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The problem of peristaltic nanofluid flow in an asymmetric channel in the presence of the second-order slip boundary condition
was investigated in this paper. To the best of the authors’ knowledge, this parameter was here incorporated for the first time in
such field of a peristaltic flow. The system governing the current flow was found as a set of nonlinear partial differential equations
in the stream function, pressure gradient, nanoparticle concentration, and temperature distribution. Therefore, this system has
been successfully solved exactly via a very effective procedure. These exact solutions were then proved to reduce to well-known
results in the absence of second slip which were published very recently in the literature. Effect of the second slip parameter on the
present physical parameters was discussed through graphs and it was found that this type of slip is a very important one to predict
the investigated physical model. Moreover, the variation of many physical parameters such as amplitudes of the lower and upper
waves, phase difference on the temperature distribution, nanoparticle concentration, pressure rise, velocity, and pressure gradient
were also discussed. Finally, the present results may be viewed as an optimal choice for their dependence on the exact solutions
which are obtained due to the highly complex nonlinear system.

1. Introduction

Peristalsis is an interest subject and has recently attracted
much attention due to its importance in engineering and
medical applications. In human body, peristalsis is found in
the swallowing food through the esophagus, chymemotion in
the gastrointestinal tract, vasomotion of small blood vessels
such as venules, capillaries and arterioles, urine transport
from kidney to bladder, and intrauterine fluid flow within
the uterine cavity. Various experimental and theoretical
studies have been conducted to understand peristaltic flow
in asymmetric channel or an axisymmetric tube; see [1–
7]. According to De Vries et al. [8], they observed that
myometrial contractions are peristaltic-type motion and
therefore these contractions of the uterine wall may occur
in both symmetric and asymmetric directions. Due to the

importance of this field of research, a great effort was devoted
to study this type of flow for Newtonian and non-Newtonian
fluids in an asymmetric channel [9–17].

Recently, a few papers have been published in the field
of nanofluid flows under the peristaltic action [18–23].
Nanofluids usually lead to the enhancement of the thermal
conductivity of the base fluid [24].The concept of nanofluids,
analogous to that of nanoparticles, may be initiated by Choi
et al. [25]. The fact that nanofluids have higher thermal
conductivity than the other heat transfer fluids because
of their nanostructure has attracted many engineers and
theoretical scientists to investigate their behavior.This higher
thermal conductivity may be very useful in the treatment of
tumors by injecting the blood vessel nearest to the tumorwith
magnetic nanoparticles along with placing a magnet close to
the tumor, where these particles act like heat sources, in the
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presence of the applied magnetic field of alternating nature.
Hence, the undesirable tissues (cancer’s tissues) are destroyed
when the temperature reaches 42–45∘C [6]. Besides, the drug
may be placed on the magnetic nanoparticles and is injected
near the tumor. The drug is then absorbed by the tumor
through a high gradientmagnetic field, which is concentrated
near the tumor center [26]. In fact, the drug absorption
due to high concentration of magnetic particles increases
and magnetic force prevents uniform drug distribution in
circulatory system. This approach reduces the side effect and
allows using high dose of anticancer drug [27].

Very recently, Ebaid and Aly [28] investigated the system
of partial differential equations describing the peristaltic flow
of a nanofluid with slip effect of the velocity, temperature,
and concentration has been analytically solved.The obtained
exact solutions have been applied to study effects of the slip
parameter, thermophoresis, Brownian motion parameters,
andmany other parameters on the pressure rise, velocity pro-
files, temperature distribution, nanoparticle concentration,
and pressure gradient. These exact solutions were proved
to reduce to the results in the literature at special cases
when 𝛽

2
= 0. Moreover, on comparing the present results

with those in [22], remarkable differences were noticed for
behavior of the included previous physical phenomena.

Themain feature of the previous studies on the nanofluid
flow under peristaltic action [18–23] is the ignorance of
the second slip effect, while this effect has been recently
discussed by many authors; see for example [29–33]. These
papers showed clearly that the second-order slip flow model
is necessary to predict the flow characteristics accurately.
Therefore, as an extension of these studies and for the first
time, in this paper we aim to investigate effect of the second
slip on the peristaltic flow of nanofluids in an asymmetric
channel. Hence, we focus here on the problem discussed by
Akbar et al. [22] andEbaid andAly [28]with slight differences
in the boundary conditions.

2. The Mathematical Model

Consider peristaltic transport of an incompressible Newto-
nian nanofluid in an asymmetric channel with flexible walls.
The channel asymmetry is generated by propagation of waves
on the channel walls traveling with different amplitudes
and phases but with the same constant speed 𝑐. In the
Cartesian coordinates system (𝑋, 𝑌) of the fixed frame, the
upper and lower walls ℎ

1
and ℎ

2
, respectively, are given by

(see Figure 1)

ℎ
1
= 𝑑
1
+ 𝑎
1
cos(2𝜋

𝜆
[𝑋 − 𝑐𝑡]) , (1a)

ℎ
2
= −𝑑
2
− 𝑏
1
cos(2𝜋

𝜆
[𝑋 − 𝑐𝑡] + 𝜙) , (1b)

where 𝑎
1
and 𝑏
1
are amplitude of the waves, 𝜆 is the wave

length, and 𝑑
1
+ 𝑑
2
is the width of the channel. The phase

difference 𝜙 varies in the range 0 ≤ 𝜙 ≤ 𝜋, where 𝜙 = 0 and
𝜙 = 𝜋 correspond to symmetric channel with waves out of
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Figure 1: Schematic diagram of a two-dimensional asymmetric
channel.

the phase and in the phase, respectively. Further, 𝑎
1
, 𝑏
1
, 𝑑
1
,

𝑑
2
, and 𝜙 have to satisfy the following condition [34]:

𝑎2
1

+ 𝑏2
1

+ 2𝑎
1
𝑏
1
cos𝜙 ≤ (𝑑

1
+ 𝑑
2
)
2

, (2)

with the following nondimensional phenomena [22]:

𝑎 =
𝑎
1

𝑑
1

, 𝑏 =
𝑎
2

𝑑
1

, 𝑑 =
𝑑
2

𝑑
1

. (3)

Furthermore, in the moving frame of references (𝑥, 𝑦), we
have

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, (4)

which have been used with the following nondimensional
phenomena [22]:

𝑥 =
2𝜋𝑥

𝜆
, 𝑦 =

𝑦

𝑑
1

, 𝑡 =
2𝜋𝑡

𝜆
,

ℎ
1
=
ℎ
1

𝑑
1

, ℎ
2
=
ℎ
2

𝑑
2

,

(5)

to obtain the present physical model. On taking into account
(i) heat transfer along with nanoparticle phenomena, (ii)
long wavelength, and low Reynolds number approximation,
recently, Akbar et al. [22] found that the flow is governed
by the following system of partial differential equations in
nondimensional form:

𝜕4𝜓

𝜕𝑦4
+ 𝐺
𝑟

𝜕𝜃

𝜕𝑦
+ 𝐵
𝑟

𝜕𝜎

𝜕𝑦
= 0, (6)

𝑑𝑝

𝑑𝑥
=
𝜕

𝜕𝑦
[
𝜕2𝜓

𝜕𝑦2
+ 𝐺
𝑟
𝜃 + 𝐵
𝑟
𝜎] , (7)

𝜕2𝜃

𝜕𝑦2
+ 𝑁
𝑏

𝜕𝜃

𝜕𝑦

𝜕𝜎

𝜕𝑦
+ 𝑁
𝑡
[
𝜕𝜃

𝜕𝑦
]
2

= 0, (8)

𝜕2𝜎

𝜕𝑦2
+ [
𝑁
𝑡

𝑁
𝑏

]
𝜕2𝜃

𝜕𝑦2
= 0, (9)
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where 𝜓, 𝜃, 𝜎, and 𝑝 are the stream function, tempera-
ture distribution, nanoparticle concentration, and pressure
gradient, respectively. In addition, 𝑁

𝑏
, 𝑁
𝑡
, 𝐺
𝑟
, and 𝐵

𝑟
are

the Brownian motion parameter, thermophoresis parameter,
local temperature Grashof number, and nanoparticle Grashof
number, respectively. The above system of PDEs. (6)–(9) has
to be solved subject to the following boundary conditions:

𝜓 =
𝐹

2
,

𝜕𝜓

𝜕𝑦
= −𝛽
1

𝜕2𝜓

𝜕𝑦2
− 𝛽
2

𝜕3𝜓

𝜕𝑦3
− 1

at ℎ
1
= 1 + 𝑎 cos (𝑥) ,

𝜓 = −
𝐹

2
,

𝜕𝜓

𝜕𝑦
= 𝛽
1

𝜕2𝜓

𝜕𝑦2
+ 𝛽
2

𝜕3𝜓

𝜕𝑦3
− 1

at ℎ
2
= −𝑑 − 𝑏 cos (𝑥 + 𝜙) ,

𝜃 + 𝛾
𝜕𝜃

𝜕𝑦
= 0, at 𝑦 = ℎ

1
,

𝜃 − 𝛾
𝜕𝜃

𝜕𝑦
= 1, at 𝑦 = ℎ

2
,

𝜎 + 𝛾
1

𝜕𝜎

𝜕𝑦
= 0, at 𝑦 = ℎ

1
,

𝜎 − 𝛾
1

𝜕𝜎

𝜕𝑦
= 1, at 𝑦 = ℎ

2
,

(10)

where𝛽
1
,𝛽
2
, 𝛾, and 𝛾

1
represent the first-order slip parameter,

second-order slip parameter, thermal slip parameter, and
concentration slip parameter, respectively. It should be noted
that the full formulation of the above model can be checked
in [22], and there is no need to repeat it again here. However,
as mentioned in Section 1 in the present work, we focused on
obtaining the general closed form solution in the presence of
the second-order slip parameter, as a very important one to
predict the investigated physical model.

3. The General Closed Form Solution

As mentioned by Ebaid and Aly [28], we have the following
exact solutions for the temperature distribution and nanopar-
ticle concentration:

𝜃 (𝑥, 𝑦) = 𝑓
4
𝑒−𝑁𝑏𝑓1𝑦 +

1

𝑁
𝑏

𝑓
3

𝑓
1

,

𝜎 (𝑥, 𝑦) = −
𝑁
𝑡

𝑁
𝑏

𝑓
4
𝑒−𝑁𝑏𝑓1𝑦 + 𝑓

1
𝑦 + 𝑓
2
−
𝑁
𝑡

𝑁2
𝑏

𝑓
3

𝑓
1

,

(11)

where

𝑓
2
=
𝑁
𝑡

𝑁2
𝑏

𝑓
3

𝑓
1

− (𝛾
1
𝑓
1
−
1

𝑁
𝑏

)𝑁
𝑡
𝑓
4
𝑟
𝑓1

1

− (𝛾
1
+ ℎ
1
) 𝑓
1
,

𝑓
3
=

−𝑁
𝑏
𝑓
1
(1 − 𝛾𝑁

𝑏
𝑓
1
) 𝑟
𝑓1

1

(1 + 𝛾𝑁
𝑏
𝑓
1
) 𝑟
𝑓1

2

− (1 − 𝛾𝑁
𝑏
𝑓
1
) 𝑟
𝑓1

1

,

𝑓
4
=

1

(1 + 𝛾𝑁
𝑏
𝑓
1
) 𝑟
𝑓1

2

− (1 − 𝛾𝑁
𝑏
𝑓
1
) 𝑟
𝑓1

1

,

(12)

where

𝑟
1
= 𝑒−𝑁𝑏ℎ1 , 𝑟

2
= 𝑒−𝑁𝑏ℎ2 . (13)

𝑓
1
can be obtained from the following implicit algebraic

equation:

𝑁
𝑡

𝑁
𝑏

[
(𝛾
1
𝑁
𝑏
𝑓
1
− 1) 𝑟

𝑓1

1

+ (𝛾
1
𝑁
𝑏
𝑓
1
+ 1) 𝑟

𝑓1

2

(𝛾𝑁
𝑏
𝑓
1
− 1) 𝑟

𝑓1

1

+ (𝛾𝑁
𝑏
𝑓
1
+ 1) 𝑟

𝑓1

2

]

+ (2𝛾
1
+ ℎ
1
− ℎ
2
) 𝑓
1
= −1.

(14)

It can be seen from (14) that it is of complex structure to be
solved exactly in its general form. However, it has an exact
solution for 𝑓

1
when 𝛾 = 𝛾

1
and given by

𝑓
1
=
− (1 + 𝑁

𝑡
/𝑁
𝑏
)

(2𝛾
1
+ ℎ
1
− ℎ
2
)
. (15)

Regarding the stream function, it can be solved to give

𝜓 = 𝑓
8
+ 𝑓
7
𝑦 +

1

2
𝑓
6
𝑦2 +

1

6
𝑓
5
𝑦3 + 𝑔 (𝑦) , (16)

where

𝑔 (𝑦) =
1

6
Ω
1
𝑦3 −

1

24
𝐵
𝑟
𝑓
1
𝑦4 −

Ω
2

(𝑁
𝑏
𝑓
1
)
3

𝑒−𝑁𝑏𝑓1𝑦. (17)

Applying the boundary conditions on the 𝜓-equation, we
obtain the following system:

𝑓
8
+ 𝑓
7
ℎ
1
+
1

2
𝑓
6
ℎ2
1

+
1

6
𝑓
5
ℎ3
1

= 𝑅
1
, (18a)

𝑓
8
+ 𝑓
7
ℎ
2
+
1

2
𝑓
6
ℎ2
2

+
1

6
𝑓
5
ℎ3
2

= 𝑅
2
, (18b)

𝑓
7
+ (𝛽
1
+ ℎ
1
) 𝑓
6
+ (
1

2
ℎ2
1

+ 𝛽
1
ℎ
1
)𝑓
5
= 𝑆
1
, (18c)

𝑓
7
+ (ℎ
2
− 𝛽
1
) 𝑓
6
+ (
1

2
ℎ2
2

− 𝛽
1
ℎ
2
− 𝛽
2
)𝑓
5
= 𝑆
2
, (18d)

where

𝑅
1
=
𝐹

2
− 𝑔 (ℎ

1
) , (19a)

𝑅
2
= −
𝐹

2
− 𝑔 (ℎ

2
) , (19b)

𝑆
1
= −1 − 𝑔󸀠 (ℎ

1
) − 𝛽
1
𝑔󸀠󸀠 (ℎ
1
) − 𝛽
2
𝑔󸀠󸀠󸀠 (ℎ

1
) , (19c)

𝑆
2
= −1 − 𝑔󸀠 (ℎ

2
) + 𝛽
1
𝑔󸀠󸀠 (ℎ
2
) + 𝛽
2
𝑔󸀠󸀠󸀠 (ℎ

2
) . (19d)
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On solving the system (18a)–(18d), we get

𝑓
5
=
6 (−2𝑅

1
+ 2𝑅
2
+ (ℎ
1
− ℎ
2
) (𝑆
1
+ 𝑆
2
))

(ℎ
1
− ℎ
2
)
2

(6𝛽
1
+ ℎ
1
− ℎ
2
)

,

𝑓
6
= (2 (−ℎ3

1

(𝑆
1
+ 2𝑆
2
) + 6ℎ2

1

(𝑅
1
− 𝑅
2
+ 𝑆
2
(ℎ
2
− 2𝛽
1
))

+ 2ℎ
2
(−ℎ
2
(3𝑅
1
− 3𝑅
2
+ ℎ
2
(2𝑆
1
+ 𝑆
2
))

+6 (𝑅
1
− 𝑅
2
+ ℎ
2
𝑆
1
) 𝛽
1
)

+ 6ℎ
1
(ℎ2
2

𝑆
1
+ 2 (𝑅

1
− 𝑅
2
+ ℎ
2
(−𝑆
1
+ 𝑆
2
)) 𝛽
1
)

+12 (2𝑅
1
− 2𝑅
2
− (ℎ
1
− ℎ
2
) (𝑆
1
− 𝑆
2
) ) 𝛽
2
))

× (((ℎ
1
− ℎ
2
)
2

(ℎ
1
− ℎ
2
+ 2𝛽
1
) (ℎ
1
− ℎ
2
+ 6𝛽
1
)))
−1

,

𝑓
7
= (ℎ4
1

𝑆
2
+ 2ℎ3
1

(ℎ
2
𝑆
1
− (𝑆
1
− 2𝑆
2
) 𝛽
1
)

+ 2ℎ
1
(ℎ3
2

𝑆
2
+ 12ℎ

2
(−𝑅
1
+ 𝑅
2
) 𝛽
1

+ 3ℎ2
2

(𝑅
1
− 𝑅
2
− 𝑆
2
𝛽
1
)

+6 (𝑅
1
− 𝑅
2
) (𝛽2
1

− 𝛽
2
))

+ ℎ2
1

(−3ℎ
2
(2𝑅
1
− 2𝑅
2
+ ℎ
2
(𝑆
1
+ 𝑆
2
))

+6 (𝑅
1
− 𝑅
2
+ ℎ
2
𝑆
1
) 𝛽
1
+ 6 (𝑆

1
+ 𝑆
2
) 𝛽
2
)

+ ℎ
2
(ℎ3
2

𝑆
1
+ 2ℎ2
2

(−2𝑆
1
+ 𝑆
2
) 𝛽
1
− 12 (𝑅

1
− 𝑅
2
)

× (𝛽2
1

+ 𝛽
2
)

+6ℎ
2
((𝑅
1
− 𝑅
2
) 𝛽
1
− (𝑆
1
+ 𝑆
2
) 𝛽
2
) ))

× ((ℎ
1
− ℎ
2
)
2

(ℎ
1
− ℎ
2
+ 2𝛽
1
) (ℎ
1
− ℎ
2
+ 6𝛽
1
))
−1

,

𝑓
8
= (ℎ4
1

(𝑅
2
− ℎ
2
𝑆
2
) − ℎ3
1

(4𝑅
2
+ ℎ
2
(𝑆
1
− 𝑆
2
)) (ℎ
2
− 2𝛽
1
)

+ ℎ2
2

𝑅
1
(ℎ
2
− 6𝛽
1
) (ℎ
2
− 2𝛽
1
)

+ ℎ2
1

(ℎ3
2

(2𝑆
1
− 𝑆
2
) + 12𝑅

2
𝛽2
1

+ 3ℎ2
2

(𝑅
1
+ 𝑅
2
+ 2 (−𝑆

1
+ 𝑆
2
) 𝛽
1
)

+6ℎ
2
(− (𝑅
1
+ 3𝑅
2
) 𝛽
1
− (𝑆
1
+ 𝑆
2
) 𝛽
2
))

+ ℎ
1
ℎ
2
(−ℎ3
2

𝑆
1
− 12 (𝑅

1
+ 𝑅
2
) 𝛽2
1

− 2ℎ2
2

(2𝑅
1
+ (−2𝑆

1
+ 𝑆
2
) 𝛽
1
)

+ 12 (𝑅
1
− 𝑅
2
) 𝛽
2

+6ℎ
2
((3𝑅
1
+ 𝑅
2
) 𝛽
1
+ (𝑆
1
+ 𝑆
2
) 𝛽
2
)))

× ((ℎ
1
− ℎ
2
)
2

(ℎ
1
− ℎ
2
+ 2𝛽
1
) (ℎ
1
− ℎ
2
+ 6𝛽
1
))
−1

.

(20)

To get the pressure gradient 𝑑𝑝/𝑑𝑥, we obtain from (7) that

𝑑𝑝

𝑑𝑥
= Ω
3
− 𝐵
𝑟
𝑓
1
𝑦 + (1 + 𝑁

𝑏
𝑓
1
)Ω
2
𝑒−𝑁𝑏𝑓1𝑦, (21)

where

Ω
3
= Ω
1
+ 𝑓
5
+ 𝐵
𝑟
𝑓
1
, Ω

2
= (
𝐵
𝑟
𝑁
𝑡

𝑁
𝑏

− 𝐺
𝑟
)𝑓
4
,

Ω
1
= (
𝐵
𝑟
𝑁
𝑡

𝑁
𝑏

− 𝐺
𝑟
)
1

𝑁
𝑏

𝑓
3

𝑓
1

− 𝐵
𝑟
𝑓
2
.

(22)

The pressure rise Δ𝑝 in terms of the flow rate 𝑄 is given as
follows:

Δ𝑝 = ∫
1

0

(
𝑑𝑝

𝑑𝑥
)𝑑𝑥. (23)

Therefore, the exact expression for the pressure rise at the
center of the channel is given as

Δ𝑝 = ∫
1

0

[
6 [2𝑔 (ℎ

1
) − 2𝑔 (ℎ

2
) + (ℎ

1
− ℎ
2
) (𝑆
1
+ 𝑆
2
)]

(ℎ
1
− ℎ
2
)
2

(6𝛽
1
+ ℎ
1
− ℎ
2
)

+ Ω
1
+ 𝐵
𝑟
𝑓
1
(1 −

ℎ
1
+ ℎ
2

2
)

+ (1 + 𝑁
𝑏
𝑓
1
)Ω
2
𝑒−𝑁𝑏𝑓1((ℎ1+ℎ2)/2)]𝑑𝑥

− 12 (𝑄 − 1 − 𝑑)∫
1

0

1

(ℎ
1
− ℎ
2
)
2

(6𝛽
1
+ ℎ
1
− ℎ
2
)
𝑑𝑥.

(24)

4. Results and Discussion

This section is devoted for investing the exact solutions
which have been obtained in the previous section for the
temperature distribution, nanoparticle concentration, veloc-
ity, pressure gradient, and pressure rise. These solutions are
expected to provide us with the correct physical effect of the
second slip for the five investigated physical phenomena. It is
observed from (11) that there is no effect for the second slip
parameter on the solutions of the temperature distribution
and nanoparticle concentration. Although (11) have been
used by Ebaid and Aly [28] to discuss the effect of many
parameters on the temperature distribution and nanoparticle
concentration for comparing with the results in [22], many
other parameters were ignored. These important parameters
are investigated in the next subsections.

4.1. The Temperature Distribution 𝜃. Very recently in [28],
Ebaid and Aly discussed the effect of 𝑁

𝑡
, 𝛾, and 𝛾

1
on

the temperature distribution. Here, we aim to discuss the
effect of many other parameters on this phenomenon. In
Figures 2(a) and 2(b), effect of the amplitude 𝑎 on the
temperature distribution is depicted at two different values
for the Browning motion parameter and fixed values for the
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other investigated parameters. From these figures, it can be
concluded that there are no remarkable influences for the
variation of 𝑎 on 𝜃 in the first part of the channel, while an
increase in 𝜃 occurs in the upper part with increasing 𝑎. The
variation of the amplitude 𝑏 on the temperature distribution
is presented in Figures 3(a) and 3(b). These figures show that
very small decrease in 𝜃 occurs as 𝑏 increases. This means
that while the amplitude 𝑎 has remarkable effect on 𝜃, the
influence of the amplitude 𝑏 on 𝜃may be ignored. In Figures
4(a) and 4(b), the variation of the phase difference 𝜙 on 𝜃 is
introduced. Although the increase in 𝜙 between the waves
of the channel increases the temperature distribution, this
increase is very small. Instead of studying the variation of
𝜃 at separate values of Brownian motion parameter 𝑁

𝑏
, we

present in Figure 5(a) the variation of 𝜃 against a continuous
range for the values of 𝑁

𝑏
. This figure indicates a clear

description for the variation of Brownian motion parameter
𝑁
𝑏
on 𝜃. In addition, Figure 5(b) shows other descriptions

for the variation of the thermophoresis parameter 𝑁
𝑡
on the

temperature distribution. It can be concluded from the last
two figures that 𝜃 always decreases with the increase in 𝑁

𝑏

and𝑁
𝑡
.

4.2. The Nanoparticle Concentration 𝜎. The nanoparticles
concentration 𝜎 is depicted in Figures 6(a) and 6(b). It is
observed from these figures that 𝜎 reaches its highest value
at the lower wall of the channel and then it decreases in
a certain domain across the channel. A converse of this
behavior occurs after that domain. It is also detected that at a
higher value of Brownian motion parameter 𝑁

𝑏
the domain

in which 𝜎 decreases becomes wider. In addition, the wide of
such domain increases with increasing the amplitude of the
upper wave. The variation of the lower wave amplitude on 𝜎
is presented in Figures 7(a) and 7(b). For all values of 𝑏, it is
noticed that 𝜎 decreases until it reaches a certain point. After
that point the curves become identical whatever the value of
𝑏 becomes.This refers to that there is no effect for 𝑏 on 𝜎 after
this point.

In Figures 8(a) and 8(b), the variation of the phase
difference 𝜙 on 𝜎 is displayed. Although the increase in
the phase difference between the waves of the channel
increases the nanoparticles concentration, this occurs in
certain domain of the channel. However, after that domain
the curves are identical whatever the value of the phase
difference. Moreover, instead of studying the variation of 𝜎
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at separate values of Brownian motion parameter 𝑁
𝑏
, the

variation of 𝜎 against a continuous range for the values of
𝑁
𝑏
is displayed in Figure 9(a). In addition, Figure 9(b) shows

other descriptions for the variation of the thermophoresis
parameter 𝑁

𝑡
on the nanoparticle concentration. It can be

concluded from Figure 9(a) that 𝜎 always decreases when
𝑁
𝑏
is in the range from 1 to 10 at fixed values for the

other parameters. However, the situation is different for the
variation of 𝜎 against 𝑦 at certain values of 𝑁

𝑡
, where it is

noticed that when 1 < 𝑁
𝑡
< 4 then 𝜎 decreases within the
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𝑏
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𝑟
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1

= 0.1; (b) 𝑏 = 0.5,𝑁
𝑏

= 0.5, 𝐵
𝑟

= 0.5, 𝐺
𝑟

= 0.5, 𝜙 = 0.2, 𝛽
1

= 0.8, and 𝛽
2
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𝑏

= 0.8,𝑁
𝑡
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𝑟
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1
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1
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channel. In addition, at values of𝑁
𝑡
higher than 4, we observe

that𝜎 decreases in certain domain of the channel and changes
this behavior in the rest of channel.

4.3. The Pressure Rise Δ𝑝. The exact expression for the
pressure rise is given by (24) which is valid for any set of the
physical parameters. On using this equation, we observe that
the pressure rise is always a decreasing function in terms of
the flow rate. This notice is clarified in Figures 10(a)–10(d).
It is also observed from Figure 10(a) that the pressure rise
increases with increasing the negativity of the second slip
parameter 𝛽

2
in the whole range of the flow rate𝑄. The effect

of the thermophoresis parameter 𝑁
𝑡
on the pressure rise is

depicted in Figure 10(b). It can be seen from this figure that
the pressure rise decreases with the increase in the values of
𝑁
𝑡
in the whole region of 𝑄.
Figure 10(c) shows that the pressure rise decreases with

decreasing the amplitude 𝑏 when 𝑄 lies in the region −2.5 <
𝑄 < 1, while a converse behavior occurs for 𝑄 > 1.
Figure 10(d) reveals that the pressure rise increases with
increasing the local nanoparticle Grashof number 𝐵

𝑟
. This

behavior differs from the results obtained by Akbar et al.
[22] in the absence of the second slip effect. Therefore, the
present results reveal that the existence of this parameter has

a significant effect on the pressure rise and leads to different
behavior when compared with its ignorance.

4.4. The Velocity 𝑢(𝑦). Regarding the axial velocity, it was
plotted in Figures 11(a)–11(d) at several values of the present
physical parameters. Variations of the second slip parameter
𝛽
2
, Brownian motion parameter 𝑁

𝑏
, flow rate 𝑄, and local

temperature Grashof number 𝐺
𝑟
on the velocity profile have

been displayed in Figures 11(a)–11(d), respectively. It is found
from Figure 11(a) that the velocity increases near the lower
wall with increasing𝛽

2
, while a converse behavior occurs near

the upper wall; that is, the velocity decreases with increasing
𝛽
2
. Unlike the study made by Akbar et al. [22], the effect

of Brownian motion parameter 𝑁
𝑏
leads to that there are

three different regions in which alternating behavior for the
velocity occurs. As shown in Figure 11(b), in a central region
of the channel, that is, −0.6 < 𝑦 < 0.8, the velocity increases
with the increase in 𝑁

𝑏
, while in the other two regions of

the channel, that is, ℎ
2
< 𝑦 < −0.6 and 0.8 < 𝑦 < ℎ

1
,

a different situation is detected. At the same three regions
just mentioned, it can be seen from Figure 11(d) that effect
of the local temperature Grashof number 𝐺

𝑟
on the velocity

profiles happens in a converse manner regarding Brownian
motion parameter 𝑁

𝑏
. However, it is clear from Figure 11(c)
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Figure 11: Variation of the velocity profile at 𝑎 = 0.1, 𝑏 = 0.5, 𝑑 = 1, 𝐵
𝑟

= 0.5, 𝑥 = 0.1, 𝜙 = 0.2, 𝛾 = 𝛾
1

= 0.5, and 𝛽
1

= 0.1 for (a)𝑁
𝑡

= 0.5,
𝑁
𝑏

= 0.8, 𝐺
𝑟

= 0.5, 𝑄 = 2, and 𝛽
2

= −0.2, −0.4, −0.6, −0.8; (b)𝑁
𝑡

= 0.7, 𝐺
𝑟

= 3, 𝑄 = 2, 𝛽
2

= −0.6, and𝑁
𝑏

= 3, 4, 5, 6; (c)𝑁
𝑡

= 0.5,𝑁
𝑏

= 0.8,
𝐺
𝑟

= 0.5, 𝛽
2

= −0.2, and 𝑄 = 0.2, 0.4, 0.6, 0.8; and (d)𝑁
𝑡

= 0.5,𝑁
𝑏

= 0.8, 𝑄 = 2, 𝛽
2

= −0.2, and 𝐺
𝑟

= 1, 2, 3, 4.

that an increase in the flow rate leads to an increase in the
velocity and this is similar to the variation of the velocity
profile against flow rate as in Akbar et al. [22].

4.5. The Pressure Gradient 𝑑𝑝/𝑑𝑥. Figures 12(a)–12(d) indi-
cate the pressure gradient for different values of 𝛽

2
, 𝑁
𝑏
,

𝐺
𝑟
, and 𝑎, respectively. From these figures, it is shown that

magnitude of the pressure gradient increases in view of an
increase in 𝛽

2
, 𝐺
𝑟
, and 𝑎, and it decreases with an increase in

𝑁
𝑏
. In addition, it is observed that our results on the effect

of 𝛽
2
, 𝑁
𝑏
, and 𝐺

𝑟
on the pressure gradient are completely

different comparing with those obtained in [22] for the effect
of the first slip parameter only. This also may refer to the
importance of including the second slip parameter 𝛽

2
in

such problems of peristaltic flow. However, the effect of the
amplitude 𝑎 on the pressure gradient remains the same even
in the presence of 𝛽

2
, where Figure 12(d) shows that an

increase in the amplitude 𝑎 leads to an increase in the pressure
gradient. Besides, one of the main features of these graphs
is that the maximum pressure gradient occurs at the same
point when 𝑥 = 0.5. In the absence of 𝛽

2
, this value was

shifted slightly to the left; that is, it occurred at 𝑥 = 0.45 as
in [22]. The final notice here is that the present numerical
discussion is based on the obtained exact analytical solutions

for the current physical model, unlike the approximate series
solutions obtained in [22] whose disadvantages have been
proved by Ebaid and Aly [28].

5. Conclusion

The effect of the second slip condition on the peristaltic
transport of a nanofluid in an asymmetric channel was
investigated for the first time in the present paper. The
system describing the problem was exactly solved via a
simple, but very effective, analytical procedure. Based on
the obtained exact solutions, some important results were
introduced through graphs to indicate effect of the second slip
on the velocity profiles, pressure rise, and pressure gradient.
Moreover, the variation of many physical parameters such as
amplitudes of the lower and upper waves, phase difference on
the temperature distribution, and nanoparticle concentration
were also discussed for a new set of the presented parameters
rather than those in the literature. It was found that the
temperature distribution 𝜃 always decreases with the increase
in 𝑁
𝑏
and 𝑁

𝑡
. In addition, the amplitude 𝑎 has remarkable

effect on 𝜃, while the influence of the amplitude 𝑏 on 𝜃 may
be ignored. For all values of 𝑏, nanoparticles concentration
𝜎 decreases until it reaches a certain point; however, there



10 Abstract and Applied Analysis

𝛽2 = −0.5, −1, −1.5, −2

0.2 0.4 0.6 0.8 1.0

x

5

10

15
d
p
/d
x

(a)

Nb = 1, 5, 9, 13
0.0

0.2

0.4

0.6

0.8

d
p
/d
x

0.2 0.4 0.6 0.8 1.0

x

(b)

Gr = 0.5, 0.6, 0.7, 0.8
0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

x

d
p
/d
x

(c)

1

2

3

a = 0.2, 0.3, 0.4, 0.5

d
p
/d
x

0.2 0.4 0.6 0.8 1.0

x

(d)

Figure 12: Variation of the pressure gradient at 𝑏 = 0.5, 𝑑 = 1, 𝑁
𝑡

= 0.5, 𝐵
𝑟

= 0.5, 𝜙 = 0.2, 𝑄 = 0.5, and 𝛾 = 𝛾
1

= 0.5 for (a) 𝛽
1

= 0.1,
𝑁
𝑏

= 0.8, 𝐺
𝑟

= 0.5, 𝑎 = 0.3, and 𝛽
2

= −0.5, −1, −1.5, −2; (b) 𝛽
1

= 0.8, 𝛽
2

= −2, 𝐺
𝑟

= 0.5, 𝑎 = 0.3, and𝑁
𝑏

= 1, 5, 9, 13; (c) 𝛽
1

= 0.8, 𝛽
2

= −2,
𝑁
𝑏

= 0.8, 𝑎 = 0.3, and 𝐺
𝑟

= 0.5, 0.6, 0.7, 0.8; and (d) 𝛽
1

= 0.3, 𝛽
2

= −2,𝑁
𝑏

= 0.8, 𝐺
𝑟

= 0.5, and 𝑎 = 0.2, 0.3, 0.4, 0.5.

is no effect for 𝑏 after this point. In a certain domain
of the channel, the phase difference between the waves of
the channel increases 𝜎; however, the curves are identical
whatever value of the phase difference after that. Finally, it
should be mentioned that the second slip condition had a
significant effect on the various phenomena involved in the
current model. Accordingly, the present suggested technique
may be useful for obtaining exact solutions for many other
similar problems. In addition, such type of the second slip
should be included for modelling the peristaltic flow.
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