𝑡) = 𝑥
𝑁
(𝑡) for 0 ≤ 𝑡 ≤ 𝑇

0
∧ 𝜏
𝑁
. (36)

Note that for each 𝜔 ∈ Ω, there exists an𝑁
0
(𝜔) > 0 such that

0 < 𝑇
0
≤ 𝜏
𝑁0
. Define 𝑥(𝑡) by

𝑥 (𝑡) = 𝑥
𝑁0 (𝑡) for 𝑡 ∈ [0, 𝑇

0
] . (37)

Since 𝑥(𝑡 ∧ 𝜏
𝑁
) = 𝑥𝑁(𝑡 ∧ 𝜏

𝑁
), it holds that

𝑥 (𝑡 ∧ 𝜏
𝑁
) = 𝑆 (𝑡 ∧ 𝜏

𝑁
) (𝜙 (0) − 𝐺 (0, 𝜙)) + 𝐺 (𝑡 ∧ 𝜏

𝑁
, 𝑥
𝑁

𝑡∧𝜏𝑁
)

+ ∫
𝑡∧𝜏𝑁

0

𝐴𝑆 (𝑡 ∧ 𝜏
𝑁
− 𝑠)𝐺 (𝑠, 𝑥

𝑁

𝑠
) 𝑑𝑠

+ ∫
𝑡∧𝜏𝑁

0

𝑆 (𝑡 ∧ 𝜏
𝑁
− 𝑠) 𝑏
𝑁
(𝑠, 𝑥
𝑁

𝑠
) 𝑑𝑠

+ ∫
𝑡∧𝜏𝑁

0

𝑆 (𝑡 ∧ 𝜏
𝑁
− 𝑠) 𝜎

𝑁
(𝑠, 𝑥
𝑁

𝑠
) 𝑑𝑊 (𝑠)

= 𝑆 (𝑡 ∧ 𝜏
𝑁
) (𝜙 (0) − 𝐺 (0, 𝜙)) + 𝐺 (𝑡 ∧ 𝜏

𝑁
, 𝑥
𝑡∧𝜏𝑁

)

+ ∫
𝑡∧𝜏𝑁

0

𝐴𝑆 (𝑡 ∧ 𝜏
𝑁
− 𝑠)𝐺 (𝑠, 𝑥

𝑠
) 𝑑s

+ ∫
𝑡∧𝜏𝑁

0

𝑆 (𝑡 ∧ 𝜏
𝑁
− 𝑠) 𝑏 (𝑠, 𝑥

𝑠
) 𝑑𝑠

+ ∫
𝑡∧𝜏𝑁

0

𝑆 (𝑡 ∧ 𝜏
𝑁
− 𝑠) 𝜎 (𝑠, 𝑥

𝑠
) 𝑑𝑊 (𝑠) .

(38)

Taking𝑁 → ∞, we have

𝑥 (𝑡) = 𝑆 (𝑡) (𝜙 (0) + 𝐺 (0, 𝜙)) − 𝐺 (𝑡, 𝑥
𝑡
)

− ∫
𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥
𝑠
) 𝑑𝑊 (𝑠) ,

(39)

which completes the proof.

Remark 9. We obtain the existence and uniqueness of mild
solution to (6) under local Carathéodory conditions with the
non-Lipschitz conditions in [9, 18] being regarded as special
cases, which makes it more feasible that the conditions of
solution can be satisfied.

4. Exponential Stability

In this section, we consider the exponential stability in mean
square and almost sure exponential stability of the mild
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solutions of (6). For the sake of brevity, we denote by 𝑥𝜙 or
similar notations the unique mild solution of (6) with the
initial data 𝜙.

Definition 10. The mild solution 𝑥𝜙 of (6) is said to be
exponentially asymptotically stable in mean square if there
exist a pair of positive constants 𝛼 and 𝛽 such that, for any
mild solution 𝑦𝜑 of (6),

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜙
(𝑡) − 𝑦

𝜑
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

H
≤ 𝛼𝑒
−𝛽𝑡
𝐸
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩
2

B
, 𝑡 ≥ 0. (40)

We need the following assumptions before we proceed
further.

(𝐴
5
) For any 𝑥, 𝑦 ∈ B, there exist some positive constants
𝑄
𝑏
and 𝑄

𝜎
such that

󵄨󵄨󵄨󵄨𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨
2

H
≤ 𝑄
𝑏

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

B
,

󵄨󵄨󵄨󵄨𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨
2

L0
2

≤ 𝑄
𝜎

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

B
,

(41)

for all 𝑡 ≥ 0.
(𝐴
6
) There exist some constant 𝛼 ∈ (1/2, 1] and a
continuous function 𝜇 such that for any 𝜉, 𝜙 ∈ B,
𝑡 ≥ 0,

𝐺 (𝑡, 𝜉) , 𝐺 (𝑡, 𝜙) ∈ D ((−𝐴)
𝛼
) ,

󵄨󵄨󵄨󵄨(−𝐴)
𝛼
𝐺 (𝑡, 𝜉) − (−𝐴)

𝛼
𝐺 (𝑡, 𝜙)

󵄨󵄨󵄨󵄨 ≤ 𝜇 (𝑡)
󵄩󵄩󵄩󵄩𝜉 − 𝜙

󵄩󵄩󵄩󵄩B,
(42)

where 𝜇 : R+ → R+ satisfies 𝜇(𝑡) ≤ 𝑄
𝐺
𝑒−𝛿𝑡, 𝑄

𝐺
> 0,

𝛿 > 𝛾 > 0.

The following lemma is needed to consider our results.

Lemma 11 (see [16]). Assume that the semigroup {𝑆(𝑡), 𝑡 ≥ 0}
is exponentially stable; that is, ‖𝑆(𝑡)‖ ≤ 𝑀𝑒−𝛾𝑡, 𝑡 ≥ 0, for some
𝑀, 𝛾 > 0.Then, for anyF

𝑡
-adapted predictable processΦwith

∫
𝑡

0
𝐸|Φ(𝑠)|

2

L0
2

𝑑𝑠 < ∞, 𝑡 ≥ 0, the following inequality holds:

𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑆 (𝑡 − 𝑠)Φ (𝑠) 𝑑𝑊 (𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

≤ 𝑀
2
∫
𝑡

0

𝑒
−𝛾(𝑡−𝑠)

𝐸|Φ (𝑠)|
2

L0
2

𝑑𝑠.

(43)

Now, we state our main result of this section on the
stability in mean square.

Theorem 12. Let 𝑥𝜙 and 𝑦𝜑 be two mild solutions of (6)
with the initial data 𝜙 and 𝜑, respectively. Assume that (𝐴

1
),

(𝐴
5
)-(𝐴
6
), and 5𝑄2

𝐺
‖(−𝐴)

−𝛼
‖
2

< 1 hold. Then

𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

H
) ≤ 𝛽𝑒

𝜎𝑡
𝐸
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩
2

B
, 𝑡 ≥ 0,

(44)

where 𝛽 = 10(1 + 𝑄2
𝐺
‖(−𝐴)

−𝛼
‖
2

)/(1 − 5𝑄2
𝐺
‖(−𝐴)

−𝛼
‖
2

),
𝜎 = (5𝑀2

1−𝛼
𝑄2
𝐺
𝛾1−2𝛼Γ(2𝛼 − 1) + 5𝛾−1𝑄

𝑏
+ 20𝑄

𝜎
)/(1 −

5𝑄2
𝐺
‖(−𝐴)

−𝛼
‖
2

).

Proof. Since by assumption, 𝑥 = 𝑥𝜙 and 𝑦 = 𝑦𝜑 are solutions
of (6), we have

𝑥 (𝑡) = 𝑆 (𝑡) (𝜙 (0) + 𝐺 (0, 𝜙)) − 𝐺 (𝑡, 𝑥
𝑡
)

− ∫
𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑥
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑏 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑥
𝑠
) 𝑑𝑊 (𝑠) ,

𝑦 (𝑡) = 𝑆 (𝑡) (𝜑 (0) + 𝐺 (0, 𝜑)) − 𝐺 (𝑡, 𝑦
𝑡
)

− ∫
𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑦
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑏 (𝑠, 𝑦
𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎 (𝑠, 𝑦
𝑠
) 𝑑𝑊 (𝑠) .

(45)

Then,

𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

H
)

≤ 5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝑆 (𝑠) [𝜙 (0) − 𝜑 (0) + 𝐺 (0, 𝜙) − 𝐺 (0, 𝜑)]

󵄨󵄨󵄨󵄨
2

H
)

+ 5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑥𝑠) − 𝐺 (𝑠, 𝑦𝑠)

󵄨󵄨󵄨󵄨
2

H
)

+ 5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝐴𝑆 (𝑠 − 𝑢) (𝐺 (𝑢, 𝑥
𝑢
) − 𝐺 (𝑢, 𝑦

𝑢
)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

)

+ 5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢) (𝑏 (𝑢, 𝑥
𝑢
) − 𝑏 (𝑢, 𝑦

𝑢
)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

)

+ 5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢) (𝜎 (𝑢, 𝑥
𝑢
) − 𝜎 (𝑢, 𝑦

𝑢
)) 𝑑𝑊 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

) .

(46)

We now estimate the terms on the right-hand side of (46).
From assumption (𝐴

1
) and (𝐴

6
), we obtain

5𝐸 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝑆 (𝑠) [𝜙 (0) − 𝜑 (0) + 𝐺 (0, 𝜙) − 𝐺 (0, 𝜑)]

󵄨󵄨󵄨󵄨
2

H

≤ 10𝐸 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
𝑒
−2𝛾𝑠

(
󵄨󵄨󵄨󵄨𝜙 (0) − 𝜑 (0)

󵄨󵄨󵄨󵄨
2

H
+
󵄨󵄨󵄨󵄨𝐺 (0, 𝜙) − 𝐺 (0, 𝜑)

󵄨󵄨󵄨󵄨
2

H
)

≤ 10 (1 + 𝑄
2

𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩
2

)𝐸
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩
2

B
.

(47)

Noting that 𝛿 > 𝛾 > 0 and

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑁+1

𝑠
− 𝑥
𝑁

𝑠

󵄩󵄩󵄩󵄩󵄩

2

B
≤ sup
0≤𝑢≤𝑠

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑁+1

(𝑢) − 𝑥
𝑁
(𝑢)
󵄨󵄨󵄨󵄨󵄨

2

H
, (48)
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we have

5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠 󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑥𝑠) − 𝐺 (𝑠, 𝑦𝑠)

󵄨󵄨󵄨󵄨
2

H

)

≤ 5𝑄
2

𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩
2

𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
𝜇 (𝑠)

󵄩󵄩󵄩󵄩𝑥𝑠 − 𝑦𝑠
󵄩󵄩󵄩󵄩
2

B
)

≤ 5𝑄
2

𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩
2

𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
𝑒
−2𝛿𝑠󵄩󵄩󵄩󵄩𝑥𝑠 − 𝑦𝑠

󵄩󵄩󵄩󵄩
2

B
)

≤ 5𝑄
2

𝐺

󵄩󵄩󵄩󵄩(−𝐴)
−𝛼󵄩󵄩󵄩󵄩
2

𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠 󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

H

) .

(49)

Standard computations involving Hölder’s inequality and
Lemma 5 yield that

5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝐴𝑆 (𝑠 − 𝑢) (𝐺 (𝑢, 𝑥
𝑢
) − 𝐺 (𝑢, 𝑦

𝑢
)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

)

≤ 5𝐸 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
[∫
𝑠

0

𝑀
1−𝛼
(𝑠 − 𝑢)

𝛼−1
𝑒
−𝛾(𝑠−𝑢)

𝜇 (𝑢)

×
󵄩󵄩󵄩󵄩𝑥𝑢 − 𝑦𝑢

󵄩󵄩󵄩󵄩B𝑑𝑢]

2

≤ 5𝑀
2

1−𝛼
𝑄
2

𝐺
𝐸[ sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
∫
𝑠

0

(𝑠 − 𝑢)
2(𝛼−1)

𝑒
−𝛾(𝑠−𝑢)

𝑑𝑢

× ∫
𝑠

0

𝑒
−𝛾(𝑠−𝑢)

𝑒
−2𝛿𝑢󵄩󵄩󵄩󵄩𝑥𝑢 − 𝑦𝑢

󵄩󵄩󵄩󵄩
2

B
𝑑𝑢]

≤ 5𝑀
2

1−𝛼
𝑄
2

𝐺
𝛾
1−2𝛼

Γ (2𝛼 − 1)

× ∫
𝑡

0

𝑒
𝛾𝑠
𝐸( sup
0≤𝑟≤𝑠

󵄨󵄨󵄨󵄨𝑥 (𝑟) − 𝑦 (𝑟)
󵄨󵄨󵄨󵄨
2

H
)𝑑𝑠.

(50)

Combing assumption (𝐴
5
)with Hölder’s inequality it follows

that

5𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢) (𝑏 (𝑢, 𝑥
𝑢
) − 𝑏 (𝑢, 𝑦

𝑢
)) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

)

≤ 5𝐸 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
∫
𝑡

0

𝑒
−𝛾(𝑠−𝑢)

𝑑𝑢

× ∫
𝑠

0

𝑒
−𝛾(𝑠−𝑢)󵄨󵄨󵄨󵄨𝑏 (𝑢, 𝑥𝑢) − 𝑏 (𝑢, 𝑦𝑢)

󵄨󵄨󵄨󵄨
2

H
𝑑𝑢

≤ 5𝛾
−1
𝑄
𝑏
∫
𝑡

0

𝑒
𝛾𝑠
𝐸
󵄩󵄩󵄩󵄩𝑥𝑠 − 𝑦𝑠

󵄩󵄩󵄩󵄩
2

B
𝑑𝑠

≤ 5𝛾
−1
𝑄
𝑏
∫
𝑡

0

𝑒
𝛾𝑠
𝐸( sup
0≤𝑟≤𝑠

󵄩󵄩󵄩󵄩𝑥 (𝑟) − 𝑦 (𝑟)
󵄩󵄩󵄩󵄩
2

H
)𝑑𝑠.

(51)

Applying first Lemma 7.2 in [4] and then Lemma 11 we obtain

5𝐸 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢) (𝜎 (𝑢, 𝑥
𝑢
) − 𝜎 (𝑢, 𝑦

𝑢
)) 𝑑𝑊 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

≤ 20 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠

0

𝑆 (𝑠 − 𝑢) (𝜎 (𝑢, 𝑥
𝑢
) − 𝜎 (𝑢, 𝑦

𝑢
)) 𝑑𝑊 (𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

H

≤ 20𝑄
𝜎
∫
𝑡

0

𝑒
𝛾𝑠
𝐸
󵄩󵄩󵄩󵄩𝑥𝑠 − 𝑦𝑠

󵄩󵄩󵄩󵄩
2

B
𝑑𝑠

≤ 20𝑄
𝜎
∫
𝑡

0

𝑒
𝛾𝑠
𝐸( sup
0≤𝑟≤𝑠

󵄩󵄩󵄩󵄩𝑥 (𝑟) − 𝑦 (𝑟)
󵄩󵄩󵄩󵄩
2

H
)𝑑𝑠.

(52)

Define

Λ (𝑡) := 𝐸 sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

H
for 𝑡 ≥ 0. (53)

Recalling (46), from (47) to (52) we derive that

Λ (𝑡) ≤ 𝛽𝐸
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩
2

B
+ 𝜎∫
𝑡

0

Λ (𝑠) 𝑑𝑠, (54)

where 𝛽 = 10(1 + 𝑄2
𝐺
‖(−𝐴)

−𝛼
‖
2

)/(1 − 5𝑄2
𝐺
‖(−𝐴)

−𝛼
‖
2

),
𝜎 = (5𝑀2

1−𝛼
𝑄2
𝐺
𝛾1−2𝛼Γ(2𝛼 − 1)+ 5𝛾−1𝑄

𝑏
+ 20𝑄

𝜎
) / (1 − 5𝑄2

𝐺

‖(−𝐴)
−𝛼
‖
2

).
Invoking Gronwall’s Lemma we get

𝐸( sup
0≤𝑠≤𝑡

𝑒
𝛾𝑠󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨
2

H
) ≤ 𝛽𝑒

𝜎𝑡
𝐸
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩
2

B
, 𝑡 ≥ 0.

(55)

This completes the proof.

Corollary 13. Suppose that all the conditions of Theorem 12
hold. Then for any mild solutions 𝑥𝜙 and 𝑦𝜑 of (6)

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜙
(𝑡) − 𝑦

𝜑
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

H
) ≤ 𝛽𝑒

−(𝛾−𝜎)𝑡
𝐸
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩
2

B
, 𝑡 ≥ 0,

(56)

where 𝛽 and 𝜎 are defined in Theorem 12, 𝛾 is the constant in
assumption (𝐴

1
). Consequently, if 𝛾 > 𝜎, then themild solution

𝑥𝜙 is exponentially asymptotically stable in mean square.

Corollary 14. Suppose that all the conditions of Theorem 12
hold. If 𝐺(𝑡, 0) = 𝑏(𝑡, 0) = 𝜎(𝑡, 0) = 0, for all 𝑡 ≥ 0 and 𝛾 >
𝜎, then the trial solution of (6) is exponentially asymptotically
stable in mean square.

Finally, we consider the stability of sample path.

Theorem 15. Suppose that all the conditions of Corollary 14
hold, then the sample path of the trial solution of (6) is
exponentially asymptotically stable.

Proof. The method is similar to the proof of Theorem 5.1 in
[7], we omit it here.
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with Lévy Noise, vol. 113 of Encyclopedia of Mathematics and
Its Applications, Cambridge University Press, Cambridge, UK,
2007.

[6] F.-Y. Wang and T.-S. Zhang, “Gradient estimates for stochastic
evolution equations with non-Lipschitz coefficients,” Journal of
Mathematical Analysis and Applications, vol. 365, no. 1, pp. 1–11,
2010.

[7] T. E. Govindan, “Almost sure exponential stability for stochastic
neutral partial functional differential equations,” Stochastics,
vol. 77, no. 2, pp. 139–154, 2005.

[8] T. Taniguchi, K. Liu, and A. Truman, “Existence, unique-
ness, and asymptotic behavior of mild solutions to stochastic
functional differential equations in Hilbert spaces,” Journal of
Differential Equations, vol. 181, no. 1, pp. 72–91, 2002.

[9] F. Jiang and Y. Shen, “A note on the existence and uniqueness
of mild solutions to neutral stochastic partial functional dif-
ferential equations with non-Lipschitz coefficients,” Computers
& Mathematics with Applications, vol. 61, no. 6, pp. 1590–1594,
2011.

[10] A. M. Samoilenko, N. I. Mahmudov, and A. N. Stanzhitskii,
“Existence, uniqueness, and controllability results for neutral

FSDES in Hilbert spaces,” Dynamic Systems and Applications,
vol. 17, no. 1, pp. 53–70, 2008.

[11] M. E. Gurtin and A. C. Pipkin, “A general theory of heat con-
duction with finite wave speeds,”Archive for RationalMechanics
and Analysis, vol. 31, no. 2, pp. 113–126, 1968.

[12] J.W.Nunziato, “On heat conduction inmaterials withmemory,”
Quarterly of Applied Mathematics, vol. 29, pp. 187–204, 1971.

[13] Y. Ren and D. D. Sun, “Second-order neutral stochastic
evolution equations with infinite delay under Carathéodory
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