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A six-component super-Ablowitz-Kaup-Newell-Segur (-AKNS) hierarchy is proposed by the zero curvature equation associated
with Lie superalgebras. Supertrace identity is used to furnish the super-Hamiltonian structures for the resulting nonlinear
superintegrable hierarchy. Furthermore, we derive the infinite conservation laws of the first two nonlinear super-AKNS equations
in the hierarchy by utilizing spectral parameter expansions. PACS: 02.30.Ik; 02.30.Jr; 02.20.Sv.

1. Introduction

It is well known that many physically important integrable
partial differential equations belong to the Ablowitz-Kaup-
Newell-Segur (AKNS) hierarchy [1–3], such as the KdV
equation, the mKdV equation, the nonlinear Schrödinger
equation, the Sin-Gordon equation, and the mixed KdV-
mKdV equation. The AKNS hierarchy is based on the
Zakharov and Shabat [4] spectral problem

(𝜙1𝜙
2

)
𝑥

= (−𝜆 𝑞𝑟 𝜆)(
𝜙
1𝜙
2

) . (1)

It possesses Lax representation, Hamiltonian structures, and
infinitely many conserved quantities and can be solved by
the method of inverse scattering, Hirota method, Darboux
transform, and others.

The superintegrable systems had already aroused strong
interest in theoretical physics [5, 6], where the fermion fields
are added and equally treated with the boson fields. Many
classical integrable equations have been extended to the super
ones by adding fermion fields, such as the super-AKNS
[6–10], the super-KdV [5], the super-Dirac [9, 11, 12], and
the super-Kadomtsev Petviashvili (KP) [13–15]. The super-
AKNS hierarchy was first proposed in [6] based on the
superalgebra sl(2,R). Extension of this work to other and

higher dimensional superalgebras is given in [16]. The super-
AKNS matrix superspectral problem is

(
𝜓
1𝜓
2𝜓
3

)
𝑥

= (
−𝜆 𝑞 𝛼
𝑟 𝜆 𝛽
−𝛽 𝛼 0)(

𝜓
1𝜓
2𝜓
3

) , (2)

where𝜓
3
,𝛼, and𝛽 are fermion fields. It reduces to the spectral

AKNS’s system as 𝛼 = 𝛽 = 0.
In this paper, we consider a new 3×3matrix superspectral

problemwhich generates a six-component super-AKNS hier-
archy. Aswewill show this spectral problem takes the spectral
AKNS’s system and super-AKNS’s system as special cases.

The paper is organized as follows. In Section 2, we will
construct a six-component super-AKNS hierarchy related
to the 3 × 3 matrix superspectral problem. In Section 3,
we present the super-Hamiltonian structures for the six-
component super-AKNS hierarchy with the help of the
supertrace identity. In Section 4, we consider some special
reductions of the superintegrable hierarchy. In Section 5,
we derive the infinite conservation laws for the associated
hierarchy. The last section contains concluding remarks.
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2. A Six-Component Super-AKNS Hierarchy

In this section, we will derive a new six-component super-
AKNS hierarchy associated with the 3 × 3 matrix spectral
problem. Let G be a commutative superalgebra over R and
G̃ a matrix loop superalgebra overG with the nondegenerate
Killing form. We take a matrix superspectral problem

𝜙
𝑥
= 𝑈𝜙 = 𝑈 (𝑢, 𝜆) 𝜙, 𝜙 = (

𝜙
1𝜙
2𝜙
3

) ,

𝑈 = (
−𝜆 𝑞 𝛼

1

𝑟 𝜆 𝛽
1𝛽

2
𝛼
2
0
) ,

(3)

where 𝜙
𝑥
and 𝜙

𝑡
denote the partial derivatives with respect to

𝑥 and 𝑡, 𝑢 = (𝑞, 𝑟, 𝛼
1
, 𝛼
2
, 𝛽
1
, 𝛽
2
)𝑇 ∈ G6 is a potential consist-

ing of commuting and anticommuting variables, 𝑞, 𝑟, 𝜆, 𝜙
1
, 𝜙
2

are the commuting variables, which can be indicated by the
degree 𝑝 as 𝑝(𝑞) = 𝑝(𝑟) = 𝑝(𝜆) = 𝑝(𝜙

1
) = 𝑝(𝜙

2
) = 0, and

𝛼
1
, 𝛼
2
, 𝛽
1
, 𝛽
2
, 𝜙
3
are the anticommuting variables, which can

be indicated by the degree 𝑝 as 𝑝(𝛼
1
) = 𝑝(𝛼

2
) = 𝑝(𝛽

1
) =

𝑝(𝛽
2
) = 𝑝(𝜙

3
) = 1. Here 𝜆 is assumed to be a constant

spectral parameter (i.e., 𝜆
𝑡
= 0).

Let us find the following temporal evolution equation
associated with (3):

𝜙
𝑡
= 𝑉𝜙, 𝑉 = (

𝐴 + 𝐺
2 𝐵 𝜌
𝐶 −𝐴 + 𝐺

2 𝛿
𝜀 𝜏 𝐺

) , (4)

where 𝐴, 𝐵, 𝐶, and 𝐺 are commuting fields and 𝜌, 𝛿, 𝜀, and 𝜏
are anticommuting fields. From the stationary zero curvature
equation

𝑉
𝑥
= [𝑈,𝑉] , (5)

it gives rise to

𝐴
𝑥
= 2𝑞𝐶 − 2𝑟𝐵 + 𝛼

1
𝜀 − 𝛽
1
𝜏 − 𝛼
2
𝛿 + 𝛽
2
𝜌,

𝐵
𝑥
= −2𝜆𝐵 − 𝑞𝐴 + 𝛼

1
𝜏 + 𝛼
2
𝜌,

𝐶
𝑥
= 2𝜆𝐶 + 𝑟𝐴 + 𝛽

1
𝜀 + 𝛽
2
𝛿,

𝐺
𝑥
= 𝛼
1
𝜀 + 𝛽
1
𝜏 + 𝛼
2
𝛿 + 𝛽
2
𝜌,

𝜌
𝑥
= −𝜆𝜌 + 𝑞𝛿 − 12𝛼1𝐴 +

1
2𝛼1𝐺 − 𝛽1𝐵,

𝛿
𝑥
= 𝜆𝛿 + 𝑟𝜌 − 𝛼

1
𝐶 + 12𝛽1𝐴 +

1
2𝛽1𝐺,

𝜏
𝑥
= −𝜆𝜏 − 𝑞𝜀 − 12𝛼2𝐴 −

1
2𝛼2𝐺 + 𝛽2𝐵,

𝜀
𝑥
= 𝜀 − 𝑟𝜏 + 𝛼

2
𝐶 + 12𝛽2𝐴 −

1
2𝛽2𝐺.

(6)

We put 𝐴, 𝐵, 𝐶, 𝐺, 𝜌, 𝛿, 𝜀, and 𝜏 to be polynomial of 𝜆:
𝐴 =
∞

∑
𝑚≥0

𝐴
𝑚
𝜆−𝑚, 𝐵 =

∞

∑
𝑚≥0

𝐵
𝑚
𝜆−𝑚,

𝐶 =
∞

∑
𝑚≥0

𝐶
𝑚
𝜆−𝑚, 𝐺 =

∞

∑
𝑚≥0

𝐺
𝑚
𝜆−𝑚,

𝜌 =
∞

∑
𝑚≥0

𝜌
𝑚
𝜆−𝑚, 𝜀 =

∞

∑
𝑚≥0

𝜀
𝑚
𝜆−𝑚,

𝛿 =
∞

∑
𝑚≥0

𝛿
𝑚
𝜆−𝑚, 𝜏 =

∞

∑
𝑚≥0

𝜏
𝑚
𝜆−𝑚,

(7)

and substituting (7) into (6) and equating the coefficients of
𝜆, we obtain

𝐴
𝑚,𝑥
= 2𝑞𝐶

𝑚
− 2𝑟𝐵

𝑚
+ 𝛼
1
𝜀
𝑚
− 𝛽
1
𝜏
𝑚
− 𝛼
2
𝛿
𝑚
+ 𝛽
2
𝜌
𝑚
,

𝐵
𝑚,𝑥
= −2𝐵

𝑚+1
− 𝑞𝐴
𝑚
+ 𝛼
1
𝜏
𝑚
+ 𝛼
2
𝜌
𝑚
,

𝐶
𝑚,𝑥
= 2𝐶
𝑚+1
+ 𝑟𝐴
𝑚
+ 𝛽
1
𝜀
𝑚
+ 𝛽
2
𝛿
𝑚
,

𝐺
𝑚,𝑥
= 𝛼
1
𝜀
𝑚
+ 𝛽
1
𝜏
𝑚
+ 𝛼
2
𝛿
𝑚
+ 𝛽
2
𝜌
𝑚
,

𝜌
𝑚,𝑥
= −𝜌
𝑚+1
+ 𝑞𝛿
𝑚
− 12𝛼1𝐴𝑚 +

1
2𝛼1𝐺𝑚 − 𝛽1𝐵𝑚,

𝛿
𝑚,𝑥
= 𝛿
𝑚+1
+ 𝑟𝜌
𝑚
− 𝛼
1
𝐶
𝑚
+ 12𝛽1𝐴𝑚 +

1
2𝛽1𝐺𝑚,

𝜏
𝑚,𝑥
= −𝜏
𝑚+1
− 𝑞𝜀
𝑚
− 12𝛼2𝐴𝑚 −

1
2𝛼2𝐺𝑚 + 𝛽2𝐵𝑚,

𝜀
𝑚,𝑥
= 𝜀
𝑚+1
− 𝑟𝜏
𝑚
+ 𝛼
2
𝐶
𝑚
+ 12𝛽2𝐴𝑚 −

1
2𝛽2𝐺𝑚.

(8)

Upon choosing the initial data

𝐴
0
= −2, 𝐵

0
= 𝐶
0
= 𝜌
0
= 𝛿
0
= 𝜀
0
= 𝜏
0
= 0,

𝐺
0
= −𝑔
0
= constant, (9)

then the recursion relations in (8) uniquely define a series of
sets of differential polynomial functions in 𝑢 with respect to
𝑥. The first two sets are as follows:

𝐵
1
= 𝑞, 𝐶

1
= 𝑟, 𝐴

1
= 0,

𝐺
1
= 0, 𝜌

1
= −12𝛼1 (𝑔0 − 2) , 𝜏

1
= 12𝛼2 (𝑔0 + 2) ,

𝛿
1
= 12𝛽1 (𝑔0 + 2) , 𝜀

1
= −12𝛽2 (𝑔0 − 2) ,

𝐵
2
= −12 (𝑞𝑥 − 𝑔0𝛼1𝛼2) , 𝐶

2
= 12 (𝑟𝑥 + 𝑔0𝛽1𝛽2) ,

𝜌
2
= −𝛼
1,𝑥
+ 12𝑔0 (𝛼1,𝑥 + 𝑞𝛽1) ,

𝜏
2
= −𝛼
2,𝑥
− 12𝑔0 (𝛼2,𝑥 − 𝑞𝛽2) ,
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𝛿
2
= 𝛽
1,𝑥
+ 12𝑔0 (𝛽1,𝑥 + 𝑟𝛼1) ,

𝐴
2
= 𝑞𝑟 + 𝛼

1
𝛽
2
− 𝛼
2
𝛽
1
− 12𝑔0 (𝛼1𝛽2 + 𝛼2𝛽1) ,

𝜀
2
= 𝛽
2,𝑥
− 12𝑔0 (𝛽2,𝑥 − 𝑟𝛼2) ,

𝐺
2
= 𝛼
1
𝛽
2
+ 𝛼
2
𝛽
1
− 12𝑔0 (𝛼1𝛽2 − 𝛼2𝛽1) .

(10)

From the recursion relations in (8), we can obtain the
hereditary recursion operator 𝐿 which satisfies that

(𝐶
𝑚+1
, 𝐵
𝑚+1
, −𝜀
𝑚+1
, −𝜏
𝑚+1
, 𝛿
𝑚+1
, 𝜌
𝑚+1
)𝑇

= 𝐿(𝐶
𝑚
, 𝐵
𝑚
, −𝜀
𝑚
, −𝜏
𝑚
, 𝛿
𝑚
, 𝜌
𝑚
)𝑇,

(11)

where

𝐿 = (
𝐿
11
𝐿
12
𝐿
13𝐿

21
𝐿
22
𝐿
23𝐿

31
𝐿
32
𝐿
33

) ,

𝐿
11
= (−

1
2𝜕 + 𝑟𝜕

−1𝑞 −𝑟𝜕−1𝑟
𝑞𝜕−1𝑞 − 12𝛼1

1
2𝜕 − 𝑞𝜕

−1𝑟) ,

𝐿
12
= (−

𝑟
2𝜕
−1𝛼
1

𝑟
2𝜕
−1𝛽
1

−𝜕−1𝛼
1
𝜕−1𝛽
1

) ,

𝐿
13
= (
−𝑟2𝜕
−1𝛼
2

𝑟
2𝜕
−1𝛽
2

−𝜕−1𝛼
2
𝜕−1𝛽
2
− 12𝛼2

),

𝐿
21
= (−𝛼2 − 𝛽2𝜕

−1𝑞 𝛽
2
𝜕−1𝑟

−𝛼
2
𝜕−1𝑞 𝛼

2
𝜕−1𝑟 + 𝛽

2

) ,

𝐿
22
= (−𝜕 − 𝜕−1𝛼1 −

1
2𝛽2𝜕
−1𝛼
1
−𝑟 − 𝛽

2
𝜕−1𝛽
1

𝑞 + 𝛼
2
𝜕−1𝛼
1

𝜕 ) ,

𝐿
23
= (𝛽2𝜕

−1𝛼
2

0
0 −𝛼

2
𝜕−1𝛽
2

) ,

𝐿
31
= (−𝛼1 + 𝛽1𝜕

−1𝑞 −𝛽
1
𝜕−1𝑟

𝛼
1
𝜕−1𝑞 −𝛼

1
𝜕−1𝑟 + 𝛽

1

) ,

𝐿
32
= (−𝛽1𝜕

−1𝛼
1
0

0 𝛼
1
𝜕−1𝛽
1

) ,

𝐿
33
= (

−𝜕 𝑟 + 𝛽
1
𝜕−1𝛽
2

−𝑞 − 𝛼
1
𝜕−1𝛼
2
𝜕 + 𝜕−1𝛽

2
− 12𝛼1𝜕

−1𝛽
2

) .

(12)

Taking

𝑉(𝑛) = (𝜆𝑛𝑉)
+
=
𝑛

∑
𝑗=0

(
𝐴
𝑗
+ 𝐺
𝑗

2 𝐵
𝑗

𝜌
𝑗

𝐶
𝑗

−𝐴
𝑗
+ 𝐺
𝑗

2 𝛿
𝑗

𝜀
𝑗

𝜏
𝑗

𝐺
𝑗

)𝜆𝑛−𝑗,

(13)

here (𝜆𝑛𝑉)
+
denotes the polynomial part of 𝜆𝑛𝑉.

The compatibility conditions (i.e., zero curvature equa-
tion)

𝑈
𝑡
− 𝑉(𝑛)
𝑥
+ [𝑈,𝑉(𝑛)] = 0 (14)

of the matrix superspectral problems

𝜙
𝑥
= 𝑈𝜙, 𝜙

𝑡
𝑛

= 𝑉(𝑛)𝜙, 𝑛 ≥ 0, (15)

determine a new six-component super-AKNS integrable
soliton hierarchy

𝑢
𝑡
𝑛

=((

(

𝑞
𝑟
𝛼
1

𝛽
1

𝛼
2𝛽
2

))

)𝑡
𝑛

= 𝐾
𝑛
(𝑢) =(

(

−2𝐵
𝑛+12𝐶
𝑛+1−𝜌
𝑛+1

𝛿
𝑛+1−𝜏
𝑛+1𝜀
𝑛+1

)

)

, 𝑛 ≥ 0.

(16)

3. The Super-Hamiltonian Structures

In this section, we will establish the super-Hamiltonian
structure of the six-component super-AKNS hierarchy by
supertrace identity [9, 17]

𝛿
𝛿𝑢 ∫ Str(𝑉

𝜕𝑈
𝜕𝜆 )𝑑𝑥 = 𝜆

−𝛾 𝜕
𝜕𝜆𝜆
𝛾Str(𝑉𝜕𝑈𝜕𝑢 ) , (17)

where the constant 𝛾 is determined by

𝛾 = −𝜆2
𝑑
𝑑𝜆 ln |Str (𝑉𝑉)| . (18)

Through direct calculations, we have

Str(𝑉𝜕𝑈𝜕𝜆 ) = −𝐴, Str(𝑉𝜕𝑈𝜕𝑞 ) = 𝐶,

Str(𝑉𝜕𝑈𝜕𝑟 ) = 𝐵, Str(𝑉 𝜕𝑈𝜕𝛼
1

) = −𝜀,

Str(𝑉 𝜕𝑈𝜕𝛽
1

) = −𝜏, Str(𝑉 𝜕𝑈𝜕𝛼
2

) = 𝛿,

Str(𝑉 𝜕𝑈𝜕𝛽
2

) = 𝜌.

(19)

Substituting the above results into the supertrace identity (17)
yields that

𝛿
𝛿𝑢 ∫−𝐴𝑑𝑥 = 𝜆

−𝛾 𝜕
𝜕𝜆𝜆
𝛾(𝐶, 𝐵, −𝜀, −𝜏, 𝛿, 𝜌)𝑇. (20)
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Comparing the coefficients of 𝜆−𝑚−2 on both sides of (20)
gives rise to

𝛿
𝛿𝑢 ∫−𝐴𝑚+2𝑑𝑥 = (𝛾 − 𝑚 − 1)(

(

𝐶
𝑚+1𝐵
𝑚+1−𝜀
𝑚+1−𝜏
𝑚+1𝛿
𝑚+1𝜌
𝑚+1

)

)

, 𝑚 ≥ 0.

(21)

By employing the computing formula (18) on the constant 𝛾,
we obtain 𝛾 = 0. Thus we have

𝛿H
𝑚

𝛿𝑢 =(

(

𝐶
𝑚+1𝐵
𝑚+1−𝜀
𝑚+1−𝜏
𝑚+1𝛿
𝑚+1𝜌
𝑚+1

)

)

, H
𝑚
= ∫ 2
𝑚 + 1𝐴𝑚+1𝑑𝑥, 𝑚 ≥ 0.

(22)

It then follows that the superintegrable hierarchy (16) pos-
sesses the following super-Hamiltonian form:

𝑢
𝑡
𝑛

= 𝐾
𝑛
(𝑢) = 𝐽𝛿H𝑛𝛿𝑢 , 𝑛 ≥ 0, (23)

where the super-Hamiltonian operator 𝐽 is given by

𝐽 =(

(

0 −2 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 0 0

)

)

. (24)

We note that the recursion operator 𝐿 is an integrodif-
ferential operator, but the generalized superintegrable system
(23) is pure differential equations according to [12].

4. Reductions

We now consider the possible reductions of our six-
component super-AKNS hierarchy.

Assuming 𝛼
1
= 𝛼
2
= 𝛽
1
= 𝛽
2
= 0, hierarchy (23) reduces

to the classical AKNS hierarchy [1]. Taking 𝛼
1
= −𝛼
2
,𝛽
2
=

𝛽
1
, we can have the super-AKNS hierarchy [6, 9, 10].
When 𝑛 = 1 in (23), we obtain the first-order nonlinear

superintegrable equations

𝑞
𝑡
1

= 𝑞
𝑥
− 𝑔
0
𝛼
1
𝛼
2
,

𝑟
𝑡
1

= 𝑟
𝑥
+ 𝑔
0
𝛽
1
𝛽
2
,

𝛼
1,𝑡
1

= 𝛼
1,𝑥
− 12𝑔0𝛼1,𝑥 −

1
2𝑔0𝑞𝛽1,

𝛼
2,𝑡
1

= 𝛼
2,𝑥
+ 12𝑔0𝛼2,𝑥 −

1
2𝑔0𝑞𝛽2,

𝛽
1,𝑡
1

= 𝛽
1,𝑥
+ 12𝑔0𝛽1,𝑥 +

1
2𝑔0𝑟𝛼1,

𝛽
2,𝑡
1

= 𝛽
2,𝑥
− 12𝑔0𝛽2,𝑥 +

1
2𝑔0𝑟𝛼2.

(25)

Taking 𝑛 = 2 in (23), we can obtain the second-order
nonlinear superintegrable equations

𝑞
𝑡
2

= −12𝑞𝑥𝑥 + 𝑞
2𝑟 + (𝑔

0
− 1) (𝛼

1,𝑥
𝛼
2
− 𝑞𝛼
1
𝛽
2
)

− (𝑔
0
+ 1) (𝛼

2,𝑥
𝛼
1
+ 𝑞𝛼
2
𝛽
1
) ,

𝑟
𝑡
2

= 12𝑟𝑥𝑥 − 𝑞𝑟
2 + (𝑔

0
+ 1) (𝛽

1,𝑥
𝛽
2
+ 𝑟𝛼
2
𝛽
1
)

+ (𝑔
0
− 1) (𝑟𝛼

1
𝛽
2
− 𝛽
2,𝑥
𝛽
1
) ,

𝛼
1,𝑡
2

= (12𝑔0 − 1)𝛼1,𝑥𝑥 +
1
2 (𝑔0 − 1) 𝛽1𝑞𝑥 − 𝑞𝛽1,𝑥

+ 12 (1 − 𝑔0) 𝑞𝑟𝛼1 − 𝛼1𝛼2𝛽1,

𝛼
2,𝑡
2

= (−12𝑔0 − 1)𝛼2,𝑥𝑥 +
1
2 (𝑔0 + 1) 𝛽2𝑞𝑥 + 𝑞𝛽2,𝑥

+ 12 (1 + 𝑔0) 𝑞𝑟𝛼2 − 𝛼1𝛼2𝛽2,

𝛽
1,𝑡
2

= (12𝑔0 + 1)𝛽1,𝑥𝑥 +
1
2 (𝑔0 + 1) 𝛼1𝑟𝑥 + 𝑟𝛼1,𝑥

− 12 (1 + 𝑔0) 𝑞𝑟𝛽1 + 𝛼1𝛽1𝛽2,

𝛽
2,𝑡
2

= (1 − 12𝑔0)𝛽2,𝑥𝑥 +
1
2 (𝑔0 − 1) 𝛼2𝑟𝑥 − 𝑟𝛼2,𝑥

+ 12 (𝑔0 − 1) 𝑞𝑟𝛽2 + 𝛼2𝛽1𝛽2.

(26)

In particular, letting 𝑔
0
= 1 in (26), we have

𝑞
𝑡
2

= −12𝑞𝑥𝑥 + 𝑞
2𝑟 − 2𝛼

2,𝑥
𝛼
1
− 2𝑞𝛼

2
𝛽
1
,

𝑟
𝑡
2

= 12𝑟𝑥𝑥 − 𝑞𝑟
2 + 2𝛽

1,𝑥
𝛽
2
+ 2𝑟𝛼

2
𝛽
1
,

𝛼
1
𝑡
2

= −12𝛼1,𝑥𝑥 − 𝑞𝛽1,𝑥 − 𝛼1𝛼2𝛽1,

𝛼
2
𝑡
2

= −32𝛼2,𝑥𝑥 + 𝛽2𝑞𝑥 + 𝑞𝛽2,𝑥 + 𝑞𝑟𝛼2 − 𝛼1𝛼2𝛽2,

𝛽
1
𝑡
2

= 32𝛽1,𝑥𝑥 + 𝛼1𝑟𝑥 + 𝑟𝛼1,𝑥 − 𝑞𝑟𝛽1 + 𝛼1𝛽1𝛽2,

𝛽
2
𝑡
2

= 12𝛽2,𝑥𝑥 − 𝑟𝛼2,𝑥 + 𝛼2𝛽1𝛽2,

(27)
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and taking 𝑔
0
= −1, (26) becomes

𝑞
𝑡
2

= −12𝑞𝑥𝑥 + 𝑞
2𝑟 − 2𝛼

1,𝑥
𝛼
2
+ 2𝑞𝛼

1
𝛽
2
,

𝑟
𝑡
2

= 12𝑟𝑥𝑥 − 𝑞𝑟
2 + 2𝛽

2,𝑥
𝛽
1
− 2𝑟𝛼

1
𝛽
2
,

𝛼
1
𝑡
2

= −32𝛼1,𝑥𝑥 − 𝛽1𝑞𝑥 − 𝑞𝛽1,𝑥 + 2𝑞𝑟𝛼1 − 𝛼1𝛼2𝛽1,
𝛼
2
𝑡
2

= −12𝛼2,𝑥𝑥 + 𝑞𝛽2,𝑥 − 𝛼1𝛼2𝛽2,
𝛽
1
𝑡
2

= 12𝛽1,𝑥𝑥 + 𝑟𝛼1,𝑥 + 𝛼1𝛽1𝛽2,
𝛽
2
𝑡
2

= 32𝛽2,𝑥𝑥 − 𝑟𝑥𝛼2 − 𝑟𝛼2,𝑥 − 𝑞𝑟𝛽2 + 𝛼2𝛽1𝛽2.

(28)

If we choose 𝛼
1
= −𝛼
2
= 𝛼, 𝛽

2
= 𝛽
1
= 𝛽, and 𝑔

0
= 0, (26) can

be reduced to the second-order super-AKNS equations [10]

𝑞
𝑡
2

= −12𝑞𝑥𝑥 + 𝑞
2𝑟 + 2𝑞𝛼𝛽 − 2𝛼𝛼

𝑥
,

𝑟
𝑡
2

= 12𝑟𝑥𝑥 − 𝑞𝑟
2 − 2𝑟𝛼𝛽 − 2𝛽𝛽

𝑥
,

𝛼
𝑡
2

= −𝛼
𝑥𝑥
− 𝑞𝛽
𝑥
+ 12𝑞𝑟𝛼 −

1
2𝑞𝑥𝛽,

𝛽
𝑡
2

= 𝛽
𝑥𝑥
+ 𝑟𝛼
𝑥
+ 12𝑟𝑥𝛼 −

1
2𝑞𝑟𝛽,

(29)

which is just the coupled nonlinear Schrödinger equations,
also called Manakov equations

𝑢
𝑇
= −𝑢
𝑋𝑋
+ 𝑢2V,

V
𝑇
= V
𝑋𝑋
− 𝑢V2,

(30)

as 𝛼 = 𝛽 = 0, 𝑞 = 𝑢, 𝑟 = V, 𝑡
2
= 𝑇, and 𝑥 = 2𝑋.

5. Infinite Conservation Laws

In what follows, we will derive infinite conservation laws
of (25) and (26). From the spectral problem (3), we can
introduce the variables

𝑀 = 𝜙2𝜙
1

, 𝑁 = 𝜙3𝜙
1

, (31)

and then we obtain

𝑀
𝑥
= 𝑟 + 2𝜆𝑀 + 𝛽

1
𝑁 − 𝑞𝑀2 − 𝛼

1
𝑀𝑁,

𝑁
𝑥
= 𝛽
2
+ 𝛼
2
𝑀+ 𝜆𝑁 − 𝑞𝑀𝑁. (32)

Next, we expand𝑀 and𝑁 as series of the spectral parameter
𝜆,

𝑀 =
∞

∑
𝑗=1

𝑀
𝑗
𝜆−𝑗, 𝑁 =

∞

∑
𝑗=1

𝑁
𝑗
𝜆−𝑗, (33)

where𝑀
𝑗
are even, 𝑝(𝑀

𝑗
) = 0, and𝑁

𝑗
are odd, 𝑝(𝑁

𝑗
) = 1.

By substituting (33) into (32) and comparing the coeffi-
cients of 𝜆, we raise the recursion formulas for𝑀

𝑗
and𝑁

𝑗
,

𝑀
𝑗+1
= 12 (−𝑟𝛿𝑛,0 +𝑀𝑗,𝑥 − 𝛽1𝑁𝑗

+𝑞
𝑗−1

∑
𝑙=1

𝑀
𝑗
𝑀
𝑗−𝑙
+ 𝛼
1

𝑗−1

∑
𝑙=1

𝑀
𝑗
𝑁
𝑗−𝑙
) ,

(𝑗 ≥ 2) ,
𝑁
𝑗+1
= −𝛽
2
𝛿
𝑛,0
+ 𝑁
𝑗,𝑥
− 𝛼
2
𝑀
𝑗

+ 𝑞
𝑗−1

∑
𝑙=1

𝑀
𝑗
𝑁
𝑗−𝑙
, (𝑗 ≥ 2) .

(34)

We write below the first few terms of𝑀
𝑗
and𝑁

𝑗
:

𝑀
1
= −12𝑟, 𝑁

1
= −𝛽
2
,

𝑀
2
= −14𝑟𝑥 + 𝛽1𝛽2, 𝑁

2
= −𝛽
2,𝑥
+ 12𝑟𝛼2,

𝑀
3
= −18𝑟𝑥𝑥 +

1
2𝛽1,𝑥𝛽2 − 𝛽2,𝑥𝛽1 +

1
4𝑟𝛼2𝛽1

+ 14𝑟𝛼1𝛽2 +
1
8𝑞𝑟
2,

𝑁
3
= −𝛽
2,𝑥𝑥
+ 34𝛼2𝑟𝑥 +

1
2𝑟𝛼2,𝑥 − 𝛼2𝛽1𝛽2 +

1
2𝑞𝑟𝛽2.

(35)

On the other hand, it is easy to see that

𝜕
𝜕𝑡
𝜕
𝜕𝑥 log𝜙1 =

𝜕
𝜕𝑥
𝜕
𝜕𝑡 log𝜙1 or 𝜕𝜕𝑡

𝜙
1,𝑥

𝜙
1

= 𝜕𝜕𝑥
𝜙
1,𝑡

𝜙
1

, (36)

which implies

𝜕
𝜕𝑡 (−𝜆 + 𝑞𝑀 + 𝛼1𝑁) =

𝜕
𝜕𝑥 (
1
2 (𝐴 + 𝐺) + 𝐵𝑀 + 𝜌𝑁) ,

(37)

and then the form of the conservation law is

𝜇
𝑡
= ]
𝑥
, (38)

with the assumption that 𝜇 = −𝜆 + 𝑞𝑀+ 𝛼
1
𝑁, ] = (1/2)(𝐴 +

𝐺) + 𝐵𝑀 + 𝜌𝑁.
With regard to (25), we have

𝐴 = −2𝜆, 𝐵 = 𝑞, 𝐺 = −𝑔
0
𝜆,

𝜌 = (1 − 12𝑔0)𝛼1.
(39)

Expanding 𝜇 and ] as

𝜇 = −𝜆 +
∞

∑
𝑗=1

𝜇
𝑗
𝜆−𝑗, ] = −(1 + 12𝑔0) 𝜆 +

∞

∑
𝑗=1

]
𝑗
𝜆−𝑗,

(40)
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then we have

𝜇
𝑗
= 𝑞𝑀

𝑗
+ 𝛼
1
𝑁
𝑗
, ]

𝑗
= 𝑞𝑀

𝑗
+ (1 − 12𝑔0)𝛼1𝑁𝑗,

𝑗 ≥ 1,
(41)

with the coefficients 𝜇
𝑗
and ]

𝑗
, which are called conserved

densities and currents, respectively. Then the first two con-
served densities and currents of (25) read

𝜇
1
= −12𝑞𝑟 − 𝛼1𝛽2,

𝜇
2
= −14𝑞𝑟𝑥 + 𝑞𝛽1𝛽2 − 𝛼1𝛽2,𝑥 +

1
2𝑟𝛼1𝛼2,

]
1
= −12𝑞𝑟 − (1 −

1
2𝑔0)𝛼1𝛽2,

]
2
= −14𝑞𝑟𝑥 + 𝑞𝛽1𝛽2 − (1 −

1
2𝑔0)𝛼1𝛽2,𝑥

+ 12 (1 −
1
2𝑔0) 𝑟𝛼1𝛼2.

(42)

So the first two conservation laws of (25) are revealed as

(−12𝑞𝑟 − 𝛼1𝛽2)𝑡 = [−
1
2𝑞𝑟 − (1 −

1
2𝑔0)𝛼1𝛽2]𝑥,

(−14𝑞𝑟𝑥 + 𝑞𝛽1𝛽2 − 𝛼1𝛽2,𝑥 +
1
2𝑟𝛼1𝛼2)𝑡

= [−14𝑞𝑟𝑥 + 𝑞𝛽1𝛽2 − (1 −
1
2𝑔0)𝛼1𝛽2,𝑥

+12 (1 −
1
2𝑔0) 𝑟𝛼1𝛼2]𝑥.

(43)

For (26), one infers

𝐴 = −2𝜆2 + 𝑞𝑟 + 𝛼
1
𝛽
2
− 𝛼
2
𝛽
1
− 12𝑔0𝛼1𝛽2 −

1
2𝑔0𝛼2𝛽1,

𝐺 = −𝑔
0
𝜆2 + 𝛼

1
𝛽
2
+ 𝛼
2
𝛽
1
− 12𝑔0𝛼1𝛽2 +

1
2𝑔0𝛼2𝛽1,

𝜌 = (1 − 12𝑔0)𝜆𝛼1 + (
1
2𝑔0 − 1)𝛼1,𝑥 +

1
2𝑔0𝑞𝛽1,

𝐵 = 𝜆𝑞 − 12𝑞𝑥 +
1
2𝑔0𝛼1𝛼2.

(44)

If we write 𝜇 and ] as

𝜇 = −𝜆 +
∞

∑
𝑗=1

𝜇
𝑗
𝜆−𝑗, ] = −(1 + 12𝑔0)𝜆

2 +
∞

∑
𝑗=1

]
𝑗
𝜆−𝑗,

(45)

the first two are

𝜇
1
= −12𝑞𝑟 − 𝛼1𝛽2,

𝜇
2
= −14𝑞𝑟𝑥 + 𝑞𝛽1𝛽2 − 𝛼1𝛽2,𝑥 +

1
2𝑟𝛼1𝛼2,

]
1
= −12𝑔0 (𝛽2,𝑥𝛼1 + 𝑟𝛼1𝛼2 + 𝛼1,𝑥𝛽2 + 𝑞𝛽1𝛽2)

− 14𝑞𝑟𝑥 + 𝑞𝛽1𝛽2 +
1
4𝑞𝑥𝑟 + 𝛼1,𝑥𝛽2

+ 𝛽
2,𝑥
𝛼
1
+ 12𝑟𝛼1𝛼2,

]
2
= −12𝑔0 (𝛼1,𝑥𝛽2,𝑥 +

1
2𝑞𝑟𝛼2𝛽1 +

1
2𝑞𝑟𝛼1𝛽2 − 𝑞𝛽2,𝑥𝛽1

− 12𝑟𝛼1,𝑥𝛼2 + 𝑟𝑥𝛼1𝛼2 −
1
2𝑟𝛼2,𝑥𝛼1

− 2𝛼
1
𝛼
2
𝛽
1
𝛽
2
+ 𝛽
2,𝑥𝑥
𝛼
1
) + 𝛼
1,𝑥
𝛽
2,𝑥

+ 14𝑞𝑟𝛼2𝛽1 −
1
2𝑟𝛼1,𝑥𝛼2 −

1
2𝑟𝛼2,𝑥𝛼1 − 𝛼1𝛼2𝛽1𝛽2

+ 𝛽
2,𝑥𝑥
𝛼
1
+ 34𝑟𝑥𝛼1𝛼2 +

1
8𝑞
2𝑟2 − 18𝑞𝑟𝑥𝑥

+ 12𝑞𝛽1,𝑥𝛽2 − 𝑞𝛽2,𝑥𝛽1 +
1
8𝑞𝑥𝑟𝑥

− 12𝑞𝑥𝛽1𝛽2 +
3
4𝑞𝑟𝛼1𝛽2.

(46)

The recursion relations for 𝜇
𝑗
and ]
𝑗
(𝑗 ≥ 1) are as follows:

𝜇
𝑗
= 𝑞𝑀

𝑗
+ 𝛼
1
𝑁
𝑗
,

]
𝑗
= 𝑞𝑀

𝑗+1
+ 12 (𝑔0𝛼1𝛼2 − 𝑞𝑥)𝑀𝑗 + (1 −

1
2𝑔0)𝛼1𝑁𝑗+1

− (𝛼
1,𝑥
− 12𝑔0𝛼1,𝑥 −

1
2𝑔0𝑞𝛽2)𝑁𝑗,

(47)

where 𝑀
𝑗
and 𝑁

𝑗
can be recursively calculated from (34).

Then we display the first two conservation laws of (26) as

𝜇
1,𝑡
= ]
1,𝑥
, 𝜇

2,𝑡
= ]
2,𝑥
, (48)

where 𝜇
1
, 𝜇
2
, ]
1
, and ]

2
are defined in (46).

6. Concluding Remarks

In this paper, we proposed a six-component super-AKNS sys-
tem from a 3 × 3matrix superspectral problem. We obtained
the super-Hamiltonian structure and different reductions for
the superintegrable equations. Infinitely many conservation
laws were also considered. The obtained results supple-
ment the existing theories on the superintegrable systems.
The bosonization approach for supersymmetric systems is
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a powerful tool to generate exact solutions. The superinte-
grable system (23) may admit bosonization. This and other
related issues may be considered in further publication.
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