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A lattice hierarchy with self-consistent sources is deduced starting from a three-by-three discrete matrix spectral problem. The
Hamiltonian structures are constructed for the resulting hierarchy. Liouville integrability of the resulting equations is demonstrated.
Moreover, infinitely many conservation laws of the resulting hierarchy are obtained.

1. Introduction

Nonlinear integrable systems of the discrete version, treated
as models of some physical phenomena, have attracted more
and more attention in recent years. A well-known result
is that a hierarchy of soliton equations can be generated
through the isospectral compatibility condition of a pair of
spectral problems [1]. By using the discrete trace identity
the Hamiltonian forms of the soliton equations can be
constructed [2]. Various methods have been developed to
search for new integrable systems [3–5], integrable coupling
systems [6], soliton solutions [7], and so on. However, the
work of searching for new integrable systems associated with
higher order matrix spectral problems is few. In [8, 9], the
well-known method is used for the matrix spectral problems
with 3 × 3 matrixes. In studying the integrability of discrete
systems, the conservation laws play important roles. From the
Lax pair of lattice soliton equations conservation laws can be
deduced directly [10].

With the development of soliton theory, people began to
focus on the soliton equations with self-consistent sources.
Soliton equations with self-consistent sources are often used
to express interactions between different solitary waves and
are relevant to some problems of hydrodynamics, solid state

physics, plasma physics, and so on. Many integrable coupling
systems with self-consistent sources in continuous cases are
obtained [11–14]. In [15, 16], integrable discrete systems with
self-consistent sources are given.

In the present paper, first, a new three-by-three discrete
matrix spectral problem is proposed. By means of construct-
ing a proper continuous time evolution equation and using the
discrete zero curvature equation a hierarchy of lattice models
is derived. Then the Hamiltonian forms of the resulting hier-
archy are worked out by using the discrete trace identity.
Further, the Liouville integrability of the discrete systems is
demonstrated. Infinitelymany conservation laws and self-con-
sistent sources for the integrable systems are also obtained.

2. A New Three-by-Three Discrete Matrix
Spectral Problem and Related Integrable
Lattice Hierarchy

We first recall some presentations on a discrete integrable
system. For a lattice function 𝑓

𝑛
= 𝑓(𝑛), the shift operator

𝐸, the inverse of 𝐸, and the operator 𝐸𝑘 are defined by

𝐸𝑓
𝑛
= 𝑓 (𝑛 + 1) ,
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𝐸
−1

𝑓
𝑛
= 𝑓 (𝑛 − 1) ,

𝐸
𝑘

𝑓
𝑛
= 𝑓 (𝑛 + 𝑘) , 𝑘 ∈ 𝑍.

(1)

Let 𝑢
𝑛
= 𝑢(𝑛, 𝑡) be the potential vector. The variational

derivative, the Gateaux derivative, the inner product, and the
Poisson bracket are defined by

𝐻̃
𝑛
= ∑

𝑛∈𝑧

𝐻
𝑛
,

𝛿𝐻̃
𝑛

𝛿𝑢
𝑛

= ∑

𝑚∈𝑧

𝐸
−𝑚

(
𝜕𝐻
𝑛

𝜕𝑢
𝑛+𝑚

) , (2)

𝑃
󸀠

(𝑢
𝑛
) [V
𝑛
] =

𝜕

𝜕𝜀
𝑃(𝑢
𝑛
+ 𝜀V
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0

,

⟨𝑓
𝑛
, 𝑔
𝑛
⟩ = ∑

𝑛∈𝑧

(𝑓
𝑛
, 𝑔
𝑛
)
𝑅
3 ,

(3)

{𝑓
𝑛
, 𝑔
𝑛
}
𝐽
= ⟨

𝛿𝑓
𝑛

𝛿𝑢
𝑛

, 𝐽
𝛿𝑔
𝑛

𝛿𝑢
𝑛

⟩ = ∑

𝑛∈𝑧

(
𝛿𝑓
𝑛

𝛿𝑢
𝑛

, 𝐽
𝛿𝑔
𝑛

𝛿𝑢
𝑛

)

𝑅
3

, (4)

where 𝑃 can be a vector function or an operator, 𝑓
𝑛
and 𝑔

𝑛

are vector functions, (𝑓
𝑛
, 𝑔
𝑛
)
𝑅
3 denotes the standard inner

product of 𝑓
𝑛
and 𝑔

𝑛
in the Euclidean space 𝑅3, and 𝐽 is

a Hamiltonian operator. A system of evolution equations
𝑢
𝑛𝑡𝑚

= 𝐾
𝑚
(𝑢
𝑛
) is called a Hamiltonian system, if there

is a Hamiltonian operator 𝐽 and a sequence of conserved
functionals 𝐻̃(𝑚)

𝑛
,𝑚 = 1, 2, . . ., such that

𝑢
𝑛𝑡𝑚

= 𝐾
𝑚
(𝑢
𝑛
) = 𝐽

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑢
𝑛

. (5)

The functional 𝐻̃(𝑚)
𝑛

is called a Hamiltonian functional of the
system, and we say that the system possesses Hamiltonian
structures. As to a discrete Hamiltonian system, if there are
infinitely many involutive conserved functionals, we say it is
a Liouville integrable discrete Hamiltonian system.

In this paper, we consider the 3×3 discretematrix spectral
problem:

𝐸𝜑
𝑛
= 𝑈
𝑛
(𝑢
𝑛
, 𝜆) 𝜑
𝑛
, 𝑈
𝑛
(𝑢
𝑛
, 𝜆) = (

0 1 0

0 0 1

𝑝
𝑛
𝑟
𝑛
𝑤
𝑛
+ 𝜆

) ,

(6)

in which 𝑢
𝑛
= (𝑝
𝑛
, 𝑟
𝑛
, 𝑤
𝑛
)
𝑇 is the potential, 𝑝

𝑛
= 𝑝(𝑛, 𝑡),

𝑟
𝑛
= 𝑟(𝑛, 𝑡), and 𝑤

𝑛
= 𝑤(𝑛, 𝑡) are real functions defined

over 𝑍 × 𝑅, 𝜆 is a spectral parameter, 𝜆
𝑡
= 0, and 𝜑

𝑛
=

(𝜑
1
(𝑛), 𝜑
2
(𝑛), 𝜑
3
(𝑛))
𝑇 is the eigenfunction.

To get a hierarchy of lattice models associated with (6),
first we solve the stationary discrete zero curvature equation:

(𝐸Γ
𝑛
) 𝑈
𝑛
− 𝑈
𝑛
Γ
𝑛
= 0, (7)

where

Γ
𝑛
= (

𝑎
𝑛
𝑏
𝑛

𝑐
𝑛

𝑑
𝑛
𝑒
𝑛

𝑓
𝑛

𝑔
𝑛
ℎ
𝑛
−𝑎
𝑛
− 𝑒
𝑛

). (8)

Equation (8) gives

𝑝
𝑛
𝑐
𝑛+1

= 𝑑
𝑛
,

𝑟
𝑛
𝑐
𝑛+1

+ 𝑎
𝑛+1

= 𝑒
𝑛
,

𝑏
𝑛+1

− 𝑓
𝑛
+ 𝑐
𝑛+1

(𝑤
𝑛
+ 𝜆) = 0,

𝑝
𝑛
𝑓
𝑛+1

= 𝑔
𝑛
,

𝑟
𝑛
𝑓
𝑛+1

+ 𝑑
𝑛+1

− ℎ
𝑛
= 0,

𝑓
𝑛+1

(𝑤
𝑛
+ 𝜆) + 𝑒

𝑛+1
+ 𝑎
𝑛
+ 𝑒
𝑛
= 0,

−𝑟
𝑛
𝑑
𝑛
− (𝑤
𝑛
+ 𝜆) 𝑔

𝑛
= 𝑝
𝑛
(𝑎
𝑛
+ 𝑎
𝑛+1

+ 𝑒
𝑛+1
) ,

−𝑟
𝑛
(𝑎
𝑛+1

+ 𝑒
𝑛+1

+ 𝑒
𝑛
) + 𝑔
𝑛+1

= 𝑝
𝑛
𝑏
𝑛
+ ℎ
𝑛
(𝑤
𝑛
+ 𝜆) ,

−𝑟
𝑛
𝑓
𝑛
+ ℎ
𝑛+1

= 𝑝
𝑛
𝑐
𝑛
+ (𝑎
𝑛+1

+ 𝑒
𝑛+1

− 𝑎
𝑛
− 𝑒
𝑛
) (𝑤
𝑛
+ 𝜆) .

(9)

Substituting the expansions

𝑎
𝑛
=

∞

∑

𝑚=0

𝑎
(𝑚)

𝑛
𝜆
−𝑚

, 𝑏
𝑛
=

∞

∑

𝑚=0

𝑏
(𝑚)

𝑛
𝜆
−𝑚

,

𝑐
𝑛
=

∞

∑

𝑚=0

𝑐
(𝑚)

𝑛
𝜆
−𝑚

, 𝑑
𝑛
=

∞

∑

𝑚=0

𝑑
(𝑚)

𝑛
𝜆
−𝑚

,

𝑒
𝑛
=

∞

∑

𝑚=0

𝑒
(𝑚)

𝑛
𝜆
−𝑚

, 𝑓
𝑛
=

∞

∑

𝑚=0

𝑓
(𝑚)

𝑛
𝜆
−𝑚

,

𝑔
𝑛
=

∞

∑

𝑚=0

𝑔
(𝑚)

𝑛
𝜆
−𝑚

, ℎ
𝑛
=

∞

∑

𝑚=0

ℎ
(𝑚)

𝑛
𝜆
−𝑚

(10)

into (9), we get the recursion relation

𝑝
𝑛
𝑐
(𝑚)

𝑛+1
= 𝑑
(𝑚)

𝑛
,

𝑎
(𝑚)

𝑛+1
− 𝑒
(𝑚)

𝑛
+ 𝑟
𝑛
𝑐
(𝑚)

𝑛+1
= 0,

𝑏
(𝑚)

𝑛+1
− 𝑓
(𝑚)

𝑛
+ 𝑤
𝑛
𝑐
(𝑚)

𝑛+1
= −𝑐
(𝑚+1)

𝑛+1
,

𝑔
(𝑚)

𝑛
− 𝑝
𝑛
𝑓
(𝑚)

𝑛+1
= 0,

𝑟
𝑛
𝑓
(𝑚)

𝑛+1
+ 𝑑
(𝑚)

𝑛+1
− ℎ
(𝑚)

𝑛
= 0,

𝑤
𝑛
𝑓
(𝑚)

𝑛+1
+ (𝑒
(𝑚)

𝑛+1
+ 𝑒
(𝑚)

𝑛
+ 𝑎
(𝑚)

𝑛
) = −𝑓

(𝑚+1)

𝑛+1
,

−𝑝
𝑛
(𝑎
(𝑚)

𝑛
+ 𝑎
(𝑚)

𝑛+1
) − 𝑤
𝑛
𝑔
(𝑚)

𝑛
− 𝑝
𝑛
𝑒
(𝑚)

𝑛+1
− 𝑟
𝑛
𝑑
(𝑚)

𝑛
= 𝑔
(𝑚+1)

𝑛
,

−𝑟
𝑛
(𝑎
(𝑚)

𝑛+1
+ 𝑒
(𝑚)

𝑛
+ 𝑒
(𝑚)

𝑛+1
) − 𝑤
𝑛
ℎ
(𝑚)

𝑛
+ 𝑔
(𝑚)

𝑛+1
− 𝑝
𝑛
𝑏
(𝑚)

𝑛
= ℎ
(𝑚+1)

𝑛
,

ℎ
(𝑚)

𝑛+1
+ 𝑤
𝑛
(𝑎
(𝑚)

𝑛
− 𝑎
(𝑚)

𝑛+1
+ 𝑒
(𝑚)

𝑛
− 𝑒
(𝑚)

𝑛+1
) − 𝑝
𝑛
𝑐
(𝑚)

𝑛
− 𝑟
𝑛
𝑓
(𝑚)

𝑛

= 𝑎
(𝑚+1)

𝑛+1
− 𝑎
(𝑚+1)

𝑛
+ 𝑒
(𝑚+1)

𝑛+1
− 𝑒
(𝑚+1)

𝑛

(11)

and the initial requirement

𝑎
(0)

𝑛+1
+ 𝑒
(0)

𝑛+1
= 𝑎
(0)

𝑛
+ 𝑒
(0)

𝑛
,

𝑔
(0)

𝑛
= ℎ
(0)

𝑛
= 𝑑
(0)

𝑛
= 𝑓
(0)

𝑛+1
= 𝑐
(0)

𝑛+1
= 0.

(12)
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The initial values are taken as 𝑏(0)
𝑛

= 𝑐
(0)

𝑛
= 𝑓
(0)

𝑛
= 0, so

we can get 𝑒(0)
𝑛
= 𝑎
(0)

𝑛+1
, 𝑎(0)
𝑛
= 𝑒
(0)

𝑛+1
, and then we take the initial

value 𝑎(0)
𝑛
= 𝑒
(0)

𝑛
= −1/3. Note that the definition of the inverse

operator of𝐷 = (𝐸 − 1) does not yield any arbitrary constant
in computing 𝑎(𝑚)

𝑛
and 𝑒

(𝑚)

𝑛
, 𝑚 ≥ 1. Thus, the recursion

relation (11) uniquely determines 𝑎(𝑚)
𝑛

, 𝑏(𝑚)
𝑛

, 𝑐(𝑚)
𝑛

, 𝑑(𝑚)
𝑛

, 𝑒(𝑚)
𝑛

,
𝑓
(𝑚)

𝑛
, 𝑔(𝑚)
𝑛

, and ℎ(𝑚)
𝑛

, 𝑚 ≥ 1, and the first few quantities are
given by

𝑎
(1)

𝑛
= 𝑏
(1)

𝑛
= 𝑐
(1)

𝑛
= 𝑑
(1)

𝑛
= 𝑒
(1)

𝑛
= 0,

𝑓
(1)

𝑛
= 1, 𝑔

(1)

𝑛
= 𝑝
𝑛
, ℎ

(1)

𝑛
= 𝑟
𝑛
,

𝑎
(2)

𝑛
= 0, 𝑏

(2)

𝑛
= 1, 𝑐

(2)

𝑛
= 1,

𝑑
(2)

𝑛
= 𝑝
𝑛
, 𝑒

(2)

𝑛
= 𝑟
𝑛
, 𝑓

(2)

𝑛
= −𝑤
𝑛
,

𝑔
(2)

𝑛
= −𝑝
𝑛
𝑤
𝑛
, ℎ

(2)

𝑛
= 𝑝
𝑛+1

− 𝑤
𝑛
𝑟
𝑛
, . . . .

(13)

Let

𝑉
(𝑚)

𝑛

=

(
(
(
(

(

𝑚

∑

𝑖=0

𝑎
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

𝑏
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

𝑐
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

𝑑
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

𝑒
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

𝑓
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

𝑔
(𝑖)

𝑛
𝜆
𝑚−𝑖

𝑚

∑

𝑖=0

ℎ
(𝑖)

𝑛
𝜆
𝑚−𝑖

−

𝑚

∑

𝑖=0

𝑎
(𝑖)

𝑛
𝜆
𝑚−𝑖

−

𝑚

∑

𝑖=0

𝑒
(𝑖)

𝑛
𝜆
𝑚−𝑖

)
)
)
)

)

,

𝑚 ≥ 0,

(14)

and then take a modification

𝜂
(𝑚)

𝑛
=(

𝑓
(𝑚+1)

𝑛−1
𝑐
(𝑚+1)

𝑛
0

0 𝑓
(𝑚+1)

𝑛
0

0 0 0

), 𝑚 ≥ 0. (15)

Now we set

𝑉
[𝑚]

𝑛
= 𝑉
(𝑚)

𝑛
+ 𝜂
(𝑚)

𝑛
, 𝑚 ≥ 0. (16)

Then we introduce the auxiliary spectral problems associated
with the spectral problem (6):

𝜑
𝑛𝑡𝑚

= 𝑉
[𝑚]

𝑛
𝜑
𝑛
, 𝑚 ≥ 0. (17)

The compatibility conditions of (6) and (17) are

𝑈
𝑛𝑡𝑚

= (𝐸𝑉
[𝑚]

𝑛
)𝑈
𝑛
− 𝑈
𝑛
𝑉
[𝑚]

𝑛
, 𝑚 ≥ 0, (18)

which give rise to the following hierarchy of integrable lattice
equations:

𝑝
𝑛𝑡𝑚

= 𝑔
(𝑚+1)

𝑛
− 𝑝
𝑛
𝑓
(𝑚+1)

𝑛−1
,

𝑟
𝑛𝑡𝑚

= ℎ
(𝑚+1)

𝑛
− 𝑟
𝑛
𝑓
(𝑚+1)

𝑛
− 𝑝
𝑛
𝑐
(𝑚+1)

𝑛
,

𝑤
𝑛𝑡𝑚

= (𝑎
(𝑚+1)

𝑛+1
− 𝑎
(𝑚+1)

𝑛
) + (𝑒

(𝑚+1)

𝑛+1
− 𝑒
(𝑚+1)

𝑛
) ,

(𝑚 ≥ 0) .

(19)

So the discrete spectral problem (6) and (17) constitute the
Lax pairs of (19), and (19) are a hierarchy of Lax integrable
lattice equations. It is easy to verify that the first lattice
equation in (19), when𝑚 = 1, under 𝑡

1
→ 𝑡, is

𝑝
𝑛𝑡
= 𝑝
𝑛
(𝑤
𝑛−2

− 𝑤
𝑛
) ,

𝑟
𝑛𝑡
= 𝑟
𝑛
(𝑤
𝑛−1

− 𝑤
𝑛
) + (𝑝

𝑛+1
− 𝑝
𝑛
) ,

𝑤
𝑛𝑡
= 𝑟
𝑛+1

− 𝑟
𝑛
.

(20)

The Lax pair of (20) is (6) and the time evolution law for 𝜑
𝑛

is as follows:

𝜑
𝑛𝑡
= 𝑉
[1]

𝑛
𝜑
𝑛

=(

−
𝜆

3
− 𝑤
𝑛−2

+
2

3
1 0

0 −
𝜆

3
+
2

3
− 𝑤
𝑛−1

1

𝑝
𝑛

𝑟
𝑛

2

3
𝜆 +

2

3

)𝜑
𝑛
.

(21)

Now we would like to derive the Hamiltonian structures
for (19).

Set 𝑅
𝑛
= Γ
𝑛
𝑈
−1

𝑛
; through a direct calculation, we get

Tr(𝑅
𝑛

𝜕𝑈
𝑛

𝜕𝜆
) =

𝑔
𝑛

𝑝
𝑛

, Tr(𝑅
𝑛

𝜕𝑈
𝑛

𝜕𝑝
𝑛

) =
𝑎
𝑛

𝑝
𝑛

,

Tr(𝑅
𝑛

𝜕𝑈
𝑛

𝜕𝑟
𝑛

) =
𝑑
𝑛

𝑝
𝑛

, Tr(𝑅
𝑛

𝜕𝑈
𝑛

𝜕𝑤
𝑛

) =
𝑔
𝑛

𝑝
𝑛

.

(22)

By the discrete trace identity [2]

𝛿

𝛿𝑢𝑖
𝑛

∑

𝑛∈𝑍

Tr(𝑅
𝑛

𝜕𝑈
𝑛

𝜕𝜆
) = 𝜆

−𝜀

(
𝜕

𝜕𝜆
)𝜆
𝜀 Tr(𝑅

𝑛

𝜕𝑈
𝑛

𝜕𝑢𝑖
𝑛

) ,

𝑖 = 1, 2, 3,

(23)

we have

(
𝛿

𝛿𝑝
𝑛

,
𝛿

𝛿𝑟
𝑛

,
𝛿

𝛿𝑤
𝑛

)

𝑇

∑

𝑛∈𝑍

(
𝑔
𝑛

𝑝
𝑛

) = 𝜆
−𝜀

(
𝜕

𝜕𝜆
)𝜆
𝜀
(
(
(

(

𝑎
𝑛

𝑝
𝑛

𝑑
𝑛

𝑝
𝑛

𝑔
𝑛

𝑝
𝑛

)
)
)

)

,

(24)

where 𝜀 is a constant to be found.
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By substituting

𝑎
𝑛
=

∞

∑

𝑚=0

𝑎
(𝑚)

𝑛
𝜆
−𝑚

,

𝑑
𝑛
=

∞

∑

𝑚=0

𝑑
(𝑚)

𝑛
𝜆
−𝑚

,

𝑔
𝑛
=

∞

∑

𝑚=0

𝑔
(𝑚)

𝑛
𝜆
−𝑚

(25)

into (24) and equating the coefficients of 𝜆−𝑚−1, we have

(
𝛿

𝛿𝑝
𝑛

,
𝛿

𝛿𝑟
𝑛

,
𝛿

𝛿𝑤
𝑛

)

𝑇

∑

𝑛∈𝑍

(
𝑔
(𝑚+1)

𝑛

−𝑚𝑝
𝑛

) =

(
(
(
(
(

(

𝑎
(𝑚)

𝑛

𝑝
𝑛

𝑑
(𝑚)

𝑛

𝑝
𝑛

𝑔
(𝑚)

𝑛

𝑝
𝑛

)
)
)
)
)

)

, 𝑚 > 0.

(26)

Now we can rewrite (19) as follows:

(

𝑝
𝑛

𝑟
𝑛

𝑤
𝑛

)

𝑡𝑚

= 𝐽

(
(
(
(
(

(

𝑎
(𝑚)

𝑛

𝑝
𝑛

𝑑
(𝑚)

𝑛

𝑝
𝑛

𝑔
(𝑚)

𝑛

𝑝
𝑛

)
)
)
)
)

)

, (27)

where

𝐽 = (

𝐽
11

𝐽
12

𝐽
13

𝐽
21

𝐽
22

𝐽
23

𝐽
31

𝐽
32

𝐽
33

),

𝐽
11
= 𝑝
𝑛
(𝐸
−1

− 𝐸 + 𝐸
−2

− 𝐸
2

) 𝑝
𝑛
,

𝐽
12
= 𝑝
𝑛
(𝐸
−2

+ 𝐸
−1

− 𝐸 − 1) 𝑟
𝑛
,

𝐽
13
= 𝑝
𝑛
(𝐸
−2

− 1)𝑤
𝑛
,

𝐽
21
= 𝑟
𝑛
(𝐸
−1

+ 1 − 𝐸 − 𝐸
2

) 𝑝
𝑛
,

𝐽
22
= 𝑟
𝑛
(𝐸
−1

− 𝐸) 𝑟
𝑛
+ 𝑝
𝑛
𝐸
−1

𝑤
𝑛
− 𝑤
𝑛
𝐸𝑝
𝑛
,

𝐽
23
= 𝐸𝑝
𝑛
− 𝑝
𝑛
𝐸
−2

− 𝑟
𝑛
(1 − 𝐸

−1

)𝑤
𝑛
,

𝐽
31
= 𝑤
𝑛
(1 − 𝐸

2

) 𝑝
𝑛
,

𝐽
32
= 𝐸
2

𝑝
𝑛
− 𝑝
𝑛
𝐸
−1

+ 𝑤
𝑛
(1 − 𝐸) 𝑟

𝑛
,

𝐽
33
= 𝐸𝑟
𝑛
− 𝑟
𝑛
𝐸
−1

.

(28)

It is easy to verify that the operator 𝐽 is a Hamiltonian
operator. So the lattice systems (19) can be rewritten as the
hierarchy of discrete Hamiltonian equation (27). Set

𝐻̃
(𝑚)

𝑛
= ∑

𝑛∈𝑍

𝑔
(𝑚+1)

𝑛

−𝑚𝑝
𝑛

, 𝑚 ≥ 1, (29)

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑢
𝑛

= 𝜙
𝑛

𝛿𝐻̃
(𝑚−1)

𝑛

𝛿𝑢
𝑛

. (30)

From the recursion relation (11) we can get the recursion
operator 𝜙

𝑛
in (30):

𝜙
𝑛
= (

𝜙
11

𝜙
12

𝜙
13

𝜙
21

𝜙
22

𝜙
23

𝜙
31

𝜙
32

𝜙
33

),

𝜙
11
=
1

𝑝
𝑛

(𝐸
2

− 1)
−1

𝑤
𝑛
(1 − 𝐸

2

) 𝑝
𝑛

+
1

𝑝
𝑛

(𝐸 + 1)
−1

𝑟
𝑛
(𝐸𝑝
𝑛
+ 𝑝
𝑛
𝐸
−1

)
−1

𝑟
𝑛
(𝐸 − 1) 𝑝

𝑛
,

𝜙
12
=
1

𝑝
𝑛

(𝐸
2

− 1)
−1

[𝐸
2

𝑝
𝑛
− 𝑝
𝑛
𝐸
−1

+ 𝑤
𝑛
(1 − 𝐸) 𝑟

𝑛
]

−
1

𝑝
𝑛

(𝐸 + 1)
−1

𝑟
𝑛
(𝐸𝑝
𝑛
+ 𝑝
𝑛
𝐸
−1

)
−1

× (𝑝
𝑛
𝐸
−1

𝑤
𝑛
− 𝑤
𝑛
𝐸𝑝
𝑛
) ,

𝜙
13
=
1

𝑝
𝑛

(𝐸
2

− 1)
−1

(𝐸𝑟
𝑛
− 𝑟
𝑛
𝐸
−1

)

−
1

𝑝
𝑛

(𝐸 + 1)
−1

𝑟
𝑛
(𝐸𝑝
𝑛
+ 𝑝
𝑛
𝐸
−1

)
−1

(𝐸𝑝
𝑛
− 𝑝
𝑛
𝐸
−2

) ,

𝜙
21
= −(𝐸𝑝

𝑛
+ 𝑝
𝑛
𝐸
−1

)
−1

𝑟
𝑛
(𝐸 − 1) 𝑝

𝑛
,

𝜙
22
= (𝐸𝑝

𝑛
+ 𝑝
𝑛
𝐸
−1

)
−1

(𝑝
𝑛
𝐸
−1

𝑤
𝑛
− 𝑟
𝑛
𝐸𝑝
𝑛
) ,

𝜙
23
= (𝐸𝑝

𝑛
+ 𝑝
𝑛
𝐸
−1

)
−1

(𝐸𝑝
𝑛
− 𝑝
𝑛
𝐸
−2

) ,

𝜙
31
= −𝑝
𝑛
− 𝐸𝑝
𝑛
− 𝐸
2

𝑝
𝑛
,

𝜙
32
= −𝐸𝑟

𝑛
− 𝑟
𝑛
,

𝜙
33
= −𝑤
𝑛
.

(31)

Therefore, we have

𝑀 = 𝐽𝜙
𝑛
= (

0 0 𝑝
𝑛
(1 − 𝐸

−2

)

0 𝐸𝑝
𝑛
− 𝑝
𝑛
𝐸
−1

𝑟
𝑛
(1 − 𝐸

−1

)

(𝐸
2

− 1) 𝑝
𝑛

(𝐸 − 1) 𝑟
𝑛

0

) .

(32)



Abstract and Applied Analysis 5

It is easy to verify that 𝑀∗ = −𝑀; moreover, we can prove
that

{𝐻̃
(𝑚)

𝑛
, 𝐻̃
(𝑙)

𝑛
}
𝐽

= 0, 𝑚, 𝑙 ≥ 1,

(𝐻̃
(𝑚)

𝑛
)
𝑡𝑙

= ⟨
𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑢
𝑛

, 𝑢
𝑛𝑡𝑙
⟩ = ⟨

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑢
𝑛

, 𝐽
𝛿𝐻̃
(𝑙)

𝑛

𝛿𝑢
𝑛

⟩

= {𝐻̃
(𝑚)

𝑛
, 𝐻̃
(𝑙)

𝑛
}
𝐽

= 0, 𝑚, 𝑙 ≥ 1.

(33)

So we get the following.

Proposition 1. {𝐻̃(𝑚)
𝑛
}
𝑚≥1

defined by (29) forms an infinite set
of conserved functionals of the hierarchy (19), and 𝐻̃(𝑚)

𝑛
,𝑚 ≥ 1,

are involution in pairs with respect to the Poisson bracket (4).

Theorem 2. The lattice equations in (19) are all discrete
Liouville integrable Hamiltonian systems.

3. Infinitely Many Conservation Laws

We can get the following alternative form from (6) and (21):

𝜑
3
(𝑛 + 1) = 𝑝

𝑛
𝜑
3
(𝑛 − 2) + 𝑟

𝑛
𝜑
3
(𝑛 − 1) + (𝑤

𝑛
+ 𝜆) 𝜑

3
(𝑛) ,

(34)

𝜑
3𝑡
(𝑛) = 𝑝

𝑛
𝜑
3
(𝑛 − 2) + 𝑟

𝑛
𝜑
3
(𝑛 − 1) +

2

3
(1 + 𝜆) 𝜑

3
(𝑛) .

(35)
Set

𝜃
𝑛
= 𝜃 (𝑛) =

𝜑
3
(𝑛)

𝜑
3
(𝑛 + 1)

, (36)

and we can obtain

−(ln 𝜃
𝑛
)
𝑡
= (𝐸 − 1) [𝑝

𝑛
𝜃
𝑛−2
𝜃
𝑛−1

+ 𝑟
𝑛
𝜃
𝑛−1

+
2

3
(1 + 𝜆)] .

(37)

Equation (34) can be written as follows:

𝜆𝜃
𝑛
= 1 − 𝑝

𝑛
𝜃
𝑛−2
𝜃
𝑛−1
𝜃
𝑛
− 𝑟
𝑛
𝜃
𝑛−1
𝜃
𝑛
− 𝑤
𝑛
𝜃
𝑛
. (38)

Then, expanding 𝜃
𝑛
in the power series of 1/𝜆 :

𝜃
𝑛
=

∞

∑

𝑗=1

𝜃
(𝑗)

𝑛
𝜆
−𝑗

, (39)

and substituting it into (38), we can obtain all the coefficients
𝜃
(𝑗)

𝑛
. Substitute them into (37) and due to 𝜃(1)

𝑛
= 1 and 𝜆

𝑡
= 0,

we can get the following fact:

[

[

∞

∑

𝑘=1

(−1)
𝑘
1

𝑘
(

∞

∑

𝑗=1

𝜃
(𝑗+1)

𝑛

𝜆𝑗
)

𝑘

]

]𝑡

= (𝐸 − 1)

× [

[

𝑝
𝑛

∞

∑

𝑗=1

𝜃
(𝑗)

𝑛−2

𝜆𝑗

∞

∑

𝑗=1

𝜃
(𝑗)

𝑛−1

𝜆𝑗
+ 𝑟
𝑛

∞

∑

𝑗=1

𝜃
(𝑗)

𝑛−1

𝜆𝑗
+
2

3
(1 + 𝜆)]

]

,

(40)

from which an infinite number of conservation laws can be
determined by equating the powers of 1/𝜆. The following are
the first three of them:

𝑤
𝑛𝑡
= (𝐸 − 1) 𝑟

𝑛
,

(−𝑟
𝑛
−
1

2
𝑤
2

𝑛
)
𝑡

= (𝐸 − 1) (−𝑤
𝑛−1
𝑟
𝑛
+ 𝑝
𝑛
) ,

(𝑝
𝑛
− 𝑟
𝑛
𝑤
𝑛−1

− 𝑤
𝑛
𝑟
𝑛
+
1

3
𝑤
3

𝑛
)
𝑡

= (𝐸 − 1) [𝑟
𝑛
(𝑟
𝑛−1

+ 𝑤
2

𝑛−1
) − 𝑝
𝑛
(𝑤
𝑛−1

+ 𝑤
𝑛−2
)] .

(41)

We can get other conservation laws in the hierarchy (19)
similarly.

4. Self-Consistent Sources for
the Lattice Hierarchy (19)

In this section, we will construct the lattice hierarchy (19)
with self-consistent sources. Consider the auxiliary linear
problems

𝐸(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

) = 𝑈
𝑛
(𝑢
𝑛
, 𝜆
𝑗
)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

),

(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

)

𝑡𝑚

= 𝑉
𝑛

[𝑚]

(𝑢
𝑛
, 𝜆
𝑗
)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

),

(42)

and, based on the results in [17], we show the following
equation:

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑢
𝑛

+

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑢
𝑛

= 0, (43)

where

𝛿𝜆
𝑗

𝛿𝑢
𝑛

=
1

2
Tr(𝜓

𝑗

𝜕𝑈 (𝑢
𝑛
, 𝜆
𝑗
)

𝜕𝑢
𝑛

) ,

𝜓
𝑗
= (

𝜑
1𝑗
𝜑
1𝑗

𝜑
1𝑗
𝜑
2𝑗

𝜑
1𝑗
𝜑
3𝑗

𝜑
2𝑗
𝜑
1𝑗

𝜑
2𝑗
𝜑
2𝑗

𝜑
2𝑗
𝜑
3𝑗

𝜑
3𝑗
𝜑
1𝑗

𝜑
3𝑗
𝜑
2𝑗

𝜑
3𝑗
𝜑
3𝑗

), 𝑗 = 1, 2, . . . , 𝑁.

(44)
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Through a direct computation, we obtain the lattice hierarchy
with self-consistent sources as follows:

(

𝑝
𝑛

𝑟
𝑛

𝑤
𝑛

)

𝑡𝑚

= 𝐽

(
(
(
(
(
(

(

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑝
𝑛

+

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑝
𝑛

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑟
𝑛

+

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑟
𝑛

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑤
𝑛

+

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑤
𝑛

)
)
)
)
)
)

)

= 𝐽

(
(
(
(
(

(

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑝
𝑛

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑟
𝑛

𝛿𝐻̃
(𝑚)

𝑛

𝛿𝑤
𝑛

)
)
)
)
)

)

+𝐽

(
(
(
(
(
(

(

1

2

𝑁

∑

𝑗=1

𝜑
1𝑗
𝜑
3𝑗

1

2

𝑁

∑

𝑗=1

𝜑
2𝑗
𝜑
3𝑗

1

2

𝑁

∑

𝑗=1

𝜑
3𝑗
𝜑
3𝑗

)
)
)
)
)
)

)

, 𝑚 ≥ 1.

(45)
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