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We introduce the new continuous distribution, the so-called beta-Lindley distribution that extends the Lindley distribution. We
provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the rth
moment thus, generalizing some results in the literature. Expressions for the density, moment generating function, and rthmoment
of the order statistics also are obtained. Further, we also discuss estimation of the unknownmodel parameters in both classical and
Bayesian setup. The usefulness of the new model is illustrated by means of two real data sets. We hope that the new distribution
proposed here will serve as an alternative model to other models available in the literature for modelling positive real data in many
areas.

1. Introduction

In many applied sciences such as medicine, engineering, and
finance, amongst others, modelling and analysing lifetime
data are crucial. Several lifetime distributions have been
used to model such kinds of data. The quality of the pro-
cedures used in a statistical analysis depends heavily on the
assumed probability model or distributions. Because of this,
considerable effort has been expended in the development of
large classes of standard probability distributions along with
relevant statisticalmethodologies.However, there still remain
many important problemswhere the real data does not follow
any of the classical or standard probability models.

Some beta-generalized distributions were discussed in
recent years. Eugene et al. [1], Nadarajah and Gupta [2],
Nadarajah and Kotz [3], and Nadarajah and Kotz [4] pro-
posed the beta-normal, beta-Gumbel, beta-Frchet, and beta-
exponential distributions, respectively. Jones [5] discusses
this general beta family motivated by its order statistics and
shows that it has interesting distributional properties and
potential for exciting statistical applications.

Recently, Barreto-Souza et al. [6] proposed the beta-
generalized exponential distribution, Pescim et al. [7] intro-
duced the beta-generalized half-normal distribution, and

Cordeiro et al. [8] defined the beta-generalized Rayleigh
distribution with applications to lifetime data.

In this paper, we present a new generalization of Lindley
distribution called the beta-Lindley distribution.The Lindley
distribution was originally proposed by Lindley [9] in the
context of Bayesian statistics, as a counter example of fudicial
statistics.

Definition 1. A random variable𝑋 is said to have the Lindley
distribution with parameter 𝜃 if its probability density is
defined as

𝑓 (𝑥, 𝜃) =
𝜃
2

𝜃 + 1
(1 + 𝑥) 𝑒

−𝜃𝑥
, 𝑥 > 0, 𝜃 > 0. (1)

The corresponding cumulative distribution function
(CDF) is

𝐹 (𝑥) = 1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
, 𝑥 > 0, 𝜃 > 0. (2)

Ghitany et al. [10] have discussed the various statistical
properties of Lindley distribution and shown its applicability
over the exponential distribution. They have found that
the Lindley distribution performs better than exponential
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model. One of the main reasons to consider the Lindley
distribution over the exponential distribution is its time
dependent/increasing hazard rate. Since last decade, Lindley
distribution has been widely used in different setup by many
authors.

The rest of the paper has been organized as follows. In
Section 2, we introduced the beta-Lindley distribution and
demonstrated its flexibility showing thewide variety of shapes
of the density, distribution, and hazard rate functions. The
moments and order statistics from the beta-Lindley distribu-
tion are derived in Sections 3 and 4, respectively. In Section 5,
the maximum likelihood and least square estimators as well
as Bayes estimators of the parameters are constructed for
estimating the unknown parameters of the beta-Lindley
distribution. For demonstrating the applicability of proposed
distribution, two real data sets are considered in Section 6.
Simulation algorithm is also provided in Section 6 to generate
the random sample from beta-Lindley distribution. The
paper is then concluded in Section 7.

2. Beta-Lindley Distribution

Let 𝐹(𝑥) denote the cumulative distribution function (CDF)
of a random variable𝑋, and then the cumulative distribution
function for a generalized class of distribution for the random
variable 𝑋, as defined by Eugene et al. [1], is generated
by applying the inverse CDF to a beta distributed random
variable to obtain

𝐺 (𝑥) =
1

𝐵 (𝛼, 𝛽)
∫

𝐹(𝑥)

0

𝑡
𝛼−1
(1 − 𝑡)

𝛽−1
𝑑𝑡, 0 < 𝛼, 𝛽 < ∞.

(3)

The corresponding probability density function for 𝐺(𝑥) is
given by

𝑔 (𝑥) =
1

𝐵 (𝛼, 𝛽)
[𝐹 (𝑥)]

𝛼−1
[1 − 𝐹 (𝑥)]

𝛽−1
𝑔 (𝑥) , (4)

where 𝑔(𝑥) = 𝑑𝐺(𝑥)/𝑑𝑥 is the parent density function and
𝐵(𝛼, 𝛽) = (Γ(𝛼)Γ(𝛽))/(Γ(𝛼 + 𝛽)) is beta function. We now
introduce the three-parameter beta-Lindley (BL) distribution
by taking 𝐺(𝑥) in (3) to be the CDF (2). The CDF of the BL
distribution is then

𝐺 (𝑥) =
1

𝐵 (𝛼, 𝛽)
∫

1−((𝜃+1+𝜃𝑥)/(𝜃+1))𝑒
−𝜃𝑥

𝑡
𝛼−1
(1 − 𝑡)

𝛽−1
𝑑𝑡,

𝑥 > 0.

(5)

The PDF of the new distribution is given by

𝑔 (𝑥) =
𝜃
2
(𝜃 + 1 + 𝜃𝑥)

𝛽−1
(1 + 𝑥) 𝑒

−𝜃𝛽𝑥

𝐵 (𝛼, 𝛽) (𝜃 + 1)
𝛽

× [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
]

𝛼−1

.

(6)

Figure 1(a) illustrates some of the possible shapes of the
PDF of the beta-Lindley distribution for selected values of the
parameters 𝛼, 𝛽, and 𝜃, respectively.

The CDF (5) can be expressed in terms of the hyperge-
ometric function (see Cordeiro and Nadarajah [11]) in the
following way:

𝐺 (𝑥) =

(1 − ((𝜃 + 1 + 𝜃𝑥)/(𝜃 + 1))𝑒
−𝜃𝑥
)
𝛼

𝛼𝐵 (𝛼, 𝛽)

×
2
𝐹
1
(𝛼, 1 − 𝛽; 𝛼 + 1; 1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
) .

(7)

If the parameter 𝛽 > 0 is real noninteger, we have

𝐺 (𝑥) =
Γ (𝛼 + 𝛽)

Γ (𝛼)

×

∞

∑

𝑗=0

(−1)
𝑗
[1 − ((𝜃 + 1 + 𝜃𝑥) / (𝜃 + 1)) 𝑒

−𝜃𝑥
]
𝛼+𝑗

Γ (𝛽 − 𝑗) (𝑎 + 𝑗) 𝑗!
.

(8)

Lemma 2. When 𝛼 = 𝛽 = 1, the BL in (6) reduces to the
Lindley distribution in (1) with parameter 𝜃.

Lemma 3. When 𝛽 = 1, the BL in (6) reduces to the general-
ized Lindley distribution 𝐺𝐿𝐷(𝛼, 𝜃) proposed by Nadarajah et
al. [12].

Lemma 4. The limit of beta-Lindley density as 𝑥 → ∞ is 0
and the limit as 𝑥 → 0 is 0.

Proof. It is straightforward to show the above from the beta-
Lindley density in (6).

The reliability function𝑅(𝑡), which is the probability of an
item not failing prior to some time 𝑡, is defined by 𝑅(𝑡) = 1 −
𝐹(𝑡). The reliability function of the beta-Lindley distribution
is given by

𝑅 (𝑡, 𝜃, 𝛼, 𝛽) = 1 −

(1 − ((𝜃 + 1 + 𝜃𝑥) / (𝜃 + 1)) 𝑒
−𝜃𝑥
)
𝛼

𝛼𝐵 (𝛼, 𝛽)

×
2
𝐹
1
(𝛼, 1 − 𝛽; 𝛼 + 1; 1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
) .

(9)

The other characteristic of interest of a random variable is the
hazard rate function defined by ℎ(𝑡) = 𝑓(𝑡)/(1 − 𝐹(𝑡)), which
is an important quantity characterizing life phenomenon. It
can be loosely interpreted as the conditional probability of
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Figure 1: The PDF’s (a) and hazard’s function (b) of various BL distributions.

failure, given that it has survived to time 𝑡. The hazard rate
function for the beta-Lindley random variable is given by

ℎ (𝑡, 𝜃, 𝛼, 𝛽) = (
𝜃
2
(𝜃 + 1 + 𝜃𝑥)

𝛽−1
(1 + 𝑥) 𝑒

−𝜃𝛽𝑥

𝐵 (𝛼, 𝛽) (𝜃 + 1)
𝛽

×[1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
]

𝛼−1

)

× (1 −

(1 − ((𝜃 + 1 + 𝜃𝑥) / (𝜃 + 1)) 𝑒
−𝜃𝑥
)
𝛼

𝛼𝐵 (𝛼, 𝛽)

×
2
𝐹
1
(𝛼, 1 − 𝛽; 𝛼 + 1;

1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
))

−1

.

(10)

Figure 1(b) illustrates some of the possible shapes of the
hazard function of the beta-Lindley distribution for selected
values of the parameters 𝛼, 𝛽, and 𝜃, respectively.

3. Moments and Generating Function

Theorem 5. The 𝑘th moment 𝐸(𝑋𝑘) of the beta-Lindley
distributed random variable 𝑋, if 𝛼 > 0, 𝛽 > 0 are real
nonintegers, is given as

𝐸 (𝑋
𝑘
) =

Γ
2
(𝛼 + 𝛽)

Γ (𝛽) 𝜃𝑘

×

∞

∑

𝑗=0

∞

∑

𝑖=0

( ((−1)
𝑖+𝑗
𝑒
(𝛽+𝑗)(𝜃+1)

)

× (Γ (𝛼 − 𝑗) Γ (𝑖 − 1) Γ (𝛼 + 𝛽 − 𝑖)

×(𝜃 + 1)
𝛽+𝑗−𝑖

𝑗!(𝛽 + 𝑗)
𝛼+𝛽+𝑘−𝑖

)

−1

)

× [𝜃Γ (𝑘 − 𝑖 + 𝛼 + 𝛽, (𝜃 + 1) (𝛽 + 𝑗))

+
1

(𝛽 + 𝑗)
Γ (𝑘 − 𝑖 + 𝛼 + 𝛽 + 1, (𝜃 + 1) (𝛽 + 𝑗))] .

(11)

Proof. See the appendix.

4. Order Statistics

The 𝑘th order statistic of a sample is its 𝑘th smallest value.
For a sample of size 𝑛, the 𝑛th order statistic (or largest order
statistic) is the maximum; that is,

𝑋
(𝑛)
= max {𝑋

1
, . . . , 𝑋

𝑛
} . (12)

The sample range is the difference between themaximumand
minimum. It is clearly a function of the order statistics:

range {𝑋
1
, . . . , 𝑋

𝑛
} = 𝑋

(𝑛)
− 𝑋
(1)
. (13)

We know that if 𝑋
(1)
≤ ⋅ ⋅ ⋅ ≤ 𝑋

(𝑛)
denotes the order statistic

of a random sample𝑋
1
, . . . , 𝑋

𝑛
from a continuous population

with CDF𝐹
𝑋
(𝑥) and PDF𝑓

𝑋
(𝑥), then the PDF of𝑋

(𝑗)
is given

by

𝑓
𝑋
(𝑗)

(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
𝑓
𝑋
(𝑥) (𝐹

𝑋
(𝑥))
𝑗−1

(1 − 𝐹
𝑋
(𝑥))
𝑛−𝑗

,

(14)
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for 𝑗 = 1, . . . , 𝑛.The PDF of the 𝑗th order statistic for the beta-
Lindley distribution is given by

𝑓
𝑋
(𝑗)

(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!

𝜃
2
(𝜃 + 1 + 𝜃𝑥)

𝛽−1
(1 + 𝑥) 𝑒

−𝜃𝛽𝑥

𝐵 (𝛼, 𝛽) (𝜃 + 1)
𝛽

× [1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
]

𝛼−1

× (

(1 − ((𝜃 + 1 + 𝜃𝑥) / (𝜃 + 1)) 𝑒
−𝜃𝑥
)
𝛼

𝛼𝐵 (𝛼, 𝛽)

×
2
𝐹
1
(𝛼, 1 − 𝛽; 𝛼 + 1;

1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
))

𝑗−1

× (1 −

(1 − ((𝜃 + 1 + 𝜃𝑥) / (𝜃 + 1)) 𝑒
−𝜃𝑥
)
𝛼

𝛼𝐵 (𝛼, 𝛽)

×
2
𝐹
1
(𝛼, 1 − 𝛽; 𝛼 + 1;

1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
))

𝑛−𝑗

.

(15)

5. Estimation

5.1. Maximum Likelihood Estimates. The maximum likeli-
hood estimates, MLEs, of the parameters that are inherent
within the beta-Lindley distribution function are obtained
as follows. The likelihood function of the observed sample
𝑥
̃
= {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} of size 𝑛 drawn from the density (6) is

defined as

𝐿 = [
𝜃
2

𝐵(𝛼, 𝛽)(𝜃 + 1)
𝛽
]

𝑛

𝑒
−𝜃𝛽∑

𝑛

𝑖=1

𝑥
𝑖

×

𝑛

∏

𝑖=1

(1 + 𝑥
𝑖
) (𝜃 + 1 + 𝜃𝑥

𝑖
)
𝛽−1

(1 −
𝜃 + 1 + 𝜃𝑥

𝑖

𝜃 + 1
𝑒
−𝜃𝑥
𝑖) .

(16)

The corresponding log-likelihood function is given by

ℓ = ln 𝐿 = 𝑛 (2 log (𝜃) − log Γ (𝛼) − log Γ (𝛽) + log Γ (𝛼 + 𝛽)

− 𝛽 log (𝜃 + 1))

+

𝑛

∑

𝑖=1

log (1 + 𝑥
𝑖
) + (𝛽 − 1) log (𝜃 + 1 + 𝜃𝑥

𝑖
)

− 𝜃𝛽

𝑛

∑

𝑖=1

𝑥
𝑖
+ (𝛼−1)

𝑛

∑

𝑖=1

log(1−
𝜃 + 1 + 𝜃𝑥

𝑖

𝜃 + 1
𝑒
−𝜃𝑥
𝑖) .

(17)

Now, setting

𝜕 ln 𝐿
𝜕𝛼

= 0,
𝜕 ln 𝐿
𝜕𝛽

= 0,
𝜕 ln 𝐿
𝜕𝜃

= 0, (18)

we have

𝑛𝜓 (𝛼 + 𝛽) − 𝑛𝜓 (𝛼) +

𝑚

∑

𝑖=1

ln(1 −
(𝜃 + 1 + 𝜃 𝑥

𝑖
) 𝑒
−𝜃 𝑥
𝑖

𝜃 + 1
) = 0,

𝑛𝜓 (𝛼 + 𝛽) − 𝑛𝜓 (𝛽) − 𝑛 log (𝜃 + 1)

+

𝑛

∑

𝑖=1

log (𝜃 + 1 + 𝜃𝑥
𝑖
) − 𝜃

𝑛

∑

𝑖=1

𝑥
𝑖
= 0,

2𝑚

𝜃
−
𝑚𝛽

𝜃 + 1
+ (𝛽 − 1)

𝑛

∑

𝑖=1

1 + 𝑥
𝑖

𝜃 + 1 + 𝜃 𝑥
𝑖

− 𝛽

𝑚

∑

𝑖=1

𝑥
𝑖
+ (𝛼 − 1)

×

𝑛

∑

𝑖=1

𝑒
−𝜃𝑥
𝑥
𝑖
((𝜃 + 1) (𝜃 + 1 + 𝜃𝑥

𝑖
) − 1)

(𝜃 + 1)
2
(1 − ((𝜃 + 1 + 𝜃𝑥

𝑖
) / (𝜃 + 1)) 𝑒

−𝜃𝑥
𝑖)

= 0,

(19)

where 𝜓(⋅) is digamma function. The MLEs (𝛼̂, 𝛽, 𝜃) of
(𝛼, 𝛽, 𝜃), respectively, are obtained by solving this nonlinear
system of equations. It is usually more convenient to use
nonlinear optimization algorithms such as the quasi-Newton
algorithm to numerically maximize the sample likelihood
function given in (16). Applying the usual large sample
approximation, the MLE 𝜆̂ = (𝛼̂, 𝛽, 𝜃) can be treated as being
approximately trivariate normal with mean 𝜆̂ and variance-
covariance matrix equal to the inverse of the expected
information matrix; that is,

√𝑛 (𝜆̂ − 𝜆) 󳨀→ 𝑁
3
(0, 𝑛𝐼

−1
(𝜆)) , (20)

where 𝐼−1(𝜆) is the limiting variance-covariance matrix of 𝜆̂.
The elements of the 3 × 3 matrix 𝐼(𝜆) can be estimated by
𝐼
𝑖𝑗
(𝜆̂) = −ℓ

𝜆
𝑖

𝜆
𝑗

|
𝜆=𝜆̂

, 𝑖, 𝑗 ∈ {1, 2, 3}.
The elements of the Hessian matrix corresponding to the

ℓ function in (17) are given in the appendix.
Approximate two-sided 100(1−𝛼)% confidence intervals

for 𝛼, 𝛽 and for 𝛾 are, respectively, given by

𝛼̂ ± 𝑧
𝛼/2
√𝐼
−1

11
(𝜆̂), 𝛽 ± 𝑧

𝛼/2
√𝐼
−1

22
(𝜆̂),

𝜃 ± 𝑧
𝛼/2
√𝐼
−1

33
(𝜆̂),

(21)

where 𝑧
𝛼
is the upper 𝛼th quantile of the standard normal

distribution. Using 𝑅, we can easily compute the Hessian
matrix and its inverse and hence the standard errors and
asymptotic confidence intervals.

We can compute the maximized unrestricted and
restricted log-likelihood functions to construct the likelihood
ratio (LR) test statistic for testing on some of the beta-Lindley
submodels. For example, we can use the LR test statistic
to check whether the beta-Lindley distribution for a given
data set is statistically superior to the Lindley distribution.
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In any case, hypothesis tests of the type 𝐻
0
: 𝜃 = 𝜃

0

versus 𝐻
0
: 𝜃 ̸= 𝜃

0
can be performed using a LR test. In

this case, the LR test statistic for testing 𝐻
0
versus 𝐻

1
is

𝜔 = 2(ℓ(𝜃; 𝑥) − ℓ(𝜃
0
; 𝑥)), where 𝜃 and 𝜃

0
are the MLEs under

𝐻
1
and 𝐻

0
, respectively. The statistic 𝜔 is asymptotically

(as 𝑛 → ∞) distributed as 𝜒2
𝑘
, where 𝑘 is the length of

the parameter vector 𝜃 of interest. The LR test rejects 𝐻
0
if

𝜔 > 𝜒
2

𝑘;𝛾
, where 𝜒2

𝑘;𝛾
denotes the upper 100𝛾% quantile of the

𝜒
2

𝑘
distribution.

5.2. Least Squares Estimators. In this section, we provide the
regression based method estimators of the unknown param-
eters of the beta-Lindley distribution, which was originally
suggested by Swain et al. [13] to estimate the parameters
of beta distributions. It can be used in some other cases
also. Suppose 𝑌

1
, . . . , 𝑌

𝑛
is a random sample of size 𝑛 from

a distribution function 𝐺(⋅) and suppose 𝑌
(𝑖)
, 𝑖 = 1, 2, . . . , 𝑛,

denotes the ordered sample. The proposed method uses the
distribution of 𝐺(𝑌

(𝑖)
). For a sample of size 𝑛, we have

𝐸 (𝐺 (𝑌
(𝑗)
)) =

𝑗

𝑛 + 1
, 𝑉 (𝐺 (𝑌

(𝑗)
)) =

𝑗 (𝑛 − 𝑗 + 1)

(𝑛 + 1)
2
(𝑛 + 2)

,

Cov (𝐺 (𝑌
(𝑗)
) , 𝐺 (𝑌

(𝑘)
)) =

𝑗 (𝑛 − 𝑘 + 1)

(𝑛 + 1)
2
(𝑛 + 2)

, for 𝑗 < 𝑘;

(22)

see Johnson et al. [14]. Using the expectations and the
variances, the least squares methods can be used.

Obtain the estimators by minimizing

𝑛

∑

𝑗=1

(𝐺𝑌
(𝑗)
−

𝑗

𝑛 + 1
)

2

, (23)

with respect to the unknown parameters. Therefore, in case
of BL distribution, the least squares estimators of 𝛼, 𝛽, and
𝜃, say 𝛼̂LSE, 𝛽LSE, and 𝜃LSE, respectively, can be obtained by
minimizing

𝑛

∑

𝑗=1

[

[

(1 − ((𝜃 + 1 + 𝜃𝑥) / (𝜃 + 1)) 𝑒
−𝜃𝑥
)
𝛼

𝛼𝐵 (𝛼, 𝛽)

×
2
𝐹
1
(𝛼, 1 − 𝛽; 𝛼 + 1; 1 −

𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒
−𝜃𝑥
)

−
𝑗

𝑛 + 1

]

]

2

(24)

with respect to 𝛼, 𝛽, and 𝜃.

5.3. Bayes Estimation. In this section, we developed the
Bayes procedure for the estimation of the unknown model
parameters based on observed sample 𝑥

̃
from beta-Lindley

distribution. In addition to having a likelihood function, the
Bayesian needs a prior distribution for parameter, which
quantifies the uncertainty about parameter prior to having

data. In many situations, existing knowledge may be difficult
to summarise in the form of an informative prior. In such
case, it is better to consider the noninformative prior for
Bayesian analysis (for more details on the use of noninforma-
tive prior, see [15]). We take the noninformative priors ([16])
for 𝜃, 𝛼, and 𝛽 of the following forms:

𝜋
1
(𝜃) ∝ 𝜃

−1
, 𝜃 > 0; 𝜋

2
(𝛼) ∝ 𝑀

−1

1
, 0 < 𝛼 < 𝑀

1
;

𝜋
3
(𝛽) ∝ 𝑀

−1

2
, 0 < 𝛽 < 𝑀

2
.

(25)

It is to be noticed that the choices of 𝑀
1
and 𝑀

2
are

unimportant and we can simply take

𝜋
2
(𝛼) ∝ 1, 𝜋

3
(𝛽) ∝ 1. (26)

Thus, the joint posterior distribution of 𝜃, 𝛼, and 𝛽 is given by

𝜋 (𝛼, 𝛽, 𝜃 | 𝑥
̃
) = 𝐾

𝜃
2𝑛−1 exp (−𝜃𝛽∑𝑛

𝑖=1
𝑥
𝑖
)

𝐵𝑛 (𝛼, 𝛽) (1 + 𝜃)
𝑛𝛽

×

𝑛

∏

𝑖=1

[(1 + 𝜃 + 𝜃𝑥
𝑖
)
𝛽−1

×(1 −
1 + 𝜃 + 𝜃𝑥

𝑖

1 + 𝜃
𝑒
−𝜃𝑥
𝑖)

𝛼−1

] ,

(27)

where𝐾 is the normalizing constant. Under square error loss,
the Bayes estimates of 𝜃, 𝛼, and 𝛽 are the means of their
marginal posteriors and defined as

𝜃
𝐵
= ∫
𝜃

∫
𝛼

∫
𝛽

𝜃𝜋 (𝛼, 𝛽, 𝜃 | 𝑥
̃
) 𝑑𝛽 𝑑𝛼 𝑑𝜃, (28)

𝛼̂
𝐵
= ∫
𝛼

∫
𝜃

∫
𝛽

𝛼𝜋 (𝛼, 𝛽, 𝜃 | 𝑥
̃
) 𝑑𝛽 𝑑𝜃 𝑑𝛼, (29)

𝛽
𝐵
= ∫
𝛽

∫
𝛼

∫
𝜃

𝛽𝜋 (𝛼, 𝛽, 𝜃 | 𝑥
̃
) 𝑑𝜃 𝑑𝛼 𝑑𝛽, (30)

respectively. It is not easy to calculate Bayes estimates through
(28), (29), and (30) and so the numerical approximation
techniques are needed. Therefore, we proposed the use of
Monte Carlo Markov Chain (MCMC) techniques, namely,
Gibbs sampler andMetropolis Hastings (MH) algorithm; see
[17–19]. Since the conditional posteriors of the parameters
cannot be obtained in any standard forms, we, therefore,
used a hybrid MCMC strategy for drawing samples from the
joint posterior of the parameters. To implement the Gibbs
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algorithm, the full conditional posteriors of 𝛼, 𝛽, and 𝜃 are
given by

𝜋
1
(𝛼 | 𝛽, 𝜃, 𝑥

̃
) ∝

Γ
𝑛
(𝛼 + 𝛽)

Γ𝑛 (𝛼)

𝑛

∏

𝑖=1

(1 −
1 + 𝜃 + 𝜃𝑥

𝑖

1 + 𝜃
𝑒
−𝜃𝑥
𝑖)

𝛼−1

,

𝜋
2
(𝛽 | 𝛼, 𝜃, 𝑥

̃
) ∝

Γ
𝑛
(𝛼 + 𝛽)

Γ𝑛 (𝛼)

exp (−𝜃𝛽∑𝑛
𝑖=1
𝑥
𝑖
)

(1 + 𝜃)
𝑛𝛽

×

𝑛

∏

𝑖=1

(1 + 𝜃 + 𝜃𝑥
𝑖
)
𝛽−1

,

(31)

𝜋
3
(𝜃 | 𝛼, 𝛽, 𝑥

̃
) ∝

𝜃
2𝑛−1 exp (−𝜃𝛽∑𝑛

𝑖=1
𝑥
𝑖
)

(1 + 𝜃)
𝑛𝛽

×

𝑛

∏

𝑖=1

[(1 + 𝜃 + 𝜃𝑥
𝑖
)
𝛽−1

× (1 −
1 + 𝜃 + 𝜃𝑥

𝑖

1 + 𝜃
𝑒
−𝜃𝑥
𝑖)

𝛼−1

] .

(32)

The simulation algorithm we followed is given by the follow-
ing.

Step 1. Set starting points, say 𝛼(0), 𝛽(0), and 𝜃(0), then at 𝑖th
stage.

Step 2. Using MH algorithm, generate 𝛼
𝑖
∼ 𝜋
1
(𝛼 | 𝛽

(𝑖−1)
,

𝜃
(𝑖−1)
, 𝑥
̃
).

Step 3. UsingMHalgorithm, generate𝛽
𝑖
∼𝜋
2
(𝛽 | 𝛼

𝑖
, 𝜃
(𝑖−1)
, 𝑥
̃
).

Step 4. Using MH algorithm, generate 𝜃
𝑖
∼ 𝜋
3
(𝜃 | 𝛼
𝑖
, 𝛽
𝑖
, 𝑥
̃
).

Step 5. Repeat steps 2–4,𝑀(=20000) times to get the samples
of size𝑀 from the corresponding posteriors of interest.

Step 6. Obtain the Bayes estimates of 𝛼, 𝛽, and 𝜃 using the
following formulae:

𝛼̂
𝐵
=

1

𝑀 −𝑀
0

𝑀

∑

𝑗=𝑀
0

+1

𝛼
𝑗
, 𝛽

𝐵
=

1

𝑀 −𝑀
0

𝑀

∑

𝑗=𝑀
0

+1

𝛽
𝑗
,

𝜃
𝐵
=

1

𝑀 −𝑀
0

𝑀

∑

𝑗=𝑀
0

+1

𝜃
𝑗
,

(33)

respectively, where𝑀
0
(≈ 5000) is the burn-in period of the

generated Markov chains.

Step 7. Obtain the 100 × (1 − 𝜓)%HPD credible intervals for
𝛼, 𝛽, and 𝜃 by applying the methodology of [20]. The HPD
credible intervals for 𝛼, 𝛽, and 𝜃 are (𝛼

(𝑗
∗

)
, 𝛼
(𝑗
∗

+[(1−𝜓)𝑀])
),

(𝛽
(𝑗
∗

)
, 𝛽
(𝑗
∗

+[(1−𝜓)𝑀])
), and (𝜃

(𝑗
∗

)
, 𝜃
(𝑗
∗

+[(1−𝜓)𝑀])
), respectively,

where 𝑗∗ is chosen such that

𝛼
(𝑗
∗

+[(1−𝜓)𝑀])
− 𝛼
(𝑗
∗

)
= min
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

(𝛼
(𝑗+[(1−𝜓)𝑀])

− 𝛼
(𝑗)
) ,

𝛽
(𝑗
∗

+[(1−𝜓)𝑀])
− 𝛽
(𝑗
∗

)
= min
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

(𝛽
(𝑗+[(1−𝜓)𝑀])

− 𝛽
(𝑗)
) ,

𝜃
(𝑗
∗

+[(1−𝜓)𝑀])
− 𝜃
(𝑗
∗

)
= min
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

(𝜃
(𝑗+[(1−𝜓)𝑀])

− 𝜃
(𝑗)
) .

(34)

Here, [𝑥] denotes the largest integer less than or equal to
𝑥.

Note that there have been several attempts made to
suggest the proposal density for the target posterior in the
implementation of MH algorithm. By reparameterizing the
posterior on the entire real line, [16, 21] have suggested to
use the normal approximation of the posterior as a proposal
candidate inMH algorithm. Alternatively, it is also realistic to
have the thought of using the truncated normal distribution
without reparameterizing the original parameters.Therefore,
we proposed the use of the truncated normal distribution as
the proposal kernel to the target posterior.

6. Application

6.1. Real Data Applications. In this section, we use two real
data sets to show that the beta-Lindley distribution can be a
better model than one based on the Lindley distribution.The
description of the data is as follows.

Data Set 1. The data set 1 represents an uncensored data set
corresponding to remission times (in months) of a random
sample of 128 bladder cancer patients reported by Lee and
Wang [22].

Data Set 2. The data set 2 represents the survival times (in
days) of 72 guinea pigs infected with virulent tubercle bacilli,
observed and reported by Bjerkedal [23]. The survival times
of 72 guinea pigs are as follows.

The variance-covariancematrix 𝐼(𝜆̂)−1 of theMLEs under
the beta-Lindley distribution for data set 1 is computed as

(

0.213 −0.019 0.530

−0.019 0.004 −0.120

0.530 −0.120 3.131

) . (35)

Thus, the variances of the MLE of 𝛼, 𝛽, and 𝜃 are
var(𝛼̂) = 0.213, var(𝛽) = 0.004, and var(𝜃) = 3.131.
Therefore, 95% confidence intervals for 𝛼, 𝛽, and 𝜃 are
[0.435, 2.245], [0, 0.198], and [0, 5.330], respectively.

In order to compare the two distribution models, we
consider criteria like −2ℓ, AIC, and CAIC for the data set.
The better distribution corresponds to smaller −2ℓ, AIC, and
AICC values.

The LR test statistic to test the hypotheses𝐻
0
: 𝑎 = 𝑏 = 1

versus𝐻
1
: 𝑎 ̸= 1∨𝑏 ̸= 1 for data set 1 is𝜔 = 13.436 > 5.991 =

𝜒
2

2;0.05
, so we reject the null hypothesis.
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Table 1: The ML estimates, standard error, log-likelihood, LSE estimates, AIC, and CAIC for Data Set 1.

Model ML estim. St. err. LL LSE estim. −2LL AIC CAIC
Lindley 𝜃 = 0.196 0.012 −419.529 0.229 839.04 841.06 841.091

Beta-exponential
𝜆̂ = 0.116 0.674

−413.189
0.195

826.378 832.378 832.571𝛼̂ = 1.149 0.340 1.764
𝛽 = 0.997 0.194 0.677

Beta-Lindley
𝛼̂ = 1.340 0.461

−412.802
1.803

825.604 831.604 831.797𝛽 = 0.065 0.068 0.087
𝜃 = 1.861 1.769 1.630

Table 2: The ML estimates, standard error, log-likelihood, AIC, and CAIC for Data Set 2.

Model ML estim. St. err. −LL PSE estim. −2LL AIC CAIC
Lindley 𝜃 = 0.868 0.076 106.928 0.855 213.857 215.857 215.942

Beta-exponential
𝜆̂ = 0.736 1.357

94.167
0.741

188.334 194.334 194.646𝛼̂ = 3.345 1.056 2.966
𝛽 = 1.708 3.877 1.521

Beta-Lindley
𝛼̂ = 3.005 1.006

93.971
2.588

187.942 193.942 194.294𝛽 = 0.949 0.924 0.943
𝜃 = 1.462 0.981 1.370

The variance-covariancematrix 𝐼(𝜆̂)−1 of theMLEs under
the beta-Lindley distribution for data set 2 is computed as

(

1.013 −0.734 0.845

−0.734 0.854 −0.897

0.845 −0.897 0.964

) . (36)

Thus, the variances of the MLE of 𝛼, 𝛽, and 𝜃 are var(𝛼̂) =
1.013, var(𝛽) = 0.854, and var(𝜃) = 0.964. Therefore, 95%
confidence intervals for 𝛼, 𝛽, and 𝜃 are [1.033, 4.976],
[0, 2.76], and [0, 3.384], respectively.

The LR test statistic to test the hypotheses𝐻
0
: 𝑎 = 𝑏 = 1

versus 𝐻
1
: 𝑎 ̸= 1 ∨ 𝑏 ̸= 1 for data set 2 is 𝜔 = 25.915 >

5.991 = 𝜒
2

2; 0.05
, so we reject the null hypothesis. Tables 1

and 2 show parameter MLEs to each one of the two fitted
distributions for data sets 1 and 2, and Tables 1 and 2 show
the values of −2 log(𝐿), AIC, and AICC. The values in Tables
1 and 2 indicate that the beta-Lindley is a strong competitor
to another distribution used here for fitting data set 1 and
data set 2. A density plot compares the fitted densities of the
models with the empirical histogram of the observed data
(Figures 2(a) and 2(b)).The fitted density for the beta-Lindley
model is closer to the empirical histogram than the fits of the
Lindley models.

The Bayes estimates and the corresponding HPD credible
intervals for the parameters 𝛼, 𝛽, and 𝜃 are summarised in
Table 3.

6.2. Simulated Data. In this subsection, we provided an
algorithm to generate a randomsample from the beta-Lindley
distribution for the given values of its parameters and sample
size 𝑛. The simulation process consists of the following steps.

Table 3: Bayes estimates and 95% HPD credible intervals for the
model parameters based on real data sets.

Data Parameter Bayes
Estimate Lower Upper

Data 1
𝛼 1.198824 0.531175 1.835345
𝛽 0.136014 0.002155 0.274293
𝜃 1.283892 0.000737 2.544082

Data 2
𝛼 2.933191 1.604314 4.132534
𝛽 1.004611 0.000559 1.842176
𝜃 1.458197 0.343411 2.517247

Data 3
𝛼 2.581740 0.941880 4.127841
𝛽 0.501017 0.004933 1.110172
𝜃 2.886923 0.074607 5.401492

Step 1. Set 𝑛, and Θ = (𝜃, 𝛼, 𝛽).

Step 2. Set initial value 𝑥0 for the random starting.

Step 3. Set 𝑗 = 1.

Step 4. Generate 𝑈 ∼ Uniform (0, 1).

Step 5. Update 𝑥0 by using Newton’s formula such as

𝑥
⋆
= 𝑥
0
− (

𝐺
Θ
(𝑥) − 𝑈

𝑓
Θ
(𝑥)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0
. (37)

Step 6. If |𝑥0 − 𝑥⋆| ≤ 𝜖 (very small, 𝜖 > 0 tolerance limit),
then 𝑥⋆ will be the desired sample from 𝐹(𝑥).

Step 7. If |𝑥0 − 𝑥⋆| > 𝜖, then set 𝑥0 = 𝑥⋆ and go to step 50.

Step 8. Repeat steps 40–70, for 𝑗 = 1, 2, . . . , 𝑛, and obtain
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
.
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Figure 2: Estimated densities of the models for data set 1.

Using the previous algorithm, we generated a sample of
size 30 from beta-Lindley distribution for arbitrary values of

𝜃 = 1.5, 𝛼 = 2, and 𝛽 = 1. The simulated sample (Data 3) is
given by

(

0.7230, 0.9211, 1.3350, 2.6770, 0.6035, 2.5947, 3.0801, 1.5572, 1.4727, 0.3013,

0.6116, 0.5550, 1.6320, 0.9438, 1.9079, 1.1693, 1.7259, 4.5494, 0.9360, 1.9373,

2.9493, 0.6233, 1.5323, 0.4515, 0.7262, 0.9476, 0.1333, 0.9405, 2.3910, 0.8615

) . (38)

Themaximum likelihood estimates and Bayes estimates with
corresponding confidence/credible intervals are calculated
based on the simulated sample. The MLEs of (𝜃, 𝛼, 𝛽)
are (2.72966, 2.56457, 0.43766), respectively. The asymptotic
confidence intervals for (𝜃, 𝛼, 𝛽) are obtained as (−3.5042 ∼
0, 8.9635), (−0.6445 ∼ 0, 5.77373), and (−0.865 ∼ 0, 1.74044),
respectively. For Bayes estimates and the corresponding
credible intervals based on simulated data, see Table 3.

7. Conclusion

Here, we propose a new model, the so-called beta-Lindley
distribution which extends the Lindley distribution in the
analysis of data with real support. An obvious reason for
generalizing a standard distribution is that the generalized
form provides larger flexibility in modelling real data. We
derive expansions for the moments and for the moment gen-
erating function.The estimation of parameters is approached
by the method of maximum likelihood and Bayesian; also
the informationmatrix is derived.We consider the likelihood
ratio statistic to compare the model with its baseline model.
Two applications of the beta-Lindley distribution to real data
show that the new distribution can be used quite effectively
to provide better fits than the Lindley distribution.

Appendix

Proof of Theorem 5. One has

𝐸 (𝑋
𝑘
) = ∫

∞

0

𝑥
𝑘
𝑓 (𝑥) 𝑑𝑥

=
𝜃

𝐵 (𝛼, 𝛽) (𝜃 + 1)
𝛽

× ∫

∞

0

(
𝑡

𝜃
)

𝑘

(𝜃 + 1 + 𝑡)
𝛽−1
(
𝜃 + 𝑡

𝜃
) 𝑒
−𝛽𝑡

× [1 −
𝜃 + 1 + 𝑡

𝜃 + 1
𝑒
−𝑡
]

𝛼−1

𝑑𝑡

=
Γ (𝛼)

𝐵 (𝛼, 𝛽) 𝜃𝑘(𝜃 + 1)
𝛽+𝑗

×

∞

∑

𝑗=0

(−1)
𝑗

Γ (𝛼 − 𝑗) 𝑗!

× [𝜃∫

∞

0

𝑡
𝑘
(𝜃 + 1 + 𝑡)

𝛼+𝛽−1
𝑒
−(𝛽+𝑗)𝑡

𝑑𝑡
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+∫

∞

0

𝑡
𝑘+1
(𝜃 + 1 + 𝑡)

𝛼+𝛽−1
𝑒
−(𝛽+𝑗)𝑡

𝑑𝑡] 𝑑𝑡

=
Γ (𝛼)

𝐵 (𝛼, 𝛽) 𝜃𝑘

∞

∑

𝑗=0

(−1)
𝑗

Γ (𝛼 − 𝑗) (𝜃 + 1)
𝛽+𝑗
𝑗!

𝑒
(𝛽+𝑗)(𝜃+1)

×

∞

∑

𝑖=0

Γ (𝛼 + 𝛽)

Γ (𝛼 + 𝛽 − 𝑖) Γ (𝑖 − 1)
(−1)
𝑖
(𝜃 + 1)

𝑖

× [𝜃∫

∞

𝜃+1

𝑡
𝑘−𝑖+𝛼+𝛽−1

𝑒
−(𝛽+𝑗)𝑡

𝑑𝑡

+∫

∞

𝜃+1

𝑡
𝑘−𝑖+𝛼+𝛽

𝑒
−(𝛽+𝑗)𝑡

𝑑𝑡] ,

∫

∞

𝜃+1

𝑡
𝑘−𝑖+𝛼+𝛽−1

𝑒
−(𝛽+𝑗)𝑡

𝑑𝑡

=
1

(𝛽 + 𝑗)
𝑘−𝑖+𝛼+𝛽

× Γ (𝑘 − 𝑖 + 𝛼 + 𝛽, (𝜃 + 1) (𝛽 + 𝑗)) .

(A.1)

So,

𝐸 (𝑋
𝑘
) =

Γ
2
(𝛼 + 𝛽)

Γ (𝛽) 𝜃𝑘

×

∞
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𝑗=0

∞

∑

𝑖=0

( ((−1)
𝑖+𝑗
𝑒
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× (Γ (𝛼 − 𝑗) Γ (𝑖 − 1) Γ (𝛼 + 𝛽 − 𝑖)

×(𝜃 + 1)
𝛽+𝑗−𝑖

𝑗!(𝛽 + 𝑗)
𝛼+𝛽+𝑘−𝑖

)

−1

)

× [𝜃Γ (𝑘 − 𝑖 + 𝛼 + 𝛽, (𝜃 + 1) (𝛽 + 𝑗))

+
1

(𝛽 + 𝑗)
Γ (𝑘 − 𝑖 + 𝛼 + 𝛽 + 1, (𝜃 + 1) (𝛽 + 𝑗))] .

(A.2)

The elements of Hessian matrix. One has

𝐼
11
=
𝜕𝜕
2
ℓ

𝛼2
= 𝑛𝜓
󸀠
(𝛼 + 𝛽) − 𝑛𝜓

󸀠
(𝛼) ,

𝐼
12
=
𝜕
2
ℓ

𝜕𝛼𝛽
= 𝑛𝜓
󸀠
(𝛼 + 𝛽) ,

𝐼
13
=
𝜕
2
ℓ

𝜕𝛼𝜃

=

𝑛

∑

𝑖=1

−
𝑒
−𝜃 𝑥
𝑖𝜃 𝑥
𝑖
(2 + 𝑥

𝑖
+ 𝜃 + 𝜃 𝑥

𝑖
)

(−𝜃 − 1 + 𝑒−𝜃 𝑥𝑖𝜃 + 𝑒−𝜃 𝑥𝑖 + 𝑒−𝜃 𝑥𝑖𝜃 𝑥
𝑖
) (𝜃 + 1)

,

𝐼
22
=
𝜕
2
ℓ

𝜕𝛽2
= 𝑛𝜓
󸀠
(𝛼 + 𝛽) − 𝑛𝜓 (𝛽) ,

𝐼
23
=
𝜕
2
ℓ

𝜕𝛽𝜃
= −

𝑛

𝜃 + 1
+

𝑛

∑

𝑖=1

1 + 𝑥
𝑖

𝜃 + 1 + 𝜃 𝑥
𝑖

−

𝑛

∑

𝑖=1

𝑥
𝑖
,

𝐼
33
=
𝜕
2
ℓ

𝜕𝜃2

= −2
𝑛

𝜃2
+

𝑛𝛽

(𝜃 + 1)
2
− (𝛽 − 1)

𝑛

∑

𝑖=1

(1 + 𝑥
𝑖
)
2

(𝜃 + 1 + 𝜃 𝑥
𝑖
)
2

+ (𝛼 + 1)

𝑛

∑

𝑖=1

(𝑒
−𝜃 𝑥
𝑖𝑥
𝑖
(𝜃 𝑥
𝑖

2
+ 𝜃
3
𝑥
𝑖

2
+ 2 𝜃
2
𝑥
𝑖

2
− 2 − 𝑥

𝑖

+𝜃
3
𝑥
𝑖
+ 3 𝜃
2
𝑥
𝑖
+ 𝜃 𝑥
𝑖
))

× ((−𝜃 − 1 + 𝑒
−𝜃 𝑥
𝑖𝜃 + 𝑒
−𝜃 𝑥
𝑖 + 𝑒
−𝜃 𝑥
𝑖𝜃 𝑥
𝑖
) (𝜃 + 1)

2
)
−1

−

𝑛

∑

𝑖=1

(𝑒
−𝜃 𝑥
𝑖)
2

𝜃
2
𝑥
𝑖

2
(2 + 𝑥

𝑖
+ 𝜃 + 𝜃 𝑥

𝑖
)
2

(𝜃 + 1)
2
(−𝜃 − 1 + 𝑒−𝜃 𝑥𝑖𝜃 + 𝑒−𝜃 𝑥𝑖 + 𝑒−𝜃 𝑥𝑖𝜃 𝑥

𝑖
)
2
.

(.3)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. Eugene, C. Lee, and F. Famoye, “Beta-normal distribution
and its applications,” Communications in Statistics: Theory and
Methods, vol. 31, no. 4, pp. 497–512, 2002.

[2] S. Nadarajah and A. K. Gupta, “The beta Frechet distribution,”
Far East Journal of Theoretical Statistics, vol. 14, no. 1, pp. 15–24,
2004.

[3] S. Nadarajah and S. Kotz, “The beta gumbel distribution,”
Mathematical Problems in Engineering, vol. 2004, no. 4, pp. 323–
332, 2004.

[4] S. Nadarajah and S. Kotz, “The beta exponential distribution,”
Reliability Engineering & System Safety, vol. 91, Article ID
689697, 2005.

[5] M. C. Jones, “Families of distributions arising from distribu-
tions of order statistics,” Test, vol. 13, no. 1, pp. 1–43, 2004.

[6] W. Barreto-Souza, A. H. S. Santos, and G. M. Cordeiro, “The
beta generalized exponential distribution,” Journal of Statistical
Computation and Simulation, vol. 80, no. 2, pp. 159–172, 2010.

[7] R. R. Pescim, C. G. Demtrio, G. M. Cordeiro, E. M. Ortega, and
M. R. Urbano, “The beta generalized half-normal distribution,”
Computational Statistics and Data Analysis, vol. 54, no. 4, pp.
945–957, 2010.

[8] G. M. Cordeiro, C. T. Cristino, E. M. Hashimoto, and E. M.
M. Ortega, “The beta generalized Rayleigh distribution with
applications to lifetime data,” Statistical Papers, vol. 54, no. 1, pp.
133–161, 2013.

[9] D. V. Lindley, “Fiducial distributions and Bayes'theorem,” Jour-
nal of the Royal Statistical Society B, vol. 20, pp. 102–107, 1958.



10 Journal of Applied Mathematics

[10] M. E. Ghitany, B. Atieh, and S. Nadarajah, “Lindley distribution
and its application,”Mathematics and Computers in Simulation,
vol. 78, no. 4, pp. 493–506, 2008.

[11] G. M. Cordeiro and S. Nadarajah, “Closed-form expressions for
moments of a class of beta generalized distributions,” Brazilian
Journal of Probability and Statistics, vol. 25, no. 1, pp. 14–33, 2011.

[12] S. Nadarajah, H. S. Bakouch, and R. Tahmasbi, “A generalized
Lindley distribution,” Sankhya B: Applied and Interdisciplinary
Statistics, vol. 73, no. 2, pp. 331–359, 2011.

[13] J. Swain, S. Venkatraman, and J. Wilson, “Least squares estima-
tion of distribution function in Johnson’s translation system,”
Journal of Statistical Computation and Simulation, vol. 29, pp.
271–297, 1988.

[14] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous
Univariate Distr ibution, vol. 2, JohnWiley & Sons, 2nd edition,
1995.

[15] J. O. Berger, Statistical Decision Theory and Bayesian Analysis,
Springer, 1985.

[16] S. K. Upadhyay and A. Gupta, “A Bayes analysis of modified
Weibull distribution via Markov chain MONte Carlo simula-
tion,” Journal of Statistical Computation and Simulation, vol. 80,
no. 3-4, pp. 241–254, 2010.

[17] A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches
to calculating marginal densities,” Journal of the American
Statistical Association, vol. 85, no. 410, pp. 398–409, 1990.

[18] W. K. Hastings, “Monte carlo sampling methods using Markov
chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–
109, 1970.

[19] S. P. Brooks, “Markov chain Monte Carlo method and its
application,” Journal of the Royal Statistical Society Series D:The
Statistician, vol. 47, no. 1, pp. 69–100, 1998.

[20] M. H. Chen and Q. M. Shao, “Monte carlo estimation of
Bayesian credible andHPD intervals,” Journal of Computational
and Graphical Statistics, vol. 8, no. 1, pp. 69–92, 1999.

[21] S. K. Upadhyay, N. Vasishta, and A. F. M. Smith, “Bayes
inference in life testing and reliability via Markov chain Monte
Carlo simulation,” Sankhya: The Indian Journal of Statistics A,
vol. 63, no. 1, pp. 15–40, 2001.

[22] E. T. Lee and J. W. Wang, Statistical Methods for Survival Data
Analysis, John Wiley & Sons, New York, NY, USA, 3rd edition,
2003.

[23] T. Bjerkedal, “Acquisition of resistance in Guinea pigs infected
with different doses of virulent tubercle bacilli,” The American
Journal of Epidemiology, vol. 72, no. 1, pp. 130–148, 1960.


