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This paper is concernedwith the convergence analysis of numericalmethods for stochastic delay differential equations.We consider
the split-step theta method for nonlinear nonautonomous equations and prove the strong convergence of the numerical solution
under a local Lipschitz condition and a coupled condition on the drift and diffusion coefficients. In particular, these conditions
admit that the diffusion coefficient is highly nonlinear. Furthermore, the obtained results are supported by numerical experiments.

1. Introduction

Stochastic delay differential equations (SDDEs) play an
important role in modeling some real-world phenomena
in many scientific areas, such as economics [1], biology [2,
3], and medicine [4, 5]. However, many SDDEs arising in
applications cannot be solved analytically; hence one needs
to develop effective numerical methods to solve them.

In recent years, the numerical solution of SDDEs has
attractedmuch attention and anumber of numericalmethods
have been constructed (see, e.g., [6–8]). An important topic in
this context is the investigation of the convergence of numer-
ical methods and a number of interesting results have been
found (see, e.g., [9–13]). In the analysis of strong convergence,
a widely used assumption is that the drift and diffusion coef-
ficients satisfy global Lipschitz and linear growth conditions
[9–11]. In order to weaken this assumption, Mao and Sabanis
[14] proved strong convergence of Euler-Maruyama type
methods with local Lipschitz conditions and the bounded
𝑝th moments (𝑝 > 2) for solving SDDEs. Wang and Gan
[12] showed that the improved split-step backward Euler
method is convergent in the mean square sense under the
condition that the diffusion coefficient 𝑔(𝑥, 𝑦) is globally
Lipschitz, and the drift coefficient𝑓(𝑥, 𝑦) satisfies a one-sided
Lipschitz condition in the nondelay variable 𝑥 and a global
Lipschitz condition in the delay variable 𝑦. Bao and Yuan

[15] proved the convergence rate of the Euler-Maruyama
(EM) scheme for a class of SDDEs, where the corresponding
coefficients may be highly nonlinear with respect to the
delay variables. The strong convergence was also studied in
[16, 17]. Nevertheless, all the above results are derived for
SDDEs of which the diffusion coefficient with respect to the
nondelay variables satisfies a linear growth or global Lipschitz
condition. For example, they cannot be applied to some
highly nonlinear problems such as

𝑑𝑥 (𝑡) = (−𝑥 (𝑡) − 𝑥
3
(𝑡) + 𝑥 (𝑡 − 1)) 𝑑𝑡 + 𝑥

2
(𝑡) 𝑑𝑊 (𝑡) .

(1)

In this paper, we study the strong convergence of the split-
step theta method [8] under a local Lipschitz condition and
a coupled condition on the drift and diffusion coefficients.
These conditions admit that the diffusion coefficient with
respect to the nondelay variables is highly nonlinear; that is, it
does not necessarily satisfy a linear growth or global Lipschitz
condition.

The structure of this paper is organized as follows. First,
the existence of a unique solution of SDDEs under weaker
conditions is recalled in Section 2. Then, some moment
properties of the split-step theta method (3) are investigated
in Section 3, while its strong convergence is derived in Sec-
tion 4. Finally, some numerical results to support our
theorems are presented.
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2. Existence and Uniqueness of Solution

Throughout this paper, we denote both the Euclidean vector
norm and the Frobeniusmatrix normby ‖⋅‖ and the complete
probability space by {Ω,F,P}. {F

𝑡
}
𝑡
≥ 0 is increasing and

continuous, and {F
0
} contains all P-null sets. Let 𝑓 : R ×

R𝑑 × R𝑑 → R𝑑 and 𝑔 : R × R𝑑 × R𝑑 → R𝑑×𝑞. In this
paper, we consider the numerical solution of the SDDEs in
Itô’s sense:
𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑑𝑊 (𝑡) , 𝑡 ∈ (0, 𝑇] ,

𝑥 (𝑡) = 𝜙 (𝑡) 𝑡 ∈ [−𝜏, 0] ,

(2)

where 𝜏 > 0 and 𝜙(𝑡) is F
0
-measurable, 𝐶([−𝜏, 0];R𝑑)-

valued random variable satisfying sup
−𝜏≤𝑡≤0

E[‖𝜙(𝑡)‖
2
] ≤

𝑀 < +∞. Here 𝑊(𝑡) denotes a standard 𝑞-dimensional
Brownian motion defined on the probability space.

Let ℎ be a time stepsize satisfying ℎ = 𝜏/𝑚with a positive
integer𝑚.Then the split-step theta method (SST) introduced
in [8] for problem (2) reads

𝑌
𝑛
= 𝑦
𝑛
+ 𝜃ℎ𝑓 (𝑡

𝑛
+ 𝜃ℎ, 𝑌

𝑛
, 𝑌
𝑛−𝑚

) ,

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ𝑓 (𝑡

𝑛
+ 𝜃ℎ, 𝑌

𝑛
, 𝑌
𝑛−𝑚

)

+ 𝑔 (𝑡
𝑛
+ 𝜃ℎ, 𝑌

𝑛
, 𝑌
𝑛−𝑚

) Δ𝑊
𝑛
,

(3)

where 𝑡
𝑛
= 𝑛ℎ, 𝑦

𝑛
is an approximation to 𝑥(𝑡

𝑛
), 𝜃 ∈ [0, 1] is a

fixed parameter,Δ𝑊
𝑛
= 𝑊(𝑡

𝑛+1
)−𝑊(𝑡

𝑛
), and𝑌

𝑛
= 𝜙(𝑡
𝑛
+𝜃ℎ)

for 𝑛 < 0. For the given stepsize ℎ, let𝑁 be the greatest integer
satisfying𝑁ℎ ≤ 𝑇. For simplicity, we directly assume𝑁ℎ = 𝑇
in the following.

Huang [8] studied the exponential mean square stability
of the SST method (3) under the following condition:

𝑥
𝑇
𝑄𝑓 (𝑡, 𝑥, 𝑦) +

1

2
trace [𝑔𝑇 (𝑡, 𝑥, 𝑦)𝑄𝑔 (𝑡, 𝑥, 𝑦)]

≤ 𝛼̃𝑥
𝑇
𝑄𝑥 + 𝛽𝑦

𝑇
𝑄𝑦,

(4)

where 𝑄 is a real symmetric, positive definite matrix. It is
proved that when 𝛼̃ + 𝛽 < 0 and 𝜃 > 0.5, SST method (3) is
exponentially mean square stable for all positive stepsizes. In
this paper, we further study its strong convergence property
under weaker conditions.

To ensure the existence of a unique solution on [−𝜏, 𝑇] to
SDDEs (2), we introduce the following assumption.

Assumption 1. The functions𝑓(𝑡, 𝑥, 𝑦) and𝑔(𝑡, 𝑥, 𝑦) in (2) are
continuous in 𝑡, 𝑥, and 𝑦 and satisfy the nonglobal Lipschitz
condition.More precisely, there exist positive constants𝑅,𝐿

𝑅
,

𝛼, and 𝛽 such that
󵄩󵄩󵄩󵄩𝑓(𝑡, 𝑥1, 𝑦1) − 𝑓(𝑡, 𝑥2, 𝑦2)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝑔(𝑡, 𝑥1, 𝑥2) − 𝑔(𝑡, 𝑥2, 𝑦2)

󵄩󵄩󵄩󵄩
2

≤ 𝐿
𝑅
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦2

󵄩󵄩󵄩󵄩
2
) ,

(5)

⟨𝑥, 𝑓 (𝑡, 𝑥, 𝑦)⟩ +
1

2

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩
2
≤ 𝛼 + 𝛽 (‖𝑥‖

2
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
) ,

(6)

where ‖𝑥
1
‖ ∨ ‖𝑥

2
‖ ∨ ‖𝑦

1
‖ ∨ ‖𝑦

2
‖ ≤ 𝑅, 𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑥, 𝑦 ∈ R𝑑,

and 𝑡 ∈ (0, 𝑇].

From Theorem 1.2 in [18], it follows that for any given
initial value {𝜙(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0];R𝑑) there exists a
unique solution 𝑥(𝑡) to SDDEs (2).

Now, we state the following lemma which will play an
important role in proving the strong convergence of the SST
method (3).

Lemma 2. Under Assumption 1, the solution of the SDDEs (2)
on [0, 𝑇] has the properties that

E [‖𝑥 (𝑇)‖
2
] ≤ (E [

󵄩󵄩󵄩󵄩𝜙 (0)
󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇) exp (2𝛽𝑇) , (7)

P (𝜌
𝑅
≤ 𝑇) ≤

(E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 +𝑀𝜏) exp (2𝛽𝑇) +𝑀

𝑅2
,

(8)

where

𝜌
𝑅
= inf {𝑡 ≥ 0 : ‖𝑥 (𝑡)‖ ∨ ‖𝑥 (𝑡 − 𝜏)‖ ≥ 𝑅} . (9)

Proof. Let𝑉(𝑥, 𝑡) = ‖𝑥‖2.Then by using Itô formula, we infer
that

‖𝑥(𝑡)‖
2
=
󵄩󵄩󵄩󵄩𝜙(0)

󵄩󵄩󵄩󵄩
2
+ 2∫

𝑡

0

⟨𝑥 (𝑠) , 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))⟩ 𝑑𝑠

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑔(𝑠, 𝑥(𝑠), 𝑥(𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠

+ 2∫

𝑡

0

⟨𝑥 (𝑠) , 𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))⟩ 𝑑𝑊 (𝑠) .

(10)

According to Assumption 1 and taking mathematical expec-
tation on both sides of (10), we have

E [
󵄩󵄩󵄩󵄩𝑥 (𝑡 ∧ 𝜌𝑅)

󵄩󵄩󵄩󵄩
2
]

≤ E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑡

+ E [∫
𝑡∧𝜌𝑅

0

2𝛽 (‖𝑥 (𝑠)‖
2
+ ‖𝑥 (𝑠 − 𝜏)‖

2
) 𝑑𝑠]

≤ E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑡

+ E [∫
𝑡∧𝜌𝑅

0

4𝛽‖𝑥 (𝑠)‖
2
𝑑𝑠 + ∫

𝜏

0

󵄩󵄩󵄩󵄩𝜙 (𝑠 − 𝜏)
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

≤ E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑡 +𝑀𝜏 + ∫

𝑡

0

4𝛽E [
󵄩󵄩󵄩󵄩𝑥 (𝑠 ∧ 𝜌𝑅)

󵄩󵄩󵄩󵄩
2
] 𝑑𝑠.

(11)
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Using the Gronwall inequality yields

E [
󵄩󵄩󵄩󵄩𝑥 (𝑇 ∧ 𝜌𝑅)

󵄩󵄩󵄩󵄩
2
] ≤ (E [

󵄩󵄩󵄩󵄩𝜙 (0)
󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 +𝑀𝜏) exp (4𝛽𝑇) ,

(12)

P (𝜌
𝑅
≤ 𝑇) ≤ E[

󵄩󵄩󵄩󵄩𝑥 (𝑇 ∧ 𝜌𝑅)
󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝑥 (𝑇 ∧ 𝜌𝑅 − 𝜏)

󵄩󵄩󵄩󵄩
2

𝑅2
1
{𝜌𝑅≤𝑇}

]

≤
(E [

󵄩󵄩󵄩󵄩𝜙 (0)
󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 +𝑀𝜏) exp (4𝛽𝑇) +𝑀

𝑅2
.

(13)
Applying Fatou’s lemma to (12), we obtain

E [‖𝑥 (𝑇)‖
2
] ≤ (E [

󵄩󵄩󵄩󵄩𝜙 (0)
󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 +𝑀𝜏) exp (4𝛽𝑇) .

(14)
The proof is completed.

3. Moment Properties of SST

Before proving the strong convergence of the SST method
(3), it is necessary to show that the SST method (3) has a
unique solution. So we introduce the following assumption
and lemma.

Assumption 3. There exists a positive constant 𝐿, such that

⟨𝑥
1
− 𝑥
2
, 𝑓 (𝑡, 𝑥

1
, 𝑦) − 𝑓 (𝑡, 𝑥

2
, 𝑦)⟩ ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩
2
, (15)

for 𝑥
1
, 𝑥
2
, 𝑦 ∈ R𝑑 and 𝑡 ∈ [0, 𝑇].

From [19] we easily obtain that the SST method (3) has a
unique solution under 0 < 𝜃𝐿ℎ < 1.We now show that, under
Assumptions 1 and 3, the 2nd moment of numerical solution
𝑦
𝑛
and 𝑌

𝑛
is bounded.

Lemma 4. Assume that 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡− 𝜏)) and 𝑔(𝑡, 𝑥(𝑡), 𝑥(𝑡−
𝜏)) in (2) satisfy Assumptions 1 and 3; then for 1/2 ≤ 𝜃 ≤ 1 and
ℎ < ℎ

∗
< min{1/𝜃𝐿, 1/2𝜃𝛽}, the following moment bounds

hold:
sup
0≤𝑡≤𝑇

E [‖𝑥 (𝑡)‖
2
] ∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩
2
]

∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑌𝑛−𝑚

󵄩󵄩󵄩󵄩
2
] ∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑌𝑛

󵄩󵄩󵄩󵄩
2
] ≤ 𝐴 < ∞,

(16)
where 𝐴 is a positive constant independent of𝑁.

Proof. First, by Lemma 2, we know that sup
0≤𝑡≤𝑇

E[‖𝑥(𝑡)‖
2
] is

bounded. Denoting
𝐹 (𝑌
𝑛+1
) := 𝑌

𝑛+1
− 𝜃ℎ𝑓 (𝑡

𝑛+1
+ 𝜃ℎ, 𝑌

𝑛+1
, 𝑌
𝑛+1−𝑚

) (17)
and then inserting (17) into (3), we have
󵄩󵄩󵄩󵄩𝐹(𝑌𝑛+1)

󵄩󵄩󵄩󵄩
2
=
󵄩󵄩󵄩󵄩𝐹(𝑌𝑛)

󵄩󵄩󵄩󵄩
2
+ 2ℎ ⟨𝑌

𝑛
, 𝑓 (𝑡
𝑛
, 𝑌
𝑛
, 𝑌
𝑛−𝑚

)⟩

+
󵄩󵄩󵄩󵄩𝑔(𝑡𝑛 + 𝜃ℎ, 𝑌𝑛, 𝑌𝑛−𝑚)Δ𝑊𝑛

󵄩󵄩󵄩󵄩
2

+ (1 − 2𝜃) ℎ
2󵄩󵄩󵄩󵄩𝑓(𝑡𝑛 + 𝜃ℎ, 𝑌𝑛, 𝑌𝑛−𝑚)

󵄩󵄩󵄩󵄩
2
+M
𝑛
,

(18)

where M
𝑛
= 2⟨𝐹(𝑌

𝑛
), 𝑔(𝑡
𝑛
+ 𝜃ℎ, 𝑌

𝑛
, 𝑌
𝑛−𝑚

)Δ𝑊
𝑛
⟩ + 2⟨ℎ𝑓(𝑡

𝑛
+

𝜃ℎ, 𝑌
𝑛
, 𝑌
𝑛−𝑚

), 𝑔(𝑡
𝑛
+ 𝜃ℎ, 𝑌

𝑛
, 𝑌
𝑛−𝑚

)Δ𝑊
𝑛
⟩. By recursive calcula-

tion, we obtain
󵄩󵄩󵄩󵄩𝐹 (𝑌𝑛+1)

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝐹 (𝑌0)

󵄩󵄩󵄩󵄩
2

+

𝑛

∑

𝑗=0

(2ℎ ⟨𝑌
𝑗
, 𝑓 (𝑡
𝑗
+ 𝜃ℎ, 𝑌

𝑗
, 𝑌
𝑗−𝑚

)⟩

+
󵄩󵄩󵄩󵄩󵄩
𝑔 (𝑡
𝑗
+ 𝜃ℎ, 𝑌

𝑗
, 𝑌
𝑗−𝑚

) Δ𝑊
𝑗

󵄩󵄩󵄩󵄩󵄩

2

)

+ (1 − 2𝜃) ℎ
2

𝑛

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑓(𝑡
𝑗
+ 𝜃ℎ, 𝑌

𝑗
, 𝑌
𝑗−𝑚

)
󵄩󵄩󵄩󵄩󵄩

2

+

𝑛

∑

𝑗=0

M
𝑗
.

(19)

Noting that 𝑌
𝑛
∈ F
𝑡𝑛
, Δ𝑊
𝑛
is independent of F

𝑡𝑛
; we have

E[‖Δ𝑊
𝑛
‖
2
] = ℎ and E[∑

𝑛

𝑗=0
M
𝑗
] = 0. Hence, taking the

mathematical expectation on both sides of (19) and then
substituting (6) into (19) lead us to

E [
󵄩󵄩󵄩󵄩𝐹 (𝑌𝑛+1)

󵄩󵄩󵄩󵄩
2
] ≤ E [

󵄩󵄩󵄩󵄩𝐹 (𝑌0)
󵄩󵄩󵄩󵄩
2
]

+ 2ℎ

𝑛

∑

𝑗=0

E [𝛼 + 𝛽 (
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑗−𝑚

󵄩󵄩󵄩󵄩󵄩

2

)] .

(20)

Next, using ℎ < ℎ∗ < min{1/𝜃𝐿, 1/2𝜃𝛽} and regrouping (20),
we have

E [
󵄩󵄩󵄩󵄩𝑌𝑛+1

󵄩󵄩󵄩󵄩
2
]

≤ 𝛼
1
(E [

󵄩󵄩󵄩󵄩𝐹 (𝑌0)
󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 2ℎ𝛽

𝑛

∑

𝑗=0

E [
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑗−𝑚

󵄩󵄩󵄩󵄩󵄩

2

]

+ 2ℎ𝛽

𝑛

∑

𝑗=0

E [
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

])

≤ 𝛼
1
(E [

󵄩󵄩󵄩󵄩𝐹 (𝑌0)
󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 2𝛽𝑀𝜏)

+ 4ℎ𝛼
1
𝛽

𝑛

∑

𝑗=0

E [
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

] ,

(21)

where 𝛼
1
= 1/(1 − 2𝜃𝛽ℎ

∗
). By virtue of recursive calculation

from 𝑛 = 0 to 𝑁 − 1, we know that E[‖𝑌
𝑁
‖
2
] is bounded.

Applying the discrete Gronwall’s inequality, we have

E [
󵄩󵄩󵄩󵄩𝑌𝑛+1

󵄩󵄩󵄩󵄩
2
]

≤ (𝛼
1
E [
󵄩󵄩󵄩󵄩𝐹 (𝑌0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼

1
𝛼𝑇 + 2𝛼

1
𝛽𝑀𝜏) exp (4𝛼

1
𝛽𝑇) .

(22)

Therefore, there exists a positive constant𝑀
1
, such that

sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑌𝑛

󵄩󵄩󵄩󵄩
2
] ∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑌𝑛−𝑚

󵄩󵄩󵄩󵄩
2
] ≤ 𝑀

1
. (23)
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By using (3), (20), and (23), we infer

E [
󵄩󵄩󵄩󵄩𝑦𝑛+1

󵄩󵄩󵄩󵄩
2
] = E [

󵄩󵄩󵄩󵄩𝐹 (𝑌𝑛+1)
󵄩󵄩󵄩󵄩
2
]

≤ E [
󵄩󵄩󵄩󵄩𝐹 (𝑌0)

󵄩󵄩󵄩󵄩
2
] + 2𝑇𝛼 + 4𝑇𝛽𝑀

1
.

(24)

Hence, by using Lemma 2, (23), and (24), there exists a
positive constant 𝐴 which is independent of𝑁, such that

sup
0≤𝑡≤𝑇

E [‖𝑥 (𝑡)‖
2
] ∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩
2
]

∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑌𝑛−𝑚

󵄩󵄩󵄩󵄩
2
] ∨ sup
ℎ≤ℎ
∗

sup
0≤𝑛ℎ≤𝑇

E [
󵄩󵄩󵄩󵄩𝑌𝑛

󵄩󵄩󵄩󵄩
2
] ≤ 𝐴.

(25)

The proof is completed.

4. Strong Convergence

In this paper, it is convenient to use continuous-time approx-
imation solution. First, we denote

𝑦 (𝑠) :=

𝑁−1

∑

𝑛=0

1
{𝑡𝑛≤𝑠<𝑡𝑛+1}

𝑦
𝑛
+ 1
{𝑠=𝑡𝑁}

𝑦
𝑁
,

𝑌 (𝑠) :=

𝑁−1

∑

𝑛=0

1
{𝑡𝑛≤𝑠<𝑡𝑛+1}

𝑌
𝑛
+ 1
{𝑠=𝑡𝑁}

𝑌
𝑁
,

𝑠 := [
𝑠

ℎ
] ℎ + 𝜃ℎ,

(26)

and [𝑠/ℎ] is the largest integer of 𝑠/ℎ. Then, we define
continuous version 𝑦(𝑡) of 𝑦

𝑛
in (3) as follows:

𝑦 (𝑡)

:=

{{{{

{{{{

{

𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

𝑦
𝑛
+ (𝑡 − 𝑡

𝑛
)

×𝑓 (𝑡
𝑛
+ 𝜃ℎ+, 𝑌

𝑛
, 𝑌
𝑛−𝑚

)

+𝑔 (𝑡
𝑛
+ 𝜃ℎ, 𝑌

𝑛
, 𝑌
𝑛−𝑚

) Δ𝑊
𝑛
(𝑡) , 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
) , 𝑛 ≥ 0,

(27)

where Δ𝑊
𝑛
(𝑡) := 𝑊(𝑡) − 𝑊(𝑡

𝑛
). For convenience, rewriting

(27) in integral form

𝑦 (𝑡) = 𝜙 (0) + ∫

𝑡

0

𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠) ,

(28)

where 𝑦
0
= 𝜙(0), 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
), and 𝑌(𝑠 − 𝜏) = 𝜙(𝑠 − 𝜏) for

𝑠−𝜏 < 0. From (27) and (28), we easily verified that𝑦(𝑡
𝑛
) = 𝑦
𝑛
.

Assumption 5. There exist a positive constant 𝐾
3
and a

positive integer𝑚
1
, such that

󵄩󵄩󵄩󵄩𝑓(𝑡, 𝑥, 𝑦) − 𝑓(𝑠, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩
2
∨
󵄩󵄩󵄩󵄩𝑔(𝑡, 𝑥, 𝑦) − 𝑔(𝑠, 𝑥, 𝑦)

󵄩󵄩󵄩󵄩
2

≤ 𝐾
3
(1 + ‖𝑥‖

2𝑚1 +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
) |𝑡 − 𝑠|

2
,

(29)

for 𝑥, 𝑦 ∈ R𝑑 and 𝑠, 𝑡 ∈ [0, 𝑇].

We now establish the following lemma, which will play a
key role in proving the convergence of the SST method (3).

Lemma 6. Let Assumptions 1 and 3 hold. Then, for any given
𝜀 > 0, there exists a positive integer 𝑁

0
such that for every

𝑅 ≥ 𝑁
0
, we can find a ℎ = ℎ(𝑅) so that whenever ℎ <

min{1/𝜃𝐿, 1/2𝜃𝛽, ℎ},

P (𝜏
𝑅
< 𝑇) ≤ 𝜀, (30)

where 𝜏
𝑅
= inf{𝑡 ≥ 0 : ‖𝑌(𝑡)‖ ∨ ‖𝑌(𝑡 − 𝜏)‖ ∨ ‖𝑦(𝑡)‖ ≥ 𝑅}.

Proof. Let 𝑠 ∈ [0, 𝑇 ∧ 𝜏
𝑅
) and 𝑉(𝑦(𝑡)) = ‖𝑦(𝑡)‖2. Then, by Itô

formula, we derive

󵄩󵄩󵄩󵄩𝑦 (𝑇 ∧ 𝜏𝑅)
󵄩󵄩󵄩󵄩
2

≤ 2∫

𝑇∧𝜏𝑅

0

⟨𝑦 (𝑠) , 𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))⟩ 𝑑𝑊 (𝑠)

+ 2∫

𝑇∧𝜏𝑅

0

( ⟨𝑌 (𝑠) , 𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))⟩

+
1

2

󵄩󵄩󵄩󵄩𝑔(𝑠, 𝑌(𝑠), 𝑌(𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
)𝑑𝑠

+ 2∫

𝑇∧𝜏𝑅

0

(
󵄩󵄩󵄩󵄩𝑦 (𝑠) − 𝑌 (𝑠)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩) 𝑑𝑠

+
󵄩󵄩󵄩󵄩𝜙(0)

󵄩󵄩󵄩󵄩
2
.

(31)

Applying Assumption 1 and taking the mathematical expec-
tation on both sides of (31) lead us to

E [
󵄩󵄩󵄩󵄩𝑦 (𝑇 ∧ 𝜏𝑅)

󵄩󵄩󵄩󵄩
2
]

≤ 2E [∫
𝑇∧𝜏𝑅

0

(𝛼 + 𝛽‖𝑌 (𝑠)‖
2
+ 𝛽‖𝑌 (𝑠 − 𝜏)‖

2
) 𝑑𝑠]

+ 2E [∫
𝑇∧𝜏𝑅

0

(
󵄩󵄩󵄩󵄩𝑦 (𝑠) − 𝑌 (𝑠)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩) 𝑑𝑠]

+ E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] .

(32)

By using Lemma 4 and the Hölder inequality we have

E [
󵄩󵄩󵄩󵄩𝑦 (𝑇 ∧ 𝜏𝑅)

󵄩󵄩󵄩󵄩
2
]

≤ 2(E [∫
𝑇∧𝜏𝑅

0

󵄩󵄩󵄩󵄩𝑦 (𝑠) − 𝑌 (𝑠)
󵄩󵄩󵄩󵄩
2
𝑑𝑠])

1/2

× (E [∫
𝑇∧𝜏𝑅

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠])

1/2

+ E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 4𝛽𝐴𝑇.

(33)
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Next, we will bound the first term on the right-hand side of
(33). According to Assumption 1 and Lemma 4, for ‖𝑌(𝑠)‖ ∨
‖𝑌(𝑠 − 𝜏)‖ ∨ ‖𝑦(𝑠)‖ ≤ 𝑅, we have

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2

≤ 2 (
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) − 𝑓 (𝑠, 0, 0)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝑓 (𝑠, 0, 0)

󵄩󵄩󵄩󵄩
2
)

≤ 2𝐿
𝑅
(‖𝑌 (𝑠)‖

2
+ ‖𝑌 (𝑠 − 𝜏)‖

2
) + 2

󵄩󵄩󵄩󵄩𝑓(𝑠, 0, 0)
󵄩󵄩󵄩󵄩
2
,

󵄩󵄩󵄩󵄩𝑔(𝑠, 𝑌(𝑠), 𝑌(𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2

≤ 2 (
󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) − 𝑔 (𝑠, 0, 0)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝑔 (𝑠, 0, 0)

󵄩󵄩󵄩󵄩
2
)

≤ 2𝐿
𝑅
(‖𝑌(𝑠)‖

2
+ ‖𝑌(𝑠 − 𝜏)‖

2
) + 2

󵄩󵄩󵄩󵄩𝑔(𝑠, 0, 0)
󵄩󵄩󵄩󵄩
2
,

(34)

and then there exists a positive constant 𝐶
1
(𝑅), such that

(E[ sup
0≤𝑠<𝑇∧𝜏𝑅

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
])

1/2

∨(E[ sup
0≤𝑠<𝑇∧𝜏𝑅

󵄩󵄩󵄩󵄩𝑔(𝑠, 𝑌(𝑠), 𝑌(𝑠 − 𝜏)
󵄩󵄩󵄩󵄩
2
])

1/2

≤ 𝐶
1
(𝑅) ,

(35)

where 𝐶
1
(𝑅) depends on 𝑅, 𝑀, 𝐴, and 𝐶 =

max
0≤𝑠≤𝑇

{‖𝑓(𝑠, 0, 0)‖
2
∨ ‖𝑔(𝑠, 0, 0)‖

2
}. For 𝑠 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
) ⊂

[0, 𝑇 ∧ 𝜏
𝑅
), using (27), (35), and Lemma 4, we obtain that

𝑦 (𝑠) − 𝑌 (𝑠)

= (𝑠 − 𝑡
𝑛
− 𝜃ℎ) 𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

+ 𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) Δ𝑊
𝑛
(𝑠) ,

(36)

(E[ sup
0≤𝑠≤𝑇∧𝜏𝑅

󵄩󵄩󵄩󵄩𝑦 (𝑠) − 𝑌 (𝑠)
󵄩󵄩󵄩󵄩
2
])

1/2

≤ (2ℎ
2
E[ sup
0≤𝑠<𝑇∧𝜏𝑅

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
]

+ 2ℎE[ sup
0≤𝑠<𝑇∧𝜏𝑅

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
])

1/2

≤ 𝐶
2
(𝑅) ℎ
1/2
,

(37)

where 𝐶
2
(𝑅) is a positive constant which depends on 𝐶

1
(𝑅).

Substituting (35) and (37) into (33), we have

E [
󵄩󵄩󵄩󵄩𝑦 (𝑇 ∧ 𝜏𝑅)

󵄩󵄩󵄩󵄩
2
]

≤ E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 4𝛽𝐴𝑇 + 2𝐶

1
(𝑅) 𝐶
2
(𝑅) ℎ
1/2
𝑇,

(38)

P (𝜏
𝑅
< 𝑇)

≤
E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 4𝛽𝐴𝑇 + 2𝐶

1
(𝑅) 𝐶
2
(𝑅) ℎ
1/2
𝑇 + 2𝐴

𝑅2
.

(39)

Now, for any given 𝜀 > 0, we choose 𝑁
0
such that for any

𝑅 ≥ 𝑁
0

E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 4𝛽𝐴𝑇 + 2𝐴

𝑅2
≤
𝜀

2
. (40)

Then, we can choose ℎ = ℎ(𝑅), such that for any ℎ <

min{1/𝜃𝐿, 1/2𝜃𝛽, ℎ}

2𝐶
1 (𝑅) 𝐶2 (𝑅) ℎ

1/2
𝑇

𝑅2
≤
𝜀

2
. (41)

Therefore P(𝜏
𝑅
< 𝑇) ≤ 𝜀.

We are now ready to prove the strong convergence of the
SST method (3).

Theorem 7. Under Assumptions 1, 3, and 5, the continuous-
time approximate solution 𝑦(𝑡)with 1/2 ≤ 𝜃 ≤ 1 and 𝑟 ∈ [1, 2)
will converge to the true solution of SDDEs (2); that is,

E [
󵄩󵄩󵄩󵄩𝑦 (𝑇) − 𝑥 (𝑇)

󵄩󵄩󵄩󵄩
𝑟
] 󳨀→ 0, as ℎ 󳨀→ 0. (42)

Proof. We divided our proof into three steps for readability.
First, we define 𝜎

𝑅
= 𝜌
𝑅
∧ 𝜏
𝑅
and 𝑒(𝑡) := 𝑦(𝑡) − 𝑥(𝑡).

By applying Young’s inequality (𝑥𝑟𝑦 ≤ (𝛿
1
𝑟/2)𝑥
2
+ ((2 −

𝑟)/2𝛿
𝑟/(2−𝑟)

1
)𝑦
2/(2−𝑟), ∀𝑥, 𝑦, 𝛿

1
> 0), we obtain that for 𝛿

1
> 0

E [‖𝑒 (𝑇)‖
𝑟
]

= E [‖𝑒 (𝑇)‖
𝑟
1
{𝜏𝑅>𝑇,𝜌𝑅>𝑇}

] + E [‖𝑒 (𝑇)‖
𝑟
1
{𝜏𝑅≤𝑇,or𝜌𝑅≤𝑇}]

≤ E[ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑒 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
𝑟
1
{𝜎𝑅>𝑇}

] +
𝛿
1
𝑟

2
E [‖𝑒 (𝑇)‖

2
]

+
2 − 𝑟

2𝛿
2/(2−𝑟)

1

P (𝜏
𝑅
≤ 𝑇, or 𝜌

𝑅
≤ 𝑇) .

(43)
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Second, to bound the first term on the right-hand side of
(43), it is enough to show that E[sup

0≤𝑡≤𝑇
‖𝑒(𝑡 ∧ 𝜎

𝑅
)‖
2
1
{𝜎𝑅>𝑇}

]

is bounded due to the Lyapunov inequality. By using
Burkholder-Davis-Gundy inequality, we obtain

E[ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
2
]

= E[ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡∧𝜎𝑅

0

(𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

−𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))) 𝑑𝑠

+ ∫

𝑡∧𝜎𝑅

0

(𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

−𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))) 𝑑𝜔(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

]

≤ 2𝑇E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

−𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

+ 8E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

−𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠] .

(44)

Furthermore, using Assumption 5, Lemma 4, Assumption 1,
and (37), we get

E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) − 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

≤ 3E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

−𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

+ 3E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏))

−𝑓 (𝑠, 𝑦 (𝑠) , 𝑦 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

+ 3E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑦 (𝑠) , 𝑦 (𝑠 − 𝜏))

−𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

≤ 3𝐾
3
ℎ
2
(1 + 𝐴 + 𝐶

3
(𝑅)) 𝑇 + 6𝐿

𝑅
𝐶
2

2
(𝑅) ℎ𝑇

+ 6𝐿
𝑅
∫

𝑇

0

E[ sup
0≤𝑡≤𝑠

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
2
]𝑑𝑠,

(45)

where𝐶
3
(𝑅) = E[sup

0≤𝑠<𝑇∧𝜎𝑅
‖𝑌(𝑠)‖

2𝑚1] is a positive constant
dependent of 𝑅. Similarly, we have

E [∫
𝑇∧𝜎𝑅

0

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑌 (𝑠) , 𝑌 (𝑠 − 𝜏)) − 𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2
𝑑𝑠]

≤ 3𝐾
3
ℎ
2
(1 + 𝐴 + 𝐶

3 (𝑅)) 𝑇 + 6𝐿𝑅𝐶
2

2
(𝑅) 𝑇ℎ

+ 6𝐿
𝑅
∫

𝑇

0

E[ sup
0≤𝑡≤𝑠

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
2
]𝑑𝑠.

(46)

By substituting (45) and (46) into (44), we obtain

E[ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
2
]

≤ (12𝑇𝐿
𝑅
+ 48𝐿

𝑅
) ∫

𝑇

0

E[ sup
0≤𝑡≤𝑠

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
2
]𝑑𝑠

+ (2𝑇 + 8) (3𝐾
3
ℎ (1 + 𝐴 + 𝐶

3
(𝑅)) 𝑇 + 6𝐿

𝑅
𝐶
2

2
(𝑅) 𝑇) ℎ.

(47)

Applying the Gronwall inequality and the Lyapunov inequal-
ity leads us to

E[ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
2
]

≤ ℎ (2𝑇 + 8) (3𝐾3ℎ (1 + 𝐴 + 𝐶3 (𝑅)) 𝑇 + 6𝐿𝑅𝐶
2

2
(𝑅) 𝑇)

× exp12𝑇
2
𝐿𝑅+48𝑇𝐿𝑅 ,

(48)

and then

E[ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑦 (𝑡 ∧ 𝜎𝑅) − 𝑥 (𝑡 ∧ 𝜎𝑅)
󵄩󵄩󵄩󵄩
𝑟
]

≤ (ℎ (2𝑇 + 8) (3𝐾
3
ℎ (1 + 𝐴 + 𝐶

3
(𝑅)) 𝑇 + 6𝐿

𝑅
𝐶
2

2
(𝑅) 𝑇)

× exp12𝑇
2
𝐿𝑅+48𝑇𝐿𝑅)

𝑟/2

.

(49)
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Table 1: The means of absolute errors 𝜖 with 𝑡
𝑁
= 2 of SST (3) for solving SDDE (54).

ℎ 2
−6

2
−7

2
−8

2
−9

2
−10

𝜃 = 1/2 0.0105521 0.0066357 0.0041003 0.0025833 0.0017500
𝜃 = 3/4 0.0096784 0.0059020 0.0037484 0.0024271 0.0017922
𝜃 = 1 0.0091289 0.0056502 0.0037745 0.0025027 0.0017006

Table 2: The means of absolute errors 𝜖 with 𝑡
𝑁
= 2 of SST (3) for solving SDDE (55).

ℎ 2
−6

2
−7

2
−8

2
−9

2
−10

𝜃 = 1/2 0.0056293 0.0037120 0.0024775 0.0017213 0.0011661
𝜃 = 3/4 0.0059738 0.0038085 0.0025652 0.0017131 0.0012165
𝜃 = 1 0.0062445 0.0038978 0.0025618 0.0017181 0.0011714

Finally, combining (49) and (43), we have

E[ sup
0≤𝑡≤𝑇

‖𝑒 (𝑡)‖
𝑟
]

≤ (ℎ (2𝑇 + 8) (3𝐾
3
ℎ (1 + 𝐴 + 𝐶

3
(𝑅)) 𝑇 + 6𝐿

𝑅
𝐶
2

2
(𝑅) 𝑇)

× exp12𝑇
2
𝐿𝑅+48𝑇𝐿𝑅)

𝑟/2

+
𝛿
1
𝑟

2
E [‖𝑒 (𝑇)‖

2
] +

2 − 𝑟

2𝛿2/(2−𝑟)
P (𝜏
𝑅
≤ 𝑇, or 𝜌

𝑅
≤ 𝑇)

≤ (ℎ (2𝑇 + 8) (3𝐾
3
ℎ (1 + 𝐴 + 𝐶

3
(𝑅)) 𝑇 + 6𝐿

𝑅
𝐶
2

2
(𝑅) 𝑇)

× exp12𝑇
2
𝐿𝑅+48𝑇𝐿𝑅)

𝑟/2

+
𝛿
1
𝑟

2
E [‖𝑒 (𝑇)‖

2
] +

2 − 𝑟

2𝛿
2/(2−𝑟)

1

P (𝜏
𝑅
≤ 𝑇)

+
2 − 𝑟

2𝛿
2/(2−𝑟)

1

P (𝜌
𝑅
≤ 𝑇) .

(50)

For any given 𝜀 > 0, by Lemmas 2 and 4, we can choose 𝛿
1

such that

𝛿
1
𝑟

2
E [‖𝑒 (𝑇)‖

2
] ≤ 𝛿
1
𝑟E [‖𝑥 (𝑇)‖

2
+
󵄩󵄩󵄩󵄩𝑦 (𝑇)

󵄩󵄩󵄩󵄩
2
] ≤

𝜀

3
. (51)

Now, by (8) and (39), there exists𝑁
0
such that for 𝑅 ≥ 𝑁

0

2 − 𝑟

2𝛿
2/(2−𝑟)

1

P (𝜌
𝑅
≤ 𝑇)

+
2 − 𝑟

2𝛿
2/(2−𝑟)

1

(
E [
󵄩󵄩󵄩󵄩𝜙 (0)

󵄩󵄩󵄩󵄩
2
] + 2𝛼𝑇 + 4𝛽𝐴𝑇 + 2𝐴

𝑅2
) ≤

𝜀

3
.

(52)

Furthermore, by Lemma 6, we choose ℎ sufficiently small
such that

(ℎ (2𝑇 + 8) (3𝐾
3
ℎ (1 + 𝐴 + 𝐶

3
(𝑅)) 𝑇 + 6𝐿

𝑅
𝐶
2

2
(𝑅) 𝑇)

×exp12𝑇
2
𝐿𝑅+48𝑇𝐿𝑅)

𝑟/2

+
2 − 𝑟

2𝛿
2/(2−𝑟)

1

(
2𝐶
1
(𝑅) 𝐶
2
(𝑅) ℎ
1/2
𝑇

𝑅2
) ≤

𝜀

3
.

(53)

The proof is completed.

5. Numerical Results

In this section we consider the following numerical experi-
ments that confirm the conclusions obtained in the previous
sections.

For the first example, we consider the nonautonomous
SDDEs

𝑑𝑥 (𝑡) = (−𝑡
2
𝑥 (𝑡) − 𝑥

3
(𝑡) + 𝑥 (𝑡 − 0.5)) 𝑑𝑡 + 𝑥

2
(𝑡) 𝑑𝑊 (𝑡) ,

𝑡 ∈ [0, 2] ,

(54)

with initial value 𝑥(𝑡) = 1, 𝑡 ∈ [−0.5, 0].
For the second example, we consider the SDDEs [8]

𝑑𝑥 (𝑡) = (−2𝑥 (𝑡) − 𝑥
3
(𝑡) + 𝑥 (𝑡 − 1)) 𝑑𝑡 + 𝑥

2
(𝑡) 𝑑𝑊 (𝑡) ,

𝑡 ∈ [0, 2] ,

(55)

with initial value 𝑥(𝑡) = 1, 𝑡 ∈ [−1, 0].
It is easy to show that SDDEs (54) and (55) satisfy

Assumptions 1, 3, and 5. Following the idea of [20] and
denoting by 𝑦(𝑖)

𝑁
the numerical approximation to 𝑥(𝑡(𝑖)

𝑁
) at

end point 𝑡
𝑁
in the 𝑖th simulation of all𝑀

2
simulations, we

approximate means of absolute errors at terminal time 𝑡
𝑁
by

𝜖 =
1

𝑀
2

𝑀2

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑦
(𝑖)

𝑁
− 𝑥 (𝑡

(𝑖)

𝑁
)
󵄨󵄨󵄨󵄨󵄨
. (56)
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Figure 1: log 𝜖 with 𝑡
𝑁
= 2 versus log ℎ for SST method (3) solving SDDEs (54) (a) and SDDEs (55) (b).

It is difficult to obtain the analytic form of the exact
solution to SDDEs (54) and (55). Recall that Theorem 7
guarantees that the SST method (3) strongly converges to
the exact solution. Therefore, it is reasonable to identify
numerical solution obtained by the SST method (3) (𝜃 = 1)
using the very small stepsize ℎ = 2−15 as the “exact” solution.
With the “exact” solution at hand, we can follow to obtain
numerical solution by the SST method (3) using different
stepsizes ℎ = 2−6, 2−7, 2−8, 2−9, 2−10 on the same discretized
path. We generate𝑀

2
= 5000 different discretized Brownian

paths over [0, 2] and apply the formula (56) to obtain the
absolute errors. Errors 𝜖 at 𝑡

𝑁
= 2 for the SST method (3)

solving SDDEs (54) and (55) with different stepsizes ℎ are
listed in Tables 1 and 2, respectively. In Figure 1, we plot the
means of absolute errors 𝜖 against ℎ on a log-log scale.

From Figure 1 and Tables 1 and 2, we observe that errors
𝜖 of numerical approximations decrease as the stepsize ℎ
decreases. This is in accordance with our convergence results
in the preceding section.

6. Conclusion

In this work, we carried out a strong convergence analysis
on the SST method for SDDEs under a local Lipschitz
condition and a coupled condition on the drift and diffusion
coefficients. Different from most of the existing convergence
results for SDDEs, our results can be applied to equations of
which the diffusion coefficient with respect to the nondelay
variables is highly nonlinear. Both theoretical analysis and
numerical tests show that the SST method is efficient for the
numerical solution of SDDEs.
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