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To investigate the spreading speed of cholera, Codeço’s cholera model (2001) is developed by a reaction-diffusion model that
incorporates both indirect environment-to-human and direct human-to-human transmissions and the pathogen diffusion. The
two transmission incidences are supposed to be saturated with infective density and pathogen density. The basic reproduction
number 𝑅

0
is defined and the formula for minimal wave speed 𝑐

∗ is given. It is proved by shooting method that there exists a
traveling wave solution with speed 𝑐 for cholera model if and only if 𝑐 ≥ 𝑐

∗.

1. Introduction

Cholera has been a serious threat to human health in the
past and at present, which is an acute, diarrheal illness
caused by infection of the intestine with the bacteriumVibrio
cholera. An estimated 3–5 million cases and over 100,000
deaths occur each year around the world [1]. The cholera
bacterium is usually found in water or food sources that
have been contaminated by feces from a person infected with
cholera. Cholera is most likely to be found and to spread
in places with inadequate water treatment, poor sanitation,
and inadequate hygiene. Therefore, cholera outbreaks have
occurred in developing countries, for example, Iraq (2007-
2008), Guinea Bissau (2008), Zimbabwe (2008-2009), Haiti
(2010), Democratic Republic of Congo (2011-2012), and Sierra
Leone (2012) [2].

To understand the propagation mechanism of cholera,
manymathematicalmodels were proposed, whose earlier one
was established by Capasso and Paveri-Fontana [3] to study
the 1973 cholera epidemic in the Mediterranean region as
follows:

𝑑𝐼

𝑑𝑡
= 𝑔 (𝐵) − 𝑎

22
𝐼,

𝑑𝐵

𝑑𝑡
= −𝑎
11
𝐵 + 𝑎
12
𝐼, (1)

where𝐵(𝑡) and 𝐼(𝑡)denote the concentrations of the pathogen
and the infective populations, respectively. In addition,
Codeço [4] investigated the role of the aquatic pathogen

in dynamics of cholera through the following susceptible-
infective-pathogen model:

𝑑𝑆

𝑑𝑡
= 𝑛 (𝐻 − 𝑆) − 𝑎

𝑆𝐵

𝐾 + 𝐵
,

𝑑𝐼

𝑑𝑡
= 𝑎

𝑆𝐵

𝐾 + 𝐵
− 𝑟𝐼,

𝑑𝐵

𝑑𝑡
= 𝑒𝐼 − (𝑚𝑏 − 𝑛𝑏) 𝐵,

(2)

where 𝑆(𝑡) is the susceptible individuals. In this model,
human is divided into two groups: the susceptible group and
the infective group. As pointed out in [4–8], bacteriumVibrio
cholera can spread by direct human-to-human and indirect
environment-to-human modes. To understand the complex
dynamics of cholera, model (2) is extended by [8–15] and so
forth.

In all previousmodels the influences of space distribution
of human on the transmission of cholera are omitted. Cholera
usually spreads in spatial wave [16]. Cholera bacteria live
in rivers and interact with the plankton on the surface of
the water [17]. When individuals drink contaminated water
and are infected, they will release cholera bacteria through
excretion [18]. Capasso et al. [19–23] developed model (1)
by incorporating the bacterium diffusion in a bounded
area and studied the existence and stability of solutions. To
deeply investigate the interaction of transmission modes and
bacterium diffusion, Bertuzzo et al. [24, 25] incorporated
patchy structure into model (2) and supposed that pathogen
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in water could diffuse among these patches. Furthermore,
Mari et al. [26] studied the influence of diffusion of both
human and pathogen on cholera dynamics through a patchy
model.

Infectious case is usually found firstly at some location
and then spreads to other areas. Consequently, the most
important question for cholera is what the spreading speed
of cholera is. However, the above spatial models mainly focus
on the stability of solutions not the spreading speed. Traveling
wave solution is an important tool used to study the spreading
speed of infectious diseases [27–29]. Based on Capasso’s
model (1), Zhao and Wang [30], Xu and Zhao [31], Jin and
Zhao [32], and Hsu and Yang [33] studied the influences of
pathogen diffusion on the spread speed of cholera.

The studies of travelingwave solutions of Capasso’smodel
(1) incorporating pathogen diffusion provide insight into the
spreading speed of cholera.However, some pieces of informa-
tion are omitted, such as the interaction of direct human-to-
human and indirect environment-to-human transmissions.
In this paper, a reaction-diffusionmodel with pathogen diffu-
sion and both transmission paths is proposed by developing
Codeço’s model (2). Based on model (2) and ignoring the
disease-related death, a general diffusive cholera model can
be formulated as the following reaction-diffusion system:

𝜕𝑆

𝜕𝑡
= 𝑏 (𝑁 − 𝑆) − 𝑓 (𝐼) 𝑆 − 𝑔 (𝐵) 𝑆,

𝜕𝐼

𝜕𝑡
= 𝑓 (𝐼) 𝑆 + 𝑔 (𝐵) 𝑆 − 𝑏𝐼,

𝜕𝐵

𝜕𝑡
= 𝑑

𝜕
2
𝐵

𝜕𝑥2
+ 𝑒𝐼 − 𝑚𝐵,

(3)

where 𝑆 = 𝑆(𝑥, 𝑡) and 𝐼 = 𝐼(𝑥, 𝑡) denote the concentrations
of susceptible and infected individuals, respectively, and 𝐵 =

𝐵(𝑥, 𝑡) is the concentration of the infectious agents. 𝑁 is
the total human population, 𝑏 stands for the natural birth
and death rate, 𝑒 denotes the contribution of each infected
person to the concentration of cholera, and 𝑚 is the net
death rate of vibrio cholera. 𝑓(𝐼) and 𝑔(𝐵) are the human-to-
human and environment-to-human transmission incidences,
respectively. Similar to [10], we assume that 𝑓(𝐼) and 𝑔(𝐵)

satisfy

(A1) 𝑓(0) = 0, 𝑓󸀠(𝐼) ≥ 0, 𝑓󸀠󸀠(𝐼) ≤ 0;
(A2) 𝑔(0) = 0, 𝑔󸀠(0) > 0, 𝑔󸀠(𝐵) ≥ 0, 𝑔󸀠󸀠(𝐵) ≤ 0, and 𝑔(𝐵) is

strictly monotonously increasing in [0, +∞).

It is easy to conclude that 𝑓(𝐼) ≤ 𝑓
󸀠
(0)𝐼, 𝑔(𝐵) ≤ 𝑔

󸀠
(0)𝐵, and

𝑓(𝐼)/𝐼 and 𝑔(𝐵)/𝐵 are nonincreasing. Obviously, hypotheses
(A1) and (A2) imply that the two transmission paths are
saturated. In Tian and Wang [10], 𝑓(𝐼) and 𝑔(𝐵) have the
following expressions:

𝑓 (𝐼) = 𝛽
1
𝐼, 𝑔 (𝐵) =

𝛽
2
𝐵

𝐾 + 𝐵
. (4)

Obviously, as a special case, such selections satisfy (A1) and
(A2).

Shooting method is very important in proving the exis-
tence of traveling wave solutions, which was proposed by

Dunbar [34, 35] and was applied to many models (e.g., [36–
40]). In this paper, the existence of traveling wave solutions
of system (3) will be proved by shooting method and the
formula for minimal wave speed will be given.

This paper is organized as follows. In next section, the
main theorem and the formula for minimal wave speed will
be given. In Section 3, the nonexistence of the traveling wave
solutions for 𝑐 < 𝑐

∗ is proved by geometric method. Section 4
is devoted to shooting arguments and the construction of
Wazewski set. In Section 5, we prove the existence of traveling
wave solutions for 𝑐 > 𝑐

∗ and then give the existence of
traveling wave solution for 𝑐 = 𝑐

∗ by limit arguments. The
final section is devoted to the simulations.

2. Main Results

For convenience, we introduce dimensionless variables and
parameters. By setting

𝑢
1
=

𝑆

𝑏𝑁
, 𝑢

2
=

𝐼

𝑏𝑁
, 𝑢

3
=

𝑚

𝑒𝑏𝑁
𝐵, 𝑦 =

𝑥

√𝑑

,

(5)

model (3) has the form

𝑢
1,𝑡

= 1 − 𝑏𝑢
1
− 𝑓
1
(𝑢
2
) 𝑢
1
− 𝑔
1
(𝑢
3
) 𝑢
1
,

𝑢
2,𝑡

= 𝑓
1
(𝑢
2
) 𝑢
1
+ 𝑔
1
(𝑢
3
) 𝑢
1
− 𝑏𝑢
2
,

𝑢
3,𝑡

= 𝑢
3,𝑦𝑦

+ 𝑚 (𝑢
2
− 𝑢
3
) ,

(6)

where 𝑓
1
(𝑢
2
) = 𝑓(𝑏𝑁𝑢

2
) and 𝑔

1
(𝑢
3
) = 𝑔(𝑒𝑏𝑁𝑢

3
/𝑚).

Denote 𝑅
0
= [𝑓
󸀠

1
(0) + 𝑔

󸀠

1
(0)]/𝑏

2, which is the basic repro-
duction number of (6). Then hypotheses (A1) and (A2)
imply that system (6) has two nonnegative constant solutions
𝑃
1
(1/𝑏, 0, 0) and 𝑃

2
(1/𝑏 − 𝑢

∗
, 𝑢
∗
, 𝑢
∗
) if and only if 𝑅

0
> 1,

where 𝑢
∗ is the only one positive root of equation

[𝑓
1
(𝑢
∗
) + 𝑔
1
(𝑢
∗
)] (

1

𝑏
− 𝑢
∗
) = 𝑏𝑢

∗ (7)

and 0 < 𝑢
∗

< 1/𝑏. Biologically,𝑃
1
corresponds to disease-free

equilibrium and 𝑃
2
corresponds to endemic equilibrium. To

study the spreading wave of cholera, it is assumed that 𝑅
0
> 1

holds in this paper; that is

𝑓
󸀠

1
(0) + 𝑔

󸀠

1
(0) > 𝑏

2
. (8)

A traveling wave solution of system (6) with speed 𝑐 is a
nonnegative solution of the form

𝑢
1
(𝑦, 𝑡) = 𝑢

1
(𝑠) , 𝑢

2
(𝑦, 𝑡) = 𝑢

2
(𝑠) ,

𝑢
3
(𝑦, 𝑡) = 𝑢

3 (𝑠) , 𝑠 = 𝑦 + 𝑐𝑡.

(9)

Substituting traveling profile (𝑢
1
(𝑠), 𝑢
2
(𝑠), 𝑢
3
(𝑠)) into sys-

tem (6) yields the following equations:

𝑐𝑢
󸀠

1
= 1 − 𝑏𝑢

1
− 𝑓
1
(𝑢
2
) 𝑢
1
− 𝑔
1
(𝑢
3
) 𝑢
1
,

𝑐𝑢
󸀠

2
= 𝑓
1
(𝑢
2
) 𝑢
1
+ 𝑔
1
(𝑢
3
) 𝑢
1
− 𝑏𝑢
2
,

𝑐𝑢
󸀠

3
= 𝑢
󸀠󸀠

3
+ 𝑚 (𝑢

2
− 𝑢
3
) ,

(10)
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where 󸀠 denotes 𝑑/𝑑𝑠. To investigate invasion question by
cholera, we will study the positive solutions of (10) such that

(𝑢
1
(+∞) , 𝑢

2
(+∞) , 𝑢

3
(+∞)) = (

1

𝑏
− 𝑢
∗
, 𝑢
∗
, 𝑢
∗
) ,

(𝑢
1
(−∞) , 𝑢

2
(−∞) , 𝑢

3
(−∞)) = (

1

𝑏
, 0, 0) .

(11)

Before giving the main theorem, we introduce the equa-
tion for minimal wave speed

Δ (𝑐) := 𝑏
3
𝑐
6
+ 𝑏
2
𝑐
4
+ 𝑏
1
𝑐
2
+ 𝑏
0
= 0, (12)

where
𝜖 = 𝑓
󸀠

1
(0) − 𝑏

2
,

𝑏
3
= 𝑏
2
𝜖
2
+ 2𝑏
3
𝑚(𝑓
󸀠

1
(0) + 𝑔

󸀠

1
(0) − 𝑏

2
)

+ 2𝑏
3
𝑚𝑔
󸀠

1
+ 𝑏
4
𝑚
2
,

𝑏
2
= −2𝑏𝜖

3
+ 2𝑏
2
𝑚𝜖
2
+ (8𝑏
3
𝑚
2
− 6𝑏
2
𝑚𝑔
󸀠

1
) 𝜖

+ 4𝑚
3
𝑏
4
+ 18𝑏
3
𝑚
2
𝑔
󸀠

1
(0) ,

𝑏
1
= 𝜖
4
− 8𝑚𝑏𝜖

3
− (8𝑏
2
𝑚
2
+ 6𝑏𝑚𝑔

󸀠

1
) 𝜖
2

− 36𝑏
2
𝑚
2
𝑔
󸀠

1
(0) 𝜖 − 27𝑚

2
𝑏
2
𝑔
󸀠

1
(0)
2
,

𝑏
0
= 4𝑚(𝑏

2
− 𝑓
󸀠

1
(0))
3

(𝑏
2
− 𝑓
󸀠

1
(0) − 𝑔

󸀠

1
(0)) .

(13)

Theorem 1. There exists a constant 𝑐∗ > 0which is the greatest
positive root of (12). When 𝑐 ≥ 𝑐

∗, system (6) has a traveling
wave solution satisfying boundary condition (11). When 0 <

𝑐 < 𝑐
∗, system (6) has no traveling wave solutions satisfying

boundary condition (11).

3. Nonexistence of Traveling Wave
Solutions for 𝑐 < 𝑐

∗

From (10), we have

[𝑢
1 (𝑠) + 𝑢

2 (𝑠)]
󸀠
=

[1 − 𝑏 (𝑢
1
(𝑠) + 𝑢

2
(𝑠))]

𝑐
. (14)

Consequently, if 𝑢
1
(0) + 𝑢

2
(0) ̸= 1/𝑏, then

󵄨󵄨󵄨󵄨𝑢1 (𝑠) + 𝑢
2
(𝑠)

󵄨󵄨󵄨󵄨 󳨀→ ∞ when 𝑠 󳨀→ −∞. (15)

Hence, the traveling profile (𝑢
1
(𝑠), 𝑢
2
(𝑠), 𝑢
3
(𝑠)) with

boundary condition (11) must satisfy

𝑢
1 (𝑠) + 𝑢

2 (𝑠) =
1

𝑏
for any 𝑠 ∈ 𝑅. (16)

Therefore, to study traveling wave solutions we assume
(16) satisfies. Setting 𝑢

󸀠

3
= 𝑧 in system (10) and noticing (16),

it follows

𝑢
󸀠

2
=

[(𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
3
)) ((1/𝑏) − 𝑢

2
) − 𝑏𝑢

2
]

𝑐
,

𝑢
󸀠

3
= 𝑧,

𝑧
󸀠
= 𝑐𝑧 + 𝑚 (𝑢

3
− 𝑢
2
) .

(17)

If 𝑢
1
(𝑠) = 0, then 𝑢

󸀠

1
(𝑠) = 1/𝑐 > 0 by system (10).

Therefore, we suppose 𝑢
1
(𝑠) = 1/𝑏 − 𝑢

2
(𝑠) > 0 for any 𝑠; that

is, 𝑢
2
(𝑠) < 1/𝑏.

Obviously, system (17) has two equilibria 𝐸
1
(0, 0, 0)

and 𝐸
2
(𝑢
∗
, 𝑢
∗
, 0). A profile solution of (10) which satisfies

boundary condition (11) corresponds to the positive solution
(𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of system (17) which satisfies

𝑢 (+∞) = (𝑢
∗

2
, 𝑢
∗

2
, 0) , 𝑢 (−∞) = (0, 0, 0) , (18)

where 𝑢(𝑠) = (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)). Therefore, to study the

solutions of (10), it is sufficient to study those of system (17)
satisfying boundary condition (18).

Firstly, we investigate the dynamics near 𝐸
1
. Simple

calculations show that the characteristic equation of the
linearization of system (17) at 𝐸

1
is

𝐻(𝜆) = 𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
= 0, (19)

where

𝑎
0
=

𝑚(𝑓
󸀠

1
(0) + 𝑔

󸀠

1
(0) − 𝑏

2
)

𝑏𝑐
, 𝑎

1
=

𝑓
󸀠

1
(0) − 𝑏

2
− 𝑚𝑏

𝑏
,

𝑎
2
=

𝑏
2
− 𝑓
󸀠

1
(0) − 𝑏𝑐

2

𝑏𝑐
.

(20)

Because 𝑎
0

> 0 (19) has a negative real root, which is
denoted by 𝜆

3
. Let 𝜆

1
and 𝜆

2
be the other two eigenvalues

of (19) and suppose that Re 𝜆
1

≥ Re 𝜆
2
. To investigate the

distribution of roots of (19), denote

𝑝 = 𝑎
1
−

𝑎
2

2

3
, 𝑞 =

2𝑎
3

2

27
−

𝑎
1
𝑎
2

3
+ 𝑎
0
, Δ

0
=

𝑞
2

4
+

𝑝
3

27

(21)

and introduce the following lemma [41].

Lemma 2. (a) If Δ
0

> 0, (19) has one real root and two
nonreal complex conjugate roots.

(b) If Δ
0
= 0, (19) has a multiple root and all its roots are

real.
(c) If Δ

0
< 0, (19) has three distinct real roots.

Direct calculations show that Δ
0

= −Δ/(108𝑏
4
𝑐
4
), where

Δ is defined by (12).

Lemma 3. (a) The real parts of 𝜆
1
and 𝜆

2
are positive.

(b) Assume 𝑓
󸀠

1
(0) ≤ 𝑏

2. Then, there exists 𝑐∗ > 0 which is
the only positive root of Δ(𝑐) = 0. When 𝑐 ≥ 𝑐

∗, 𝜆
1
, and 𝜆

2
are

real. When 0 < 𝑐 < 𝑐
∗, 𝜆
1
, and 𝜆

2
are complex and nonreal.

(c) Assume that 𝑓󸀠
1
(0) > 𝑏

2. Then, there exist two positive
constants 𝑐

∗

1
< 𝑐
∗ which are all positive roots of Δ(𝑐) = 0. 𝜆

1

and 𝜆
2
are complex and nonreal if and only if 𝑐∗

1
< 𝑐 < 𝑐

∗. If
𝑐 > 𝑐
∗, then 𝜆

∗
< 𝜆
2
< 𝜆
1
; if 0 < 𝑐 ≤ 𝑐

∗

1
, then 𝜆

2
≤ 𝜆
1
< 𝜆
∗,

where 𝜆
∗

= (𝑓
󸀠

1
(0) − 𝑏

2
)/(𝑏𝑐).

(d) 𝜆
1
= 𝜆
2
if and only if 𝑐 = 𝑐

∗ or 𝑐
∗

1
.

Proof. Suppose 𝜆 = 𝛽𝑖 ̸= 0 is the root of (19). Substituting
𝜆 = 𝛽𝑖 into (19) and comparing real and imaginary parts
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show that 𝑎
1

= 𝛽
2

> 0 and 𝑎
0

= 𝑎
1
𝑎
2
. Since 𝑎

0
> 0, then

𝑎
2

> 0. However, it is impossible that 𝑎
1

> 0 and 𝑎
2

> 0 by
the expressions of 𝑎

1
and 𝑎

2
. Therefore, the real parts of 𝜆

1

and 𝜆
2
are not zero. Furthermore, since it is impossible that

𝑎
1
> 0 and 𝑎

2
> 0, Routh-Hurwitz theorem implies that it is

impossible that the real parts of both 𝜆
1
and 𝜆

2
are negative.

Consequently, there are two cases: (i) 𝜆
1
and 𝜆

2
are complex

conjugate roots with positive real parts; (ii) 𝜆
1
and 𝜆

2
are real

and at least one is positive. However, Descartes’ rule of signs
shows that the number of positive roots of (19) is zero or two.
Thus, if case (ii) is true, both of 𝜆

1
and𝜆

2
are real and positive.

Therefore, (a) is proved.
In this paragraph, we consider the case𝑓

󸀠

1
(0) ≤ 𝑏

2. Firstly,
suppose that 𝑓󸀠

1
(0) < 𝑏

2. Obviously, 𝑏
0
< 0 and 𝑏

3
> 0. By the

expression of 𝑏
2
, we have

𝑏
2
= −2𝑏𝜖

3
+ 2𝑏
2
𝑚𝜖
2
− 6𝑏
2
𝑚𝑔
󸀠

1
𝜖

+ 8𝑏
3
𝑚
2
(𝑓
󸀠

1
(0) + 𝑔

󸀠

1
(0) − 𝑏

2
) + 4𝑚

3
𝑏
4
+ 10𝑏
3
𝑚
2
𝑔
󸀠

1
(0)

> 0

(22)

since 𝜖 = 𝑓
󸀠

1
(0) − 𝑏

2
< 0. Now, assume 𝑓

󸀠

1
(0) = 𝑏

2; that is,
𝜖 = 0. Then. 𝑏

3
> 0, 𝑏

2
> 0, 𝑏

1
< 0, and 𝑏

0
= 0. Then, if

𝑓
󸀠

1
(0) ≤ 𝑏

2, Descartes’ rule of signs shows that there exists
𝑐
∗

> 0 which is the only positive root of Δ(𝑐) = 0, where
Δ(𝑐) < 0 for 0 < 𝑐 < 𝑐

∗ and Δ(𝑐) > 0 for 𝑐 > 𝑐
∗. Using

Lemma 2 completes the proof of (b).
Suppose that𝑓󸀠

1
(0) > 𝑏

2 in this paragraph and, thus, 𝜖 > 0.
Calculations show that

𝐻(𝜆
∗
) =

𝑚𝑔
󸀠

1

𝑏𝑐
> 0,

𝐻
󸀠
(𝜆
∗
) =

𝜖
2
− 𝑏𝑐
2
𝜖 − 𝑚𝑏

2
𝑐
2

𝑏2𝑐2

(23)

and that 𝐻󸀠(𝜆) = 0 has two roots 𝜆
∗

1
and 𝜆

∗

2
, where

𝜆
∗

1
=

𝑏𝑐
2
+ 𝜖 + √𝑏2𝑐4 + (3𝑚𝑏2 − 𝑏𝜖) 𝑐2 + 𝜖2

3𝑏𝑐
,

𝜆
∗

2
=

𝑏𝑐
2
+ 𝜖 − √𝑏2𝑐4 + (3𝑚𝑏2 − 𝑏𝜖) 𝑐2 + 𝜀2

3𝑏𝑐
,

(24)

and 𝜆
∗

1
> 𝜆
∗

2
. By letting 𝑐

0
≜ 𝜖/√𝑏𝜖 + 𝑚𝑏2 and using trivial

calculations, we get (see Figure 1)

𝜆
∗

= 𝜆
∗

1
⇐⇒ 𝑐 = 𝑐

0
⇐⇒ 𝐻

󸀠
(𝜆
∗
) = 0,

𝜆
∗

> 𝜆
∗

1
⇐⇒ 𝑐 < 𝑐

0
⇐⇒ 𝐻

󸀠
(𝜆
∗
) > 0,

𝜆
∗

< 𝜆
∗

1
⇐⇒ 𝑐 > 𝑐

0
⇐⇒ 𝐻

󸀠
(𝜆
∗
) < 0.

(25)

Therefore, if 𝑐 = 𝑐
0
, then 𝐻(𝜆

∗

1
) = 𝐻(𝜆

∗
) > 0. Since 𝜆

∗

1
is

the only minimum-value point of 𝐻(𝜆), and then 𝐻(𝜆) > 0

for any 𝜆 > 0 and both of 𝜆
1
and 𝜆

2
are not real. Lemma 2

shows that Δ(𝑐
0
) < 0. Thus, since 𝑏

0
> 0 and 𝑏

3
> 0, there

exist two positive roots 𝑐
∗

1
< 𝑐
∗ for equation Δ(𝑐) = 0 such

that 𝑐∗
1

< 𝑐
0

< 𝑐
∗. Then, using (25) and Lemma 2 completes

the proof of (c) and (d).

Direct calculations show that corresponding eigenvectors
of eigenvalue 𝜆

𝑖
are

𝑒
𝑖
= (1 −

𝜆
𝑖
(𝜆
𝑖
− 𝑐)

𝑚
, 1, 𝜆
𝑖
) , (26)

where 𝑖 = 1, 2, 3. Since

𝐻(𝜆
𝑖
) = −𝑚[1 −

𝜆
𝑖
(𝜆
𝑖
− 𝑐)

𝑚
][𝜆
𝑖
−

𝑓
󸀠

1
(0) − 𝑏

2

𝑏𝑐
] +

𝑚𝑔
󸀠

1

𝑏𝑐

= 0,

(27)

and thus

1 −
𝜆
𝑖
(𝜆
𝑖
− 𝑐)

𝑚
=

𝑔
󸀠

1
(0)

𝑏𝑐𝜆
𝑖
+ 𝑏2 − 𝑓

󸀠

1
(0)

=
𝑔
󸀠

1
(0)

𝑏𝑐 (𝜆
𝑖
− 𝜆∗)

.

(28)

Then, we have the following lemma.

Lemma 4. If 0 < 𝑐 < 𝑐
∗, there exist no traveling wave

solutions which satisfy boundary condition (11).

Proof. Assume that 𝑓
󸀠

1
(0) ≤ 𝑏

2 and 0 < 𝑐 < 𝑐
∗. Then, (b)

of Lemma 3 implies that 𝜆
1
and 𝜆

2
are complex conjugate

eigenvalues and there exits locally unstable manifoldW𝑢 and
locally stable manifold W𝑠. If a solution of (17) tends to 𝐸

1

when 𝑠 → −∞, then it will be spiral onW𝑢. By the structures
of 𝑒
1
and 𝑒
2
, 𝑢
2
(𝑠) < 0 at some time 𝑠 < 0, which shows that

there exist no traveling wave solutions departing from 𝐸
1
.

Suppose that 𝑓󸀠
1
(0) > 𝑏

2. If 𝑐∗
1

< 𝑐 < 𝑐
∗, (c) of Lemma 3

shows that 𝜆
1
and 𝜆

2
are complex conjugate eigenvalues and

similar arguments to that of previous paragraph finish the
proof. If 0 < 𝑐 ≤ 𝑐

∗

1
, (c) of Lemma 3 shows that 𝜆

1
and 𝜆

2

are real; however, 𝜆
2
≤ 𝜆
1
< 𝜆
∗. If a solution of (17) tends to

𝐸
1
when 𝑠 → −∞, structures of 𝑒

1
and 𝑒
2
indicate that there

is an 𝑠 < 0 such that 𝑢
2
(𝑠) < 0. The proof is completed.

From Section 4 to Section 5.2, we suppose that 𝑐 > 𝑐
∗,

which implies 𝜆
∗

< 𝜆
2
< 𝜆
1
.

4. Shooting Method and Wazewski Set

To prove the existence of traveling wave, shooting method
developed by Dunbar [34] is used. Firstly, we give the
shooting arguments.

Consider the differential equation

𝑑𝑦

𝑑𝑠
= 𝑓 (𝑦) , (29)

where 𝑓(𝑦) from 𝑅
𝑛 to 𝑅

𝑛 satisfies Lipschitz condition about
𝑦. Let 𝑦(𝑠; 𝑦

0
) denote the unique solution of (29) with initial
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H(𝜆)

𝜆3 𝜆2 𝜆1

𝜆𝜆
∗
2

𝜆
∗
1𝜆

∗

(a)

H(𝜆)

𝜆3 𝜆2 𝜆1

𝜆𝜆
∗
2

𝜆
∗
1 𝜆

∗

(b)

Figure 1: Distribution of eigenvalues of (19) when 𝑓
󸀠

1
(0) > 𝑏

2, (a) for 𝑐 > 𝑐
∗ and (b) for 𝑐 < 𝑐

∗

1
.

value 𝑦(0) = 𝑦
0
. It is convenient to give the notations 𝑦

0
⋅ 𝑠 ≜

𝑦(𝑠; 𝑦
0
) and 𝑦

0
⋅ 𝑆 ≜ {𝑦

0
⋅ 𝑠 | 𝑠 ∈ 𝑆 ⊂ 𝑅}. To describe the

shooting method (or Wazewski theorem), some definitions
are necessary.

Definition 5. (a) For 𝑊 ⊆ 𝑅
𝑛, define immediate exit set 𝑊−

of 𝑊 as

𝑊
−

≜ {𝑦
0
∈ 𝑊 | ∀𝑠 > 0, 𝑦

0
⋅ [0, 𝑠) ̸⊆ 𝑊} . (30)

(b) For Σ ⊆ 𝑊, let Σ0 ≜ {𝑦
0
∈ Σ | ∃𝑠

0
> 0 such that 𝑦

0
⋅

𝑠
0
∉ 𝑊}.
(c) Given 𝑦

0
∈ Σ
0, define exit time 𝑇(𝑦

0
) of 𝑦
0
by

𝑇 (𝑦
0
) ≜ sup {𝑠 | 𝑦

0
⋅ [0, 𝑠) ⊆ 𝑊} . (31)

Then, Wazewski theorem is formulated as follows.

Lemma 6 (see [34]). Suppose that

(1) if 𝑦
0
∈ Σ and 𝑦

0
⋅ [0, 𝑠] ⊆ cl(𝑊), then 𝑦

0
⋅ [0, 𝑠] ⊆ 𝑊.

(2) If 𝑦
0
∈ Σ, 𝑦

0
⋅ 𝑠 ∈ 𝑊 and 𝑦

0
⋅ 𝑠 ∉ 𝑊

−, then there exists
an open set 𝑉

𝑠
about 𝑦

0
⋅ 𝑠 disjoint from 𝑊

−.
(3) If Σ = Σ

0, Σ is compact and Σ intersects a trajectory of
(29) only once.

Then, themapping𝐻(𝑦
0
) = 𝑦
0
⋅𝑇(𝑦
0
) is a homeomorphism

from Σ to its image on 𝑊
−.

A set 𝑊 ⊆ 𝑅
𝑛 satisfying conditions (1) and (2) of

Lemma 6 is called a Wazewski set. In the following, we
first construct the Wazewski set 𝑊. Fundamental idea to
construct a Wazewski set is that the characteristic vectors
corresponding eigenvalues with positive real parts should
be removed from 𝑊 and that those characteristic vectors
corresponding eigenvalues with negative real parts should be
included. Therefore, we set

𝑊 = R
3
\ (𝑃 ∪ 𝑄) , (32)

where

𝑃 = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑧) : 𝑢

3
> 𝑢
2
> 𝑢
∗
, 𝑧 > 0} ,

𝑄 = {(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

3
< 𝑢
2
< 𝑢
∗
, 𝑧 < 0} .

(33)

z

O

Q

P

J

u2

u3

Figure 2: The construction of 𝑊 and 𝑊
−.

It is obvious that 𝜕𝑊 = 𝜕𝑃 ∪ 𝜕𝑄. Firstly, we give the
construction of 𝑊−, which is described in Figure 2.

Lemma 7. The construction of 𝑊− is as follows:

𝑊
−

= 𝜕𝑊 \ (𝐽 ∪ 𝐸
2
) , (34)

where 𝐽 = {(𝑢
2
, 𝑢
3
, 𝑧) : 0 ≤ 𝑢

2
≤ 𝑢
∗
, 𝑢
3
= 0, 𝑧 ≤ 0}.

Proof. It is enough to analyze the behavior of solution on
𝜕𝑃∪𝜕𝑄. We only study 𝜕𝑄 and omit the proof of 𝜕𝑃 since the
analysis of 𝜕𝑃 is similar to that of 𝜕𝑄 and is simpler. In the
process of this proof, we use some notations to simplify the
proof. Set

𝑢
󸀠

𝑖
=

𝑑𝑢
𝑖

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑢
2
,𝑢
3
,𝑧)∈𝜕𝑄

, 𝑧
󸀠
=

𝑑𝑧

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑢
2
,𝑢
3
,𝑧)∈𝜕𝑄

, 𝑖 = 2, 3,

ℎ (𝑢
2
) = [

𝑓
1
(𝑢
2
)

𝑢
2

+
𝑔
1
(𝑢
2
)

𝑢
2

](
1

𝑏
− 𝑢
2
) − 𝑏.

(35)

From hypotheses (A1) and (A2), we find that 𝑓
1
(𝑢
2
)/𝑢
2

and 𝑔
1
(𝑢
2
)/𝑢
2
are monotonously decreasing, ℎ(𝑢

2
) is strictly

monotonously decreasing for 𝑢
2
∈ (0, 1/𝑏), and 𝑢

∗ is the only
positive root of ℎ(𝑢

2
) = 0. The set 𝜕𝑄 is classified into two

cases according to variable 𝑧.
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(a) Case 𝑧 < 0. This case is classified as follows.

(1) Case 0 = 𝑢
3
< 𝑢
2
< 𝑢
∗. Then 𝑢

󸀠

3
= 𝑧 < 0 and the

solution of (17) will enter int(𝑊).
(2) Case 0 < 𝑢

3
= 𝑢
2
< 𝑢
∗. Then

(𝑢
3
− 𝑢
2
)
󸀠
=

𝑧 − ℎ (𝑢
2
) 𝑢
2

𝑐
< 0. (36)

The solution of (17) will enter 𝑄.
(3) Case 0 < 𝑢

3
< 𝑢
2
= 𝑢
∗. Then

𝑢
󸀠

2
=

[(𝑓
1
(𝑢
∗
) /𝑢
∗
+ 𝑔
1
(𝑢
3
) /𝑢
∗
) (1/𝑏 − 𝑢

∗
) − 𝑏] 𝑢

∗

𝑐

<
ℎ (𝑢
∗
) 𝑢
∗

𝑐
= 0.

(37)

The solution of (17) will enter 𝑄.
(4) Case 0 = 𝑢

3
= 𝑢
2
< 𝑢
∗. Then 𝑢

󸀠

3
= 𝑧 < 0 and the

solution of (17) will enter int(𝑊).
(5) Case 0 = 𝑢

3
and 𝑢

2
= 𝑢
∗. The solution of (17)

will enter int(𝑊).
(6) Case 𝑢

3
= 𝑢
2
= 𝑢
∗. Then 𝑢

󸀠

2
= 0,

𝑢
󸀠󸀠

2
= [(𝑓

󸀠

1
(0) (𝑢

∗
) 𝑢
󸀠

2
+ 𝑔
󸀠

1
(0) (𝑢

∗
) 𝑧) (

1

𝑏
− 𝑢
∗
)

− (𝑓
1
(𝑢
∗
) + 𝑔
1
(𝑢
∗
)) 𝑢
󸀠

2
− 𝑏] × (𝑐)

−1

=

[𝑔
󸀠

1
(0) (𝑢

∗
) 𝑧 ((1/𝑏) − 𝑢

∗
) − 𝑏]

𝑐
< 0,

(38)

and (𝑢
3
− 𝑢
2
)
󸀠
= 𝑧 < 0. Therefore, the solution of (17)

will enter 𝑄.
(b) Case 𝑧 = 0. This case is classified as follows.

(1) Case 0 < 𝑢
3
< 𝑢
2
< 𝑢
∗.Then 𝑧

󸀠
= 𝑚(𝑢

3
−𝑢
2
) < 0

and the solution of (17) will enter 𝑄.
(2) Case 0 = 𝑢

3
< 𝑢
2

< 𝑢
∗. Then 𝑢

󸀠

3
= 𝑧 = 0,

𝑢
󸀠󸀠

3
= 𝑧
󸀠
= −𝑚𝑢

2
< 0. The solution of (17) will

enter int(𝑊).
(3) Case 0 < 𝑢

3
= 𝑢
2

< 𝑢
∗. Then (𝑢

3
− 𝑢
2
)
󸀠

=

−ℎ(𝑢
2
)𝑢
2
/𝑐 < 0, 𝑧

󸀠
= 0, and 𝑧

󸀠󸀠
= 𝑐𝑧
󸀠
+

𝑚(𝑢
3
− 𝑢
2
)
󸀠
< 0. The solution of (17) will enter

𝑄.
(4) Case 0 < 𝑢

3
< 𝑢
2

= 𝑢
∗. Then 𝑢

󸀠

2
< 0 and 𝑧

󸀠
=

𝑚(𝑢
3
− 𝑢
2
) < 0. The solution of (17) will enter

𝑄.
(5) Case 0 = 𝑢

3
= 𝑢
2

< 𝑢
∗. In this case, (0, 0, 0) is

equilibrium and is constant.
(6) Case 0 = 𝑢

3
and 𝑢

2
= 𝑢
∗. Then 𝑢

󸀠

3
= 𝑧 = 0 and

𝑢
󸀠󸀠

3
= 𝑧
󸀠
= −𝑚𝑢

2
< 0. The solution of (17) will

enter int(𝑊).
(7) Case 𝑢

3
= 𝑢
2

= 𝑢
∗. Then (𝑢

∗
, 𝑢
∗
, 0) is equilib-

rium and is constant.

The proof is completed.

5. Existence of Traveling Wave
Solution for 𝑐 ≥ 𝑐

∗

In this section, we prove the existence of traveling wave
solution for 𝑐 ≥ 𝑐

∗. Firstly, we study the behaviors of solutions
near 𝐸

1
.

5.1. Behaviors of Solutions Near 𝐸
1

Lemma 8. Suppose (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) is a solution of (17)

satisfying initial conditions

𝑧 (0) > 𝑘𝑢
3 (0) , 𝑢

3 (0) >
𝑏𝑐𝑘 + 𝑏

2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2 (0) > 0,

(39)
where 𝑘 = (𝜆

1
+ 𝜆
2
)/2. Then, for every 𝑠 > 0, we have

𝑧 (𝑠) > 𝑘𝑢
3 (𝑠) , 𝑢

3 (𝑠) >
𝑏𝑐𝑘 + 𝑏

2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2 (𝑠) > 0.

(40)

Proof. From Lemma 3, we have (𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0))/𝑔

󸀠

1
(0) > 0.

To finish the proof, it is sufficient to prove that the set

Ψ = {(𝑢
2
, 𝑢
3
, 𝑧) : 𝑧 > 𝑘𝑢

3
, 𝑢
3
>

𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2
> 0}

(41)
is positively invariant. It is obvious that

𝜕Ψ = 𝜕Ψ
1
∪ 𝜕Ψ
2
∪ 𝜕Ψ
3
∪ 𝐸
1
, (42)

where

𝜕Ψ
1
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑧 = 𝑘𝑢

3
, 𝑢
3
≥

𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2
> 0} ,

𝜕Ψ
2
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑧 > 𝑘𝑢

3
, 𝑢
3
=

𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2
≥ 0} ,

𝜕Ψ
3
= {(𝑢
2
, 𝑢
3
, 𝑧) : 𝑧 ≥ 𝑘𝑢

3
, 𝑢
3
> 𝑢
2
= 0} .

(43)
Suppose that (𝑢

2
(𝑠
0
), 𝑢
3
(𝑠
0
), 𝑧(𝑠
0
)) ∈ 𝜕Ψ

1
. Then, 𝑧(𝑠

0
) =

𝑘𝑢
3
(𝑠
0
) and

𝑑

𝑑𝑠
[𝑧 (𝑠) − 𝑘𝑢

3
(𝑠)]
𝑠=𝑠
0

= 𝑐𝑧 (𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)] − 𝑘𝑧 (𝑠

0
)

= (𝑐 − 𝑘) 𝑧 (𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)]

= (𝑐 − 𝑘) 𝑘𝑢
3
(𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)]

= [(𝑐 − 𝑘) 𝑘 + 𝑚] 𝑢3 (𝑠0) − 𝑚𝑢
2
(𝑠
0
)

≥ {[(𝑐 − 𝑘) 𝑘 + 𝑚]
𝑏𝑐𝑘 + 𝑏

2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

− 𝑚}𝑢
2
(𝑠
0
)

= −
𝑏𝑐

𝑔
󸀠

1
(0)

𝐻 (𝑘) 𝑢
2
(𝑠
0
) > 0.

(44)
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The last inequality is given since 𝜆
2

< 𝑘 < 𝜆
1
. Suppose

that (𝑢
2
(𝑠
0
), 𝑢
3
(𝑠
0
), 𝑧(𝑠
0
)) ∈ 𝜕Ψ

2
. If 𝑢
2
(𝑠
0
) > 0, then

𝑑

𝑑𝑠
[𝑢
3
(𝑠) −

𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2
(𝑠)]

𝑠=𝑠
0

= {𝑧 −
𝑏𝑐𝑘 + 𝑏

2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

⋅
1

𝑐

× [(𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
3
)) (

1

𝑏
− 𝑢
2
) − 𝑏𝑢

2
]}

𝑠=𝑠
0

> {𝑘𝑢
3
−

𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)

𝑐𝑔
󸀠

1

× [
𝑓
󸀠

1
(0) 𝑢2 + 𝑔

󸀠

1
(0) 𝑢3

𝑏
− 𝑏𝑢
2
]}

𝑠=𝑠
0

= {
𝑏
2
− 𝑓
󸀠

1
(0)

𝑏𝑐𝑔
󸀠

1

[(𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)) 𝑢

2
− 𝑔
󸀠

1
(0) 𝑢3]}

𝑠=𝑠
0

= 0.

(45)

If 𝑢
2
(𝑠
0
) = 0, we have

𝑑

𝑑𝑠
[𝑢
3
(𝑠) −

𝑏𝑐𝑘 + 𝑏
2
− 𝑓
󸀠

1
(0)

𝑔
󸀠

1
(0)

𝑢
2
(𝑠)]

𝑠=𝑠
0

= 𝑧 (𝑠
0
) > 0.

(46)

Consequently, the solution of system (17) departing from Ψ

cannot intersect 𝜕Ψ
1
∪ 𝜕Ψ
2
. If (𝑢

2
(𝑠
0
), 𝑢
3
(𝑠
0
), 𝑧(𝑠
0
)) ∈ 𝜕Ψ

3
,

then 𝑢
󸀠

2
(𝑠
0
) = 𝑔
1
(𝑢
3
(𝑠
0
))/(𝑏𝑐) > 0. Since 𝐸

1
is equilibrium, in

summary, Ψ is positive invariant.

Since 𝜆
1
> 𝜆
2
> 0, stable manifold theorem implies that

there exists a one-dimensional strong unstable manifoldW
1

tangent to 𝑒
1
at 𝐸
1
such that the point onW

1
near 𝐸

1
can be

expressed by

𝐺
1
(𝜀) = 𝜀𝑒

1
+ 𝑜 (𝜀) . (47)

Furthermore, there is a two-dimensional unstable manifold
W
2
tangent to span {𝑒

1
, 𝑒
2
} at 𝐸
1
such thatW

2
near 𝐸

1
can be

expressed by

𝐺
2
(𝜀
1
, 𝜀
2
) = 𝜀
1
𝑒
1
+ 𝜀
2
𝑒
2
+ 𝑜 (√𝜀

2

1
+ 𝜀
2

2
) . (48)

Lemma9. Suppose that 𝑢(𝑠) ≜ (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) is a solution

of (17) such that 𝑢(0) ∈ W
1
for small 𝜀 > 0. Then, 𝑢(𝑠) will

leave 𝑊 and enter 𝑃.

Proof. Obviously, 𝑢(𝑠) satisfies initial condition (39) by the
structure of 𝑒

1
, and Lemma 8 implies 𝑢(𝑠) > 0 (𝑢(𝑠) > 0

means that 𝑢
𝑖
(𝑠) > 0 and 𝑧(𝑠) > 0, 𝑖 = 2, 3) for every 𝑠 > 0.

Furthermore, Lemma 8 shows that 𝑢󸀠
3
(𝑠) = 𝑧(𝑠) > 𝑘𝑢

3
(𝑠),

implying lim
𝑠→+∞

𝑢
3
(𝑠) = +∞. Since 𝑢

2
(𝑠) < 1/𝑏, it follows

lim
𝑠→+∞

𝑧(𝑠) = +∞. Suppose that 𝑢
2
(𝑠) < 𝑢

∗ for every 𝑠 > 0.
Then

𝑢
󸀠

2
>

[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(𝑢
3
) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

2

𝑐

>
[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(2𝑢
∗
) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

2

𝑐

=
𝑀𝑢
2

𝑐
> 0

(49)

for large 𝑠 since 𝑢
3
(𝑠) and 𝑔

1
(𝑢
3
) are strictly monotonous

increasingwith respect to 𝑠 and𝑢
3
, respectively.Thus, we have

that lim
𝑠→+∞

𝑢
2
(𝑠) = +∞, contradicting 𝑢

2
(𝑠) < 1/𝑏 for any

𝑠 ∈ 𝑅. Therefore, there exists 𝑠
1

> 0 such that 𝑢
2
(𝑠
1
) = 𝑢

∗.
Without losing generality, let 𝑠

1
= inf{𝑠 > 0 : 𝑢

2
(𝑠) = 𝑢

∗
}.

Obviously, we have 𝑢
󸀠

2
(𝑠
1
) ≥ 0. If 𝑢

3
(𝑠
1
) < 𝑢
∗, then

𝑢
󸀠

2
(𝑠
1
)

=
[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(𝑢
3
(𝑠
1
)) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

∗

𝑐

< 0,

(50)

which is a contradiction. Therefore, 𝑢
3
(𝑠
1
) ≥ 𝑢
∗ and 𝑢(𝑠

1
) ∈

𝜕𝑃. Then, the construction of 𝑊− shows that 𝑢(𝑠) will leave
𝑊 and enter 𝑃.

Let𝐶 be a small circle onW
2
centered at 𝐸

1
.Then, points

on 𝐶 can be expressed in terms of local coordinate by

𝐹 (𝜃) ≜ 𝐺
2
(𝜀 cos 𝜃, 𝜀 sin 𝜃) = 𝜀 [𝑒

1
cos 𝜃 + 𝑒

2
sin 𝜃 + 𝑂 (𝜀)] ,

(51)

where 𝜃 ∈ [𝜃
1
, 2𝜋 + 𝜃

1
), 𝜀 > 0, and 𝜃

1
is chosen such

that 𝐹(𝜃
1
) lies on W

1
with 𝑧 > 0. Then, stable manifold

theorem shows that 𝜃
1

→ 0 when 𝜀 → 0. Denote 𝐹(𝜃) ≜

(𝑢
2
(𝜃), 𝑢
3
(𝜃), 𝑧(𝜃)).

Lemma 10. There exists a 𝜃
2
∈ (𝜋/2, 3𝜋/4) such that

𝑧 (𝜃
2
) = 0, 0 < 𝑢

3
(𝜃
2
) < 𝑢
2
(𝜃
2
) < 𝑢
∗
, (52)

and that

𝑧 (𝜃) > 0, 0 < 𝑢
2
(𝜃
2
) < 𝑢
∗
, 0 < 𝑢

3
(𝜃) < 𝑢

∗ (53)

for 𝜃 ∈ [𝜃
1
, 𝜃
2
).

Proof. From (51), we have

𝑧 (𝜃) = 𝜀 [𝜆
1
cos 𝜃 + 𝜆

2
sin 𝜃 + 𝑂 (𝜀)]

= 𝜀√𝜆
2

1
+ 𝜆
2

2

×
[
[

[

𝜆
1

√𝜆
2

1
+ 𝜆
2

2

cos 𝜃 +
𝜆
2

√𝜆
2

1
+ 𝜆
2

2

sin 𝜃 + 𝑂 (𝜀)
]
]

]

= 𝜀√𝜆
2

1
+ 𝜆
2

2
[sin (𝜑

0
+ 𝜃) + 𝑂 (𝜀)] ,

(54)
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where sin(𝜑
0
) = 𝜆

1
/√𝜆
2

1
+ 𝜆
2

2
, cos(𝜑

0
) = 𝜆

2
/√𝜆
2

1
+ 𝜆
2

2
, and

𝜑
0
∈ (𝜋/4, 𝜋/2) since 𝜆

1
> 𝜆
2
. Therefore, 𝑧(𝜃

2
) = 0 and 𝜃

2
∈

[0, 𝜋] imply that 𝜃
2
= 𝜋−𝜑

0
+𝑂(𝜀) ∈ (𝜋/2, 3𝜋/4). Obviously,

𝑧(𝜃) > 0 for any 𝜃 ∈ [𝜃
1
, 𝜃
2
). However,

𝑢
2
(𝜃) =

𝜀𝑔
󸀠

1
(0)

𝑏𝑐
[

cos 𝜃
𝜆
1
− 𝜆∗

+
sin 𝜃

𝜆
2
− 𝜆∗

+ 𝑂 (𝜀)]

=
𝜀

𝑚
[(−𝜆
2

1
+ 𝜆
1
𝑐 + 𝑚) cos 𝜃

+ (−𝜆
2

2
+ 𝜆
2
𝑐 + 𝑚) sin 𝜃 + 𝑂 (𝜀)] ,

𝑢
3
(𝜃) = 𝜀 [cos 𝜃 + sin 𝜃 + 𝑂 (𝜀)] ,

𝑢
2
(𝜃)−𝑢

3
(𝜃) =

𝜀

𝑚
[𝜆
1
(𝑐−𝜆
1
) cos 𝜃+𝜆

2
(𝑐−𝜆
2
) sin 𝜃+𝑂 (𝜀)] .

(55)

Then, equality 𝑧(𝜃
2
) = 𝜀[𝜆

1
cos 𝜃
2
+ 𝜆
2
sin 𝜃
2
+𝑂(𝜀)] = 0,

together with the last of (55), reveals 𝑢
2
(𝜃
2
)−𝑢
3
(𝜃
2
) = 𝜀[(𝜆

1
−

𝜆
2
)𝜆
2
sin 𝜃
2
+ 𝑂(𝜀)]/𝑚 > 0; that is, 𝑢

2
(𝜃
2
) > 𝑢
3
(𝜃
2
). For 𝜃 ∈

[𝜃
1
, 𝜃
2
], the first and second equalities of (55) imply that 0 <

𝑢
𝑖
(𝜃) < 𝑢

∗ where 𝑖 = 2, 3 since 𝜆
1
> 𝜆
2
and 0 < 𝜀 ≪ 1.

Let

Σ = {𝐹 (𝜃) | 𝜃 ∈ [𝜃
1
, 𝜃
2
] , 𝜀 is small enough} . (56)

By Lemma 10,Σ is an arc of circle,Σ ⊆ 𝑊, and the solution
of (17) with initial value being the endpoint𝐹(𝜃

2
)will enter𝑄

since 𝐹(𝜃
2
) ∈ 𝑊

−
∩ 𝜕𝑄. From Lemma 9, the solution of (17)

with initial value being the endpoint 𝐹(𝜃
1
) will enter 𝑃.

5.2. Traveling Wave Solution for 𝑐 > 𝑐
∗

Lemma 11. Let 𝑢(𝑠) = (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) be a solution of (17)

such that 𝑢(0) ∈ Λ. If 𝑢(𝑠) ∈ 𝑊 for any 𝑠 ≥ 0, then 𝑢(𝑠) ∈ Λ

for any 𝑠 > 0, where

Λ = {(𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

2
< 𝑢
∗
, 𝑢
3
> 0, 0 < 𝑧 < 𝑘𝑢

3
} (57)

and 𝑘 = 𝑐 + √𝑐2 + 4𝑚.

Proof. Set 𝑠
0
= inf{𝑠 : 𝑢(𝑠) ∉ Λ, 𝑠 ≥ 0}. Suppose the conclu-

sion is false; that is, 𝑠
0

< +∞. Obviously, 𝑠
0

> 0 and 𝑢(𝑠
0
) ∈

𝜕Λ where

𝜕Λ = (∪
7

𝑖=1
𝜕Λ
𝑖
) ∪ 𝐸
2
,

𝜕Λ
1
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

2
= 𝑢
∗
, 𝑢
3
≥ 𝑢
∗
, 0 ≤ 𝑧 ≤ 𝑘𝑢

3
} \ 𝐸
2
,

𝜕Λ
2
= {(𝑢

2
, 𝑢
3
, 𝑧) : 0 < 𝑢

3
≤ 𝑢
2
≤ 𝑢
∗
, 𝑧 = 0} \ 𝐸

2
,

𝜕Λ
3
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

2
= 0, 𝑢

3
> 0, 0 ≤ 𝑧 ≤ 𝑘𝑢

3
} ,

𝜕Λ
4
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

2
= 𝑢
∗
, 0 < 𝑢

3
< 𝑢
∗
, 0 < 𝑧 ≤ 𝑘𝑢

3
} ,

𝜕Λ
5
= {(𝑢

2
, 𝑢
3
, 𝑧) : 0 ≤ 𝑢

2
≤ 𝑢
∗
, 𝑢
3
> 0, 𝑧 = 𝑘𝑢

3
} ,

𝜕Λ
6
= {(𝑢

2
, 𝑢
3
, 𝑧) : 𝑢

3
> 𝑢
2
, 0 ≤ 𝑢

2
< 𝑢
∗
, 𝑢
3
> 0, 𝑧 = 0} ,

𝜕Λ
7
= {(𝑢

2
, 𝑢
3
, 𝑧) : 0 ≤ 𝑢

2
≤ 𝑢
∗
, 𝑢
3
= 𝑧 = 0} .

(58)

z

O

A B

u2

E2

D

E

u3

C

Figure 3: The construction of 𝜕Λ.

In Figure 3, we find 𝜕Λ
1

= {unbounded area 𝐵𝐸
2
𝐶𝐷},

𝜕Λ
2

= {triangle 𝑂𝐴𝐸
2
𝑂}, 𝜕Λ

3
= {unbounded cone

𝑢
3
𝑂𝐸}, 𝜕Λ

4
= {triangle 𝐴𝐸

2
𝐶𝐴}, 𝜕Λ

5
= {unbounded area

𝐷𝐶𝐴𝑂𝐸}, 𝜕Λ
6

= {unbounded area 𝐵𝐸
2
𝑂𝑢
3
}, and 𝜕Λ

7
=

{segment 𝑂𝐴}.
Since 𝜕Λ

1
∪𝜕Λ
2
⊂ 𝑊
−, thus 𝑢(𝑠

0
) ∉ 𝜕Λ

1
∪𝜕Λ
2
. If 𝑢(𝑠

0
) ∈

𝜕Λ
3
, we have 𝑢

󸀠

2
(𝑠
0
) ≤ 0 because 𝑢

2
(𝑠) > 0 for 0 < 𝑠 < 𝑠

0
and

𝑢
2
(𝑠
0
) = 0. However, 𝑢󸀠

2
(𝑠
0
) = 𝑔
1
(𝑢
3
(𝑠
0
))/(𝑏𝑐) > 0 which is a

contradiction. Therefore, 𝑢(𝑠
0
) ∉ 𝜕Λ

3
. If 𝑢(𝑠

0
) ∈ 𝜕Λ

4
, then

𝑢
󸀠

2
(𝑠
0
)

=
[((𝑓
1
(𝑢
∗
) /𝑢
∗
) + (𝑔

1
(𝑢
3
(𝑠
0
)) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

∗

𝑐

< 0,

(59)

contradicting 𝑢
󸀠

2
(𝑠
0
) ≥ 0. If 𝑢(𝑠

0
) ∈ 𝜕Λ

5
, then

[𝑧 (𝑠) − 𝑘𝑢
3
(𝑠)]
󸀠

𝑠=𝑠
0

= (𝑐 − 𝑘) 𝑧 (𝑠
0
) + 𝑚 [𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)]

= [(𝑐 − 𝑘) 𝑘 + 𝑚] 𝑢3 (𝑠0) − 𝑚𝑢
2
(𝑠
0
) < 0

(60)

since (𝑐 − 𝑘)𝑘 + 𝑚 < 0, contradicting [𝑧(𝑠) − 𝑘𝑢
3
(𝑠)]
󸀠

𝑠=𝑠
0

≥ 0.
If 𝑢(𝑠
0
) ∈ 𝜕Λ

6
, then 𝑧

󸀠
(𝑠
0
) = 𝑚[𝑢

3
(𝑠
0
) − 𝑢
2
(𝑠
0
)] > 0 which

is a contradiction. In conclusion, 𝑢(𝑠
0
) ∉ 𝜕Λ

4
∪ 𝜕Λ
5
∪ 𝜕Λ
6
.

If 𝑢(𝑠
0
) ∈ 𝜕Λ

7
, then 𝑢

3
(𝑠) > 0 and 𝑧(𝑠) > 0 for any 0 <

𝑠 < 𝑠
0
. Hence, 𝑢󸀠

3
(𝑠) = 𝑧(𝑠) > 0 for any 0 < 𝑠 < 𝑠

0
, which

implies that 𝑢
3
(𝑠
0
) > 𝑢
3
(0) > 0. From this contradiction we

find 𝑢(𝑠
0
) ∉ 𝜕Λ

7
. Because 𝐸

2
is a constant solution, we get

𝑢(𝑠
0
) ̸= 𝐸
2
. In summary, 𝑢(𝑠

0
) ∉ 𝜕Λ and 𝑠

0
= +∞. The proof

is completed.

Lemma 12. There exists a point 𝑢
0

= (𝑢
20
, 𝑢
30
, 𝑧
0
) ∈ Σ such

that the solution 𝑢(𝑠; 𝑢
0
) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17) with

initial value being 𝑢
0
will stay in 𝑊 for any 𝑠 > 0.

Proof. It is sufficient to prove Σ ̸= Σ
0
. Suppose that Σ =

Σ
0
. Firstly, we verify Conditions (1) and (2) of Lemma 6.

Condition (1) of Lemma 6 is valid since 𝑊 is closed.
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Suppose 𝑢
0
= (𝑢
20
, 𝑢
30
, 𝑧
0
) ∈ Σ, 𝑠 < 𝑇(𝑢

0
) and 𝑢(𝑠; 𝑢

0
) ∈

𝑊 \ 𝑊
−. Then, 𝑢(𝑠; 𝑢

0
) ∈ int𝑊 ∪ 𝐽 and 𝑢

0
̸= 𝐹(𝜃
2
) since

𝐹(𝜃
2
) ∈ 𝑊

−. The structure of Σ implies that 𝑢
20

> 0, 𝑢
30

> 0,
and 𝑧
0
> 0. By the proof of Lemma 11, we have that 𝑢(𝑠; 𝑢

0
) >

0 for 𝑠 < 𝑇(𝑢
0
). Therefore, 𝑢(𝑠; 𝑢

0
) ∉ 𝐽 and 𝑢(𝑠; 𝑢

0
) ∈ int𝑊.

Condition (2) of Lemma 6 holds.
Lemma 6 shows that Σ is homeomorphic to 𝐻(Σ). Since

𝐻(𝐹 (𝜃
1
)) ∈ 𝜕𝑃 ∩ 𝑊

−
, 𝐻 (𝐹 (𝜃

2
)) ∈ 𝜕𝑄 ∩ 𝑊

−
, (61)

and 𝑊
− is disconnected, we have that 𝐻(Σ) is disconnected,

contradicting the connection of Σ.Thus, Σ ̸= Σ
0
and the proof

is completed.

Lemma 13. Let 𝑐 > 𝑐
∗. Then, there exists a positive solution

𝑢(𝑠) = (𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17) such that

𝑢 (+∞) = 𝐸
2
, 𝑢 (−∞) = 𝐸

1
. (62)

Proof. By Lemma 12 there exists a point 𝑢
0
= (𝑢
20
, 𝑢
30
, 𝑧
0
) ∈

Σ such that the solution 𝑢(𝑠; 𝑢
0
) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17)

with initial value being 𝑢
0
will stay in 𝑊 for any 𝑠 > 0.

Furthermore, Lemma 11 shows 𝑢(𝑠; 𝑢
0
) > 0 for any 𝑠 ≥ 0.

Stable manifold theorem implies that 𝑢(𝑠; 𝑢
0
) > 0 for any

𝑠 ≤ 0 and lim
𝑠→−∞

𝑢(𝑠; 𝑢
0
) = 𝐸

1
. Therefore, 𝑢(𝑠; 𝑢

0
) is a

positive solution.
To complete the proof, it is sufficient to show that

lim
𝑠→+∞

𝑢(𝑠; 𝑢
0
) = 𝐸

2
. By Lemma 11, we know that 𝑢

2
(𝑠) <

𝑢
∗ for any 𝑠 > 0 since 𝑢(𝑠; 𝑢

0
) remains in 𝑊 for all 𝑠. Because

𝑢
󸀠

3
(𝑠) = 𝑧(𝑠) > 0, then the limit of 𝑢

3
(𝑠) exists; that is,

lim
𝑠→+∞

𝑢
3
(𝑠) = 𝑢

∗

3
and 0 < 𝑢

∗

3
≤ +∞. Suppose that

𝑢
∗

< 𝑢
∗

3
≤ +∞. The first equation of (17) shows that

𝑢
󸀠

2
>

[((𝑓
1
(𝑢
∗
) /𝑢
∗
)+(𝑔
1
(𝑢
3
) /𝑢
∗
)) ((1/𝑏) − 𝑢

∗
) − 𝑏] 𝑢

2

𝑐

> ([(
𝑓
1
(𝑢
∗
)

𝑢∗
+

𝑔
1
((𝑢
∗

3
+ 𝑢
∗
) /2)

𝑢∗
)(

1

𝑏
−𝑢
∗
)−𝑏] 𝑢

2
)×(𝑐)

−1

=
𝑀𝑢
2

𝑐
> 0

(63)

for large 𝑠, which implies that there is an 𝑠
∗

> 0 such that
𝑢
2
(𝑠
∗
) > 𝑢

∗. This is a contradiction, and thus 0 < 𝑢
∗

3
≤ 𝑢
∗.

From the first equation of (17), we have lim
𝑠→+∞

𝑢
2
(𝑠) = 𝑢

∗

2

where 𝑢
∗

2
is the only positive root of algebra equation

[𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
∗

3
)] (

1

𝑏
− 𝑢
2
) − 𝑏𝑢

2
= 0. (64)

At the same time, the third equation of (17) implies
lim
𝑠→+∞

𝑧(𝑠) = 𝑧
∗ and 𝑧

∗
= 𝑚(𝑢

∗

2
− 𝑢
∗

3
)/𝑐 or ±∞. It is

impossible that 𝑧∗ = ±∞ due to the boundedness of 𝑢
3
(𝑠). In

conclusion, the limit lim
𝑠→+∞

𝑢(𝑠) = (𝑢
∗

2
, 𝑢
∗

3
, 𝑧
∗
) exists and is

finite. By [42], (𝑢∗
2
, 𝑢
∗

3
, 𝑧
∗
)must be equilibrium. Since 𝑢

∗

3
> 0,

then (𝑢
∗

2
, 𝑢
∗

3
, 𝑧
∗
) = 𝐸
2
.

Noticing the relation of systems (17) and (10) completes
the proof of Theorem 1 for case 𝑐 > 𝑐

∗.

5.3. Traveling Wave Solution for 𝑐 = 𝑐
∗. Firstly, suppose 𝑐 >

𝑐
∗ and let 𝑢(𝑠; 𝑢

0
) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) be the traveling wave

solution of (17). Then, Lemma 11 implies that 𝑢(𝑠; 𝑢
0
) ∈ Λ

for all 𝑠. From the proof of Lemma 13, we find 𝑢
3
(𝑠) ≤ 𝑢

∗.
Therefore, for all 𝑠, we have 𝑢(𝑠; 𝑢

0
) ∈ Π where

Π = {(𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

2
< 𝑢
∗
, 0 < 𝑢

3
≤ 𝑢
∗
, 0 < 𝑧 < 𝑘𝑢

3
} .

(65)

Let {𝑐
𝑛
} be a sequence such that 𝑐∗ < 𝑐

𝑛
< 𝑐
𝑛+1

for any 𝑛

and lim
𝑛→∞

𝑐
𝑛
= 𝑐
∗. Set 𝑘

𝑛
= 𝑐
𝑛
+ √𝑐2
𝑛
+ 4𝑚 and

Π
𝑛
= {(𝑢
2
, 𝑢
3
, 𝑧) : 0 < 𝑢

2
≤ 𝑢
∗
, 0 < 𝑢

3
≤ 𝑢
∗
, 0 < 𝑧 ≤ 𝑘

𝑛
𝑢
3
} .

(66)

Then, Π
𝑛
⊆ Π
1
for any 𝑛.

Lemma 13 shows that there is a positive solution 𝑤
𝑛
(𝑠) =

(𝑢
2,𝑛

(𝑠), 𝑢
3,𝑛

(𝑠), 𝑧
𝑛
(𝑠)) for system

𝑢
󸀠

2
=

[(𝑓
1
(𝑢
2
) + 𝑔
1
(𝑢
3
)) ((1/𝑏) − 𝑢

2
) − 𝑏𝑢

2
]

𝑐
𝑛

,

𝑢
󸀠

3
= 𝑧,

𝑧
󸀠
= 𝑐
𝑛
𝑧 + 𝑚 (𝑢

3
− 𝑢
2
) ,

(67)

satisfying boundary condition (62) such that 𝑤
𝑛
(𝑠) ∈ Π

𝑛
⊆

Π
1
for any 𝑠.

Lemma 14. Let 𝑐 = 𝑐
∗. Then, there exists a traveling wave

solution for system (6) satisfying boundary condition (11).

Proof. It is sufficient to prove that there exists a positive
solution 𝑢(𝑠) = (𝑢

2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) of (17) satisfying boundary

condition (62).
Firstly, we show that sequences {𝑢

2,𝑛
}, {𝑢
3,𝑛

}, {𝑧
𝑛
}, {𝑢󸀠
2,𝑛

},
{𝑢
󸀠

3,𝑛
}, and {𝑧

󸀠

𝑛
} are uniformly bounded and equicontinuous.

The idea of Lemma 11 in [34] is used. Obviously, {𝑢
2,𝑛

}, {𝑢
3,𝑛

},
and {𝑧

𝑛
} are uniformly bounded since 𝑤

𝑛
(𝑠) ⊆ Π

1
for any

𝑠. Because 𝑤
𝑛
(𝑠) = (𝑢

2,𝑛
(𝑠), 𝑢
3,𝑛

(𝑠), 𝑧
𝑛
(𝑠)) is the solution of

(67), {𝑢󸀠
2,𝑛

}, {𝑢󸀠
3,𝑛

}, and {𝑧
󸀠

𝑛
} are also uniformly bounded. Since

|𝑧
𝑛
(𝑠
1
) − 𝑧
𝑛
(𝑠
2
)| = 𝑧

󸀠

𝑛
(𝑠
3
)|𝑠
1
− 𝑠
2
| where 𝑠

1
< 𝑠
3

< 𝑠
2
, then

{𝑧
𝑛
} is equicontinuous. Similarly, {𝑢

2,𝑛
} and {𝑢

3,𝑛
} are also

equicontinuous. By differentiating the equations of (67) and
using the previous bounds, we can get that {𝑢󸀠󸀠

2,𝑛
}, {𝑢󸀠󸀠
3,𝑛

}, and
{𝑧
󸀠󸀠

𝑛
} are uniformly bounded, and hence {𝑢

󸀠

2,𝑛
}, {𝑢󸀠
3,𝑛

}, and {𝑧
󸀠

𝑛
}

are equicontinuous.
The previous paragraph andArzelà-Ascoli theorem imply

that there exist subsequences, again denoted by {𝑢
2,𝑛

}, {𝑢
3,𝑛

},
and {𝑧

𝑛
} and functions 𝑢

2
, 𝑢
3
, and 𝑧 such that

𝑢
2,𝑛

󳨀→ 𝑢
2
, 𝑢

3,𝑛
󳨀→ 𝑢
3
, 𝑧

𝑛
󳨀→ 𝑧 (68)

uniformly on compact subsets of R, thus pointwise on R.
Same arguments imply that {𝑢

󸀠

2,𝑛
}, {𝑢󸀠
3,𝑛

}, and {𝑧
󸀠

𝑛
} are also

uniformly convergent on compact subsets ofR and pointwise
convergent on R. Consequently, we get

𝑢
󸀠

2,𝑛
󳨀→ 𝑢
󸀠

2
, 𝑢

󸀠

3,𝑛
󳨀→ 𝑢
󸀠

3
, 𝑧

󸀠

𝑛
󳨀→ 𝑧
󸀠
. (69)
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Figure 4: The wave profiles for 𝑆 and 𝐼 and their movements.

Since (𝑢
2,𝑛

, 𝑢
3,𝑛

, 𝑧
𝑛
) is the solution of (67), then 𝑢(𝑠) =

(𝑢
2
(𝑠), 𝑢
3
(𝑠), 𝑧(𝑠)) is the solution of (17) for 𝑐 = 𝑐

∗ and 𝑢(𝑠) ∈

cl(Π
1
), where cl(Π

1
) is the closer ofΠ

1
. Because system (67) is

autonomous and (𝑢
2,𝑛

, 𝑢
3,𝑛

, 𝑧
𝑛
) satisfies boundary condition

(62), we can assume that 𝑢
3,𝑛

(0) = 𝑢
∗
/2 for all 𝑛; thus, 𝑢

3
(0) >

0. Then, similar to the proof of Lemma 13, we have that the
solution 𝑢(𝑠) satisfies boundary condition (62).

6. Simulations

In this section, we present some simulations to confirm the
theoretical results. Set

𝑓 (𝐼) =
𝛽
1
𝐼

𝐾
ℎ
+ 𝐼

, 𝑔 (𝐵) =
𝛽
2
𝐵

𝐾
𝑒
+ 𝐵

, (70)

and assign numerical values to parameters as follows:

𝑏 = 0.01, 𝑒 = 1, 𝑚 = 0.5, 𝐾
𝑒
= 6, 𝐾

ℎ
= 2,

𝛽
1
= 0.62, 𝛽

2
= 0.001, 𝑁 = 200, 𝑑 = 2.

(71)

Obviously, such selection for 𝑓(𝐼) and 𝑔(𝐵) satisfies (A1)
and (A2). Then, the traveling wave solution is described in
Figure 4.
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