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The nonlinear matrix equation,𝑋−∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
= 𝑄, with −1 ≤ 𝛿

𝑖
< 0 is investigated. A fixed point theorem in partially ordered

sets is proved. And then, by means of this fixed point theorem, the existence of a unique Hermitian positive definite solution for
the matrix equation is derived. Some properties of the unique Hermitian positive definite solution are obtained. A residual bound
of an approximate solution to the equation is evaluated. The theoretical results are illustrated by numerical examples.

1. Introduction

In this paper we consider the Hermitian positive definite
solution of the following nonlinear matrix equation:

𝑋 −

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
= 𝑄, (1)

where −1 ≤ 𝛿
𝑖
< 0 (𝑖 = 1, 2, . . . , 𝑚), 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
are

𝑛 × 𝑛 complex matrices, 𝑄 is an 𝑛 × 𝑛 Hermitian positive
definite matrix, and𝑚 is a positive integer. Here, 𝐴∗

𝑖
denotes

the conjugate transpose of the matrix 𝐴
𝑖
.

This type of nonlinear matrix equations arises in many
practical applications. Equation (1) in the case 𝑚 = 1

comes from ladder networks, dynamic programming, control
theory, stochastic filtering, statistics, and so forth [1–7].When
𝑚 > 1, (1) in the case 𝛿

1
= 𝛿
2
= ⋅ ⋅ ⋅ = 𝛿

𝑚
= −1 is

recognized as playing an important role in modeling certain
optimal interpolation problems (see [8, 9] for more details).
The Hermitian positive definite solutions of the general-
type equation (1) play an important role in connection
with a certain system of linear equations in many physical
calculations (see [7, 10] for more details). When solving the
nonlinear matrix equation (1), we often do not avoid some
round-off errors. Then we only get an approximation 𝑋.
After we computed 𝑋, we would like to know how good

our computation was. Motivated by these, we consider in
this paper the Hermitian positive definite solutions and the
residual bound of (1).

In the last few years, (1) was investigated in some special
cases. For the nonlinear matrix equations,𝑋 ± 𝐴

∗

𝑋
−1

𝐴 = 𝑄

[11–17], 𝑋 + 𝐴
∗

𝑋
−1

𝐴 + 𝐵
∗

𝑋
−1

𝐵 = 𝑄 [18], 𝑋 − 𝐴
∗

𝑋
−2

𝐴 = 𝑄

[19, 20], 𝑋𝑠 − 𝐴
∗

𝑋
−𝑡

𝐴 = 𝑄 [21], 𝑋 − 𝐴
∗

𝑋
−𝑞

𝐴 = 𝑄 [22–
25], and𝑋 − ∑

𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
−1

𝐴
𝑖
= 𝑄 [9, 26, 27], there were many

contributions in the literature to the solvability, numerical
solutions, and perturbation analysis. In addition, the related
general equations,𝑋±𝐴

∗F(𝑋)𝐴 = 𝑄 [28–34], were studied
by some scholars.

For the case 𝑚 > 1 and 𝛿
𝑖
changes with 𝑖, Duan et al.

[35] proved that (1) with 0 < |𝛿
𝑖
| < 1 has a unique

Hermitian positive definite solution by fixed point theorems
for monotone and mixed monotone operators in a normal
cone. Lim [36] showed that (1) with 0 < |𝛿

𝑖
| < 1 has a

unique Hermitian positive definite solution by using a strict
contraction for the Thompson metric on the open convex
cone of positive definite matrices. Shi et al. [37] studied the
existence and uniqueness of solutions of nonlinear matrix
equations, 𝑋 = ∑

𝑘−1

𝑙=0
𝑃
𝑇

𝑙
𝑋
𝛼𝑙𝑃
𝑙
and 𝑋 = ∑

𝑘−1

𝑙=0
(𝑃
𝑇

𝑙
𝑋𝑃
𝑙
)
𝛼𝑙 ,

with |𝛼
𝑙
| < 1. Li [10] gave perturbation analysis for the

positive definite solution of (1) with 0 < 𝛿
𝑖
< 1. Duan

et al. [38] gave two perturbation estimates for the positive
definite solution of (1) with 0 < |𝛿

𝑖
| < 1. However, these
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papers have not considered (1) in the case 𝛿
𝑖
= −1 for some

𝑖 and the approaches in these papers will become invalid in
this case. Meanwhile, in some practical problems (e.g., in
certain optimal interpolation problems), the case of 𝛿

𝑖
=

−1 for some 𝑖 is required. To our best knowledge, there
has been no literature paying attention to the Hermitian
positive definite solutions and the residual bound for (1) with
−1 ≤ 𝛿

𝑖
< 0. By using the integral representation of matrix

function and the fixed point theorem, we prove the existence
of a unique Hermitian positive definite solution to (1) and
consider the residual bound of this equation. Note that the
integral representation of matrix function 𝑋

𝛿𝑖 in the case
−1 < 𝛿

𝑖
< 0 is different from the case 0 < 𝛿

𝑖
< 1.

Furthermore, the monotonicity of 𝑋𝛿𝑖 in the former case
differs from the latter. Based on the above arguments, we will
consider (1) with −1 ≤ 𝛿

𝑖
< 0 in this paper.

The rest of the paper is organized as follows. In Section 2,
we give some preliminary lemmas that will be needed to
develop this work. In Section 3, a fixed point theorem in
partially ordered sets is proved. And then, by means of this
fixed point theorem, the existence of a unique Hermitian
positive definite solution for thematrix equation (1)with−1 ≤
𝛿
𝑖
< 0 is derived.We propose an iterative method to compute

the Hermitian positive definite solution.We also obtain some
properties of the unique Hermitian positive definite solution.
Furthermore, in Section 4, a residual bound for the unique
Hermitian positive definite solution to (1) with −1 ≤ 𝛿

𝑖
< 0

is given. Finally, several numerical examples are presented in
Section 5.

We denote by C𝑛×𝑛 the set of 𝑛 × 𝑛 complex matrices,
by H𝑛×𝑛 the set of 𝑛 × 𝑛 Hermitian matrices, by 𝐼 the
identity matrix, by ‖ ⋅ ‖ the spectral norm, and by 𝜆max(𝑀)

and 𝜆min(𝑀) the maximal and minimal eigenvalues of 𝑀,
respectively. For𝑋,𝑌 ∈ H𝑛×𝑛, we write𝑋 ≥ 𝑌 (resp.,𝑋 > 𝑌)

if 𝑋 − 𝑌 is Hermitian positive semidefinite (resp., definite).
Further, the sets [𝐴, 𝐵] and (𝐴, 𝐵) are defined by [𝐴, 𝐵] = {𝐶 |

𝐴 ≤ 𝐶 ≤ 𝐵} and (𝐴, 𝐵) = {𝐶 | 𝐴 < 𝐶 < 𝐵}, respectively.

2. Preliminaries

Lemma 1 (see [39]). If 𝐴 ≥ 𝐵 > 0, then 0 < 𝐴−1 ≤ 𝐵−1.

Lemma 2 (see [39]). If 𝐴 ≥ 𝐵 > 0 and 0 ≤ 𝛾 ≤ 1, then
𝐴
𝛾

≥ 𝐵
𝛾.

For the sake of completeness we will provide the proof of
the next lemma.

Lemma 3 (see [17]). For every positive definite matrix 𝑋, if
𝑋 + Δ𝑋 ≥ (1/])𝑋, with ] > 0, then

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
∗

((𝑋 + Δ𝑋)
−1

− 𝑋
−1

)𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩
+ ]

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

)

×
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

.

(2)

Proof. Suppose that𝑋 is a positive definitematrix. If𝑋+Δ𝑋 ≥

(1/])𝐼 > 0, then
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
∗

((𝑋 + Δ𝑋)
−1

− 𝑋
−1

)𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
∗

𝑋
−1

Δ𝑋(𝑋 + Δ𝑋)
−1

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
∗

𝑋
−1

Δ𝑋𝑋
−1

𝐴𝑋
−1/2

+𝑋
−1/2

𝐴
∗

𝑋
−1

Δ𝑋𝑋
−1

Δ𝑋(𝑋 + Δ𝑋)
−1

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
∗

𝑋
−1

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2 󵄩󵄩󵄩󵄩󵄩
𝑋
1/2

(𝑋 + Δ𝑋)
−1

𝑋
1/2
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩
+ ]

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

)

×
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

.

(3)

Lemma 4 (see [23]). For every Hermitian positive definite
matrix 𝑋 and Δ𝑋 ∈ H𝑛×𝑛, it yields that

(i) 𝑋−𝑝 = (sin𝑝𝜋/𝜋) ∫∞
0

(𝜆𝐼 + 𝑋)
−1

𝜆
−𝑝

𝑑𝜆, 0 < 𝑝 < 1;

(ii) 𝑋−𝑝 = (sin𝑝𝜋/𝑝𝜋) ∫∞
0

(𝜆𝐼+𝑋)
−1

𝑋(𝜆𝐼+𝑋)
−1

𝜆
−𝑝

𝑑𝜆,
0 < 𝑝 < 1.

In addition, if 0 < 𝑝 < 1 and 𝑋 + Δ𝑋 ≥ (1/])𝑋, with ] > 0,
then

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
∗

((𝑋 + Δ𝑋)
−𝑝

− 𝑋
−𝑝

) 𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

≤ 𝑝 (
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩
+ ]

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

)

×
󵄩󵄩󵄩󵄩󵄩
𝑋
−𝑝/2

𝐴𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

.

(4)

3. The Positive Definite Solutions

In this section, we use a new method, which is different from
the approaches applied in [35, 36] to prove that (1) with −1 ≤
𝛿
𝑖
< 0 has a unique Hermitian positive definite solution

𝑋. Meanwhile, we give an iterative method to compute the
unique Hermitian positive definite solution for arbitrary
initial positive definite matrix. Moreover, we obtain some
properties of the Hermitian positive definite solution to (1).

Theorem 5. Let Θ be a partially ordered metric space, with
the property that, for any two elements 𝑋 and 𝑌 in Θ, there is
a positive number 𝑡 such that 𝑡𝑌 ≤ 𝑋.

Let F : Θ → Θ be a continuous, order reversing map
such that there is a 𝑄 ∈ Θ withF(𝑋) ≥ 𝑄 for all 𝑋 ∈ Θ. Put
𝑆 = {𝑋 ∈ Θ | 𝑄 ≤ 𝑋 ≤ F(𝑄)}. ThenFmaps 𝑆 into itself.

ConsiderF2(𝑋) = F(F(𝑋)). Assume in addition that for
0 < 𝑡 < 1 there is a number 𝜂(𝑡) > 0 such that, for all 𝑋 ∈ 𝑆,

F
2

(𝑡𝑋) ≥ 𝑡 (1 + 𝜂 (𝑡))F
2

(𝑋) . (5)
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ThenF has a unique fixed point in Θ, and, for every 𝑋
0
∈ Θ,

the iteration 𝑋
𝑛+1

= F(𝑋
𝑛
), started with 𝑋

0
, converges to the

unique fixed point.

Proof. To show that F maps 𝑆 into itself, we only need to
show that for 𝑋 ∈ 𝑆 we have F(𝑋) ≤ F(𝑄). In fact, since
F is order reversing, something much stronger holds; for
𝑋 ≥ 𝑄we haveF(𝑋) ≤ F(𝑄). In particular,Fmaps 𝑆 into 𝑆.
Moreover,F2 maps Θ into 𝑆. It follows that if there is a fixed
point ofF, then it is in 𝑆.

The fact thatF is order reversing means thatF2 is order
preserving and one can check that there are twomatrices,𝑋(1)

and 𝑋
(2), such that these two form a periodic orbit which

is the attractor of the iteration of F for any starting value.
In addition, we have 𝑋(1) = lim

𝑘→∞
F2𝑘+1(𝑄) and 𝑋(2) =

lim
𝑘→∞

F2𝑘(𝑄), so that𝑋(2) ≤ 𝑋(1).
It remains to show that, under the extra condition (5),𝑋(1)

and 𝑋(2) are equal. In fact, we will show that 𝑋(1) ≤ 𝑋
(2),

which is enough. By the assumption on Θ, there is a 𝑡 such
that 𝑡𝑋(1) ≤ 𝑋

(2). Let 𝑡
0
= max{𝑡 | 𝑡𝑋(1) ≤ 𝑋

(2)

}. Suppose
that 𝑡
0
< 1. Then, using (5),

𝑋
(2)

= F
2

(𝑋
(2)

) ≥ F
2

(𝑡
0
𝑋
(1)

) ≥ 𝑡
0
(1 + 𝜂 (𝑡

0
))F
2

(𝑋
(1)

)

> 𝑡
0
F
2

(𝑋
(1)

) = 𝑡
0
𝑋
(1)

,

(6)

which contradicts the definition of 𝑡
0
. So 𝑡

0
≥ 1, and in

particular𝑋(1) ≤ 𝑋(2).

The following results are immediate consequences of
Theorem 5.

Theorem 6. There exists a unique Hermitian positive definite
solution𝑋 of (1) with −1 ≤ 𝛿

𝑖
< 0, and the iteration,

𝑋
0
> 0, 𝑋

𝑛
= 𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝛿𝑖

𝑛−1
𝐴
𝑖
, 𝑛 = 1, 2, . . . , (7)

converges to𝑋.

Proof. Let X = {𝑋 ∈ C𝑛×𝑛 | 𝑋 > 0}. Then the set X is
partially ordered and for any two elements, 𝑋 and 𝑌, in X

there is a positive number 𝑡 such that 𝑡𝑌 ≤ 𝑋. A map 𝐹

associated with (1) is defined by

𝐹 (𝑋) = 𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
, 𝑋 ∈ X. (8)

Obviously, 𝐹 : X → X is continuous, and a solution of (1) is
a fixed point of 𝐹. Let Ω = [𝑄, 𝐹(𝑄)] andL

𝑖
(𝑋) = 𝑋

𝛿𝑖 (𝑋 ∈

Ω, −1 ≤ 𝛿
𝑖
< 0). By Lemmas 1 and 2, we obtain that L

𝑖
is

order reversing. SoL
𝑖
(𝑋) ≤ L

𝑖
(𝑄). Then

𝐹 (𝑋) = 𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
L
𝑖
(𝑋)𝐴

𝑖

≤ 𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
L
𝑖
(𝑄)𝐴

𝑖
= 𝐹 (𝑄) ,

(9)

and as L
𝑖
(𝑋) > 0 also 𝐹(𝑋) = 𝑄 + ∑

𝑚

𝑖=1
𝐴
∗

𝑖
L
𝑖
(𝑋)𝐴

𝑖
≥ 𝑄.

That is, 𝐹mapsΩ into itself and 𝐹 is also order reversing.
By Theorem 5, it remains to prove that, for 0 < 𝑡 < 1,

there exists a number 𝜂(𝑡) > 0 such that, for all𝑋 ∈ Ω,

𝐹
2

(𝑡𝑋) ≥ 𝑡 (1 + 𝜂 (𝑡)) 𝐹
2

(𝑋) . (10)

In fact, choose 𝜂(𝑡) = (1 − 𝑡)𝜆min(𝑄)/𝑡𝜆max(𝐹(𝑄)). Note that

𝐹
2

(𝑋) ≤ 𝐹 (𝑄) ≤ 𝜆max (𝐹 (𝑄)) 𝐼. (11)

For 0 < 𝑡 < 1, a calculation gives

𝐹
2

(𝑡𝑋) − 𝑡 (1 + 𝜂 (𝑡)) 𝐹
2

(𝑋)

= (1 − 𝑡) 𝑄 +

𝑚

∑

𝑖=1

𝑡
𝛿
2

𝑖 𝐴
∗

𝑖
(𝑡
−𝛿𝑖𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
)

𝛿𝑖

𝐴
𝑖

− 𝑡

𝑚

∑

𝑖=1

𝐴
∗

𝑖
(𝑄 +

𝑚

∑

𝑖=1

𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
)

𝛿𝑖

𝐴
𝑖

− 𝑡 ⋅
(1 − 𝑡) 𝜆min (𝑄)

𝑡𝜆max (𝑄 + ∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑄𝛿𝑖𝐴
𝑖
)
𝐹
2

(𝑋)

≥ (1 − 𝑡) 𝜆min (𝑄) 𝐼 −
(1 − 𝑡) 𝜆min (𝑄) 𝜆max (𝐹 (𝑄)) 𝐼

𝜆max (𝐹 (𝑄))

= 0,

(12)

which completes the proof.

Theorem 7. If 𝑋 is an Hermitian positive definite solution of
(1), then 𝛽𝐼 ≤ 𝑋 ≤ 𝛼𝐼, where 𝛼 and 𝛽 are, respectively, the
solutions of the following equations:

𝑥 = 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
)

× (𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝑥
𝛿𝑖)

𝛿𝑖

,

(13)

𝑥 = 𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
)

× (𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝑥
𝛿𝑖)

𝛿𝑖

.

(14)

Moreover,

𝜆min (𝑄) ≤ 𝛽 ≤ 𝛼. (15)
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Proof. Define the sequences {𝛽
𝑛
} and {𝛼

𝑛
} as

𝛽
0
= 𝜆min (𝑄) , 𝛽

𝑛+1
= 𝜆min (𝑄) +

𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝛼
𝛿𝑖

𝑛
,

𝛼
𝑛
= 𝜆max (𝑄) +

𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝛽
𝛿𝑖

𝑛
, 𝑛 = 0, 1, 2, . . . .

(16)

From (16), it follows that

𝜆min (𝑄) = 𝛽0 ≤ 𝛼0 = 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝛿𝑖

min (𝑄) ,

𝜆min (𝑄) = 𝛽0 ≤ 𝛽1 = 𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝛼
𝛿𝑖

0

≤ 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝛿𝑖

min (𝑄) ,

𝜆min (𝑄) = 𝛽0 ≤ 𝛼1 = 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝛽
𝛿𝑖

1

≤ 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝛿𝑖

min (𝑄) = 𝛼0.

(17)

Supposing 𝜆min(𝑄) ≤ 𝛽
𝑘−1

≤ 𝛽
𝑘

≤ 𝜆max(𝑄) +

∑
𝑚

𝑖=1
𝜆max(𝐴

∗

𝑖
𝐴
𝑖
)𝜆
𝛿𝑖

min(𝑄) and 𝜆min(𝑄) ≤ 𝛼𝑘 ≤ 𝛼𝑘−1, then

𝜆min (𝑄) ≤ 𝛽𝑘 = 𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝛼
𝛿𝑖

𝑘−1

≤ 𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝛼
𝛿𝑖

𝑘

= 𝛽
𝑘+1

≤ 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝛿𝑖

min (𝑄) ,

𝜆min (𝑄) ≤ 𝛼𝑘+1 = 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝛽
𝛿𝑖

𝑘+1

≤ 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝛽
𝛿𝑖

𝑘
= 𝛼
𝑘
.

(18)

Hence, for each 𝑘, we have 𝜆min(𝑄) ≤ 𝛼
𝑘+1

≤ 𝛼
𝑘
and

𝜆min(𝑄) ≤ 𝛽
𝑘
≤ 𝛽
𝑘+1

≤ 𝜆max(𝑄) + ∑
𝑚

𝑖=1
𝜆max(𝐴

∗

𝑖
𝐴
𝑖
)𝜆
𝛿𝑖

min(𝑄),
which imply that the sequences {𝛼

𝑛
} and {𝛽

𝑛
} are monotonic

and bounded. Therefore, they are convergent to certain
positive numbers. Let

𝛼 = lim
𝑛→∞

𝛼
𝑛
, 𝛽 = lim

𝑛→∞

𝛽
𝑛
. (19)

Taking limits in (16) yields

𝛼 = 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝛽
𝛿𝑖 ,

𝛽 = 𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝛼
𝛿𝑖 ,

(20)

which imply that

𝛼 = 𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
)

× (𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝛼
𝛿𝑖)

𝛿𝑖

,

𝛽 = 𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
)

× (𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝛽
𝛿𝑖)

𝛿𝑖

.

(21)

Therefore 𝛼 and 𝛽 satisfy (13) and (14), respectively. We will
prove that 𝑋 ∈ [𝛽𝐼, 𝛼𝐼] for any positive definite solution
𝑋. According to Lemmas 1 and 2 and the sequences defined
by (16), it follows that 𝛽

0
𝐼 = 𝜆min(𝑄) ≤ 𝑋 ≤ (𝜆max(𝑄) +

∑
𝑚

𝑖=1
𝜆max(𝐴

∗

𝑖
𝐴
𝑖
)𝜆
𝛿𝑖

min(𝑄))𝐼 = 𝛼
0
𝐼 for each Hermitian pos-

itive definite solution 𝑋. From 𝑋 = 𝑄 + ∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
, it

follows that𝑋 = 𝑄+∑
𝑚

𝑖=1
𝐴
∗

𝑖
(𝑄 + ∑

𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
)
𝛿𝑖

𝐴
𝑖
. Hence

(𝜆min (𝑄) +
𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
)

× (𝜆max (𝑄)

+

𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝛿𝑖

min (𝑋))

𝛿𝑖

)𝐼

≤ 𝑋

≤ (𝜆max (𝑄) +
𝑚

∑

𝑖=1

𝜆max (𝐴
∗

𝑖
𝐴
𝑖
)

× (𝜆min (𝑄)

+

𝑚

∑

𝑖=1

𝜆min (𝐴
∗

𝑖
𝐴
𝑖
) 𝜆
𝛿𝑖

max (𝑋))

𝛿𝑖

)

× 𝐼.

(22)
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Since 𝛽
0
𝐼 ≤ 𝑋 ≤ 𝛼

0
𝐼, it follows that 𝛽

0
≤ 𝜆min(𝑋) and

𝜆max(𝑋) ≤ 𝛼
0
. Note that inequality (22) implies 𝛽

1
𝐼 ≤ 𝑋 ≤

𝛼
1
𝐼. By similar induction, it yields that

𝛽
𝑛
𝐼 ≤ 𝑋 ≤ 𝛼

𝑛
𝐼. (23)

Taking limits on both sides of inequality (23), we have 𝛽𝐼 ≤
𝑋 ≤ 𝛼𝐼.

Corollary 8. Every Hermitian positive definite solution of (1)
is in [𝑄+∑𝑚

𝑖=1
𝛼
𝛿𝑖𝐴
∗

𝑖
𝐴
𝑖
, 𝑄+∑

𝑚

𝑖=1
𝛽
𝛿𝑖𝐴
∗

𝑖
𝐴
𝑖
], where 𝛼 and 𝛽 are

defined as in Theorem 7.

Proof. We suppose that 𝑋 is the Hermitian positive definite
solution of (1). ByTheorem 7, it follows that

𝛽 ≤ 𝜆min (𝑋) , 𝜆max (𝑋) ≤ 𝛼. (24)

Using 𝑋 = 𝑄 + ∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
, we obtain

𝑄 + ∑
𝑚

𝑖=1
𝜆
𝛿𝑖

max(𝑋)𝐴
∗

𝑖
𝐴
𝑖
≤ 𝑋 ≤ 𝑄 + ∑

𝑚

𝑖=1
𝜆
𝛿𝑖

min(𝑋)𝐴
∗

𝑖
𝐴
𝑖
.

Applying inequality (24) yields 𝑄 + ∑
𝑚

𝑖=1
𝛼
𝛿𝑖𝐴
∗

𝑖
𝐴
𝑖
≤ 𝑋 ≤

𝑄 + ∑
𝑚

𝑖=1
𝛽
𝛿𝑖𝐴
∗

𝑖
𝐴
𝑖
.

Remark 9. The above estimate of Hermitian positive definite
solution of (1) is more precise than that in Theorem 7.

4. Residual Bound

The matrix equation (1) with −1 ≤ 𝛿
𝑖
< 0 includes the

following cases: first, some 𝛿
𝑖
in (−1, 0) and others 𝛿

𝑖
= −1;

secondly, all 𝛿
𝑖
in (−1, 0); thirdly, all 𝛿

𝑖
= −1. Without loss

of generality, let 𝛿
𝑖
= −1, 𝑖 = 1, 2, . . . , 𝑙, and −1 < 𝛿

𝑖
< 0,

𝑖 = 𝑙 + 1, . . . , 𝑚. Then (1) can be rewritten as

𝑋 −

𝑙

∑

𝑖=1

𝐴
∗

𝑖
𝑋
−1

𝐴
𝑖
−

𝑚

∑

𝑖=𝑙+1

𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
= 𝑄. (25)

In this section, a residual bound of an approximate solution
for the unique solution to (25) is developed.

Theorem 10. Let 𝑋 > 0 be an approximation to the solution
𝑋 of (25). If

Σ =

𝑙

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝐴
𝑖
𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

−

𝑚

∑

𝑖=𝑙+1

𝛿
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑋
𝛿𝑖/2𝐴
𝑖
𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

< 1 (26)

and the residual𝑅(𝑋) ≡ 𝑄+∑𝑙
𝑖=1
𝐴
∗

𝑖
𝑋
−1

𝐴
𝑖
+∑
𝑚

𝑖=𝑙+1
𝐴
∗

𝑖
𝑋
𝛿𝑖𝐴
𝑖
−

𝑋 satisfies
󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
<

𝜃
1

2
󵄩󵄩󵄩󵄩󵄩
𝑋−1

󵄩󵄩󵄩󵄩󵄩

min{1, 𝜃1
2
} ,

where 𝜃
1
≡ 1 +

󵄩󵄩󵄩󵄩󵄩
𝑋
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
− Σ > 0,

(27)

then
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
≤ 𝜃

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
,

where 𝜃 =
2
󵄩󵄩󵄩󵄩󵄩
𝑋
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋
−1
󵄩󵄩󵄩󵄩󵄩

𝜃
1
+ √𝜃
2

1
− 4

󵄩󵄩󵄩󵄩󵄩
𝑋−1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩

.

(28)

Proof. Let

Ψ = {Δ𝑋 ∈ H
𝑛×𝑛

:
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩
≤ 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
} , (29)

where 𝜃
2
= 𝜃/‖𝑋‖. Obviously, Ψ is a nonempty bounded

convex closed set. Let

𝑔 (Δ𝑋) =

𝑙

∑

𝑖=1

𝐴
∗

𝑖
[(𝑋 + Δ𝑋)

−1

− 𝑋
−1

]𝐴
𝑖

+

𝑚

∑

𝑖=𝑙+1

𝐴
∗

𝑖
[(𝑋 + Δ𝑋)

𝛿𝑖

− 𝑋
𝛿𝑖]𝐴
𝑖
+ 𝑅 (𝑋) .

(30)

Evidently 𝑔 : Ψ 󳨃→ H𝑛×𝑛 is continuous. We will prove that
𝑔(Ψ) ⊆ Ψ. For every Δ𝑋 ∈ Ψ, we have

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩
≤ 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
. (31)

Hence

𝑋
−1/2

Δ𝑋𝑋
−1/2

≥ −𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
𝐼. (32)

That is,

𝑋 + Δ𝑋 ≥ (1 − 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
)𝑋. (33)

Using (27), one sees that

𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
=

2
󵄩󵄩󵄩󵄩󵄩
𝑋
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩

𝜃
1
+ √𝜃
2

1
− 4

󵄩󵄩󵄩󵄩󵄩
𝑋−1

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩

<

2
󵄩󵄩󵄩󵄩󵄩
𝑋
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩

𝜃
1

< 1,

(34)

which means that (1 − 𝜃
2
‖𝑅(𝑋)‖)𝑋 > 0.

According to Lemmas 3 and 4 and inequality (33), we
obtain

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝑔 (Δ𝑋)𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋
−1/2

[

𝑙

∑

𝑖=1

𝐴
∗

𝑖
((𝑋 + Δ𝑋)

−1

− 𝑋
−1

)𝐴
𝑖

+

𝑚

∑

𝑖=𝑙+1

𝐴
∗

𝑖
((𝑋 + Δ𝑋)

𝛿𝑖

− 𝑋
𝛿𝑖)𝐴
𝑖
]𝑋
−1/2

+𝑋
−1/2

𝑅 (𝑋)𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

2

1 − 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩

)Σ

+
󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

𝑅 (𝑋)𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

≤ (𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
+

(𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
)
2

1 − 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩

)Σ

+
󵄩󵄩󵄩󵄩󵄩
𝑋
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
= 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
.

(35)
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Table 1: Results for Example 2 with different values of 𝑘.

𝑘 4 5 6 7
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘
− 𝑋

󵄩󵄩󵄩󵄩󵄩
1.2683 × 10

−5

7.4165 × 10
−7

4.3291 × 10
−8

2.6045 × 10
−9

𝜃
󵄩󵄩󵄩󵄩󵄩
𝑅(𝑋
𝑘
)
󵄩󵄩󵄩󵄩󵄩

1.6364 × 10
−5

9.5679 × 10
−7

5.5944 × 10
−8

3.2711 × 10
−9

By Brouwer’s fixed point theorem, there exists a Δ𝑋 ∈ Ψ

such that 𝑔(Δ𝑋) = Δ𝑋. Hence 𝑋 + Δ𝑋 is a solution of (25).
Moreover, byTheorem 6, we know that the solution𝑋 of (25)
is unique. Then

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
= ‖Δ𝑋‖ ≤

󵄩󵄩󵄩󵄩󵄩
𝑋
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋
−1/2

Δ𝑋𝑋
−1/2

󵄩󵄩󵄩󵄩󵄩

= 𝜃
2

󵄩󵄩󵄩󵄩󵄩
𝑋
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
= 𝜃

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋)

󵄩󵄩󵄩󵄩󵄩
.

(36)

5. Numerical Examples

To illustrate the results of the previous sections, in this
section, two simple examples are given, which were carried
out using MATLAB 7.1. For the stopping criterion we take
𝜀
𝑘+1
(𝑋) = ‖𝑋

𝑘
− ∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋
𝛿𝑖

𝑘
𝐴
𝑖
− 𝑄‖ < 1.0𝑒 − 10.

Example 1. In this example, we study the following matrix
equation:

𝑋 − 𝐴
∗

1
𝑋
−1

𝐴
1
− 𝐴
∗

2
𝑋
−0.5

𝐴
2
= 𝐼, (37)

with

𝐴
𝑘
=
1/ (𝑘 + 2) + 2 × 10

−2

‖𝐴‖
𝐴, 𝑘 = 1, 2,

𝐴 = (

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

).

(38)

Algorithm (7) needs 10 iterations to obtain the unique
positive definite solution

𝑋 =(

1.0654 0.0506 0.0110 −0.0008 −0.0000

0.0506 1.0764 0.0498 0.0110 −0.0008

0.0110 0.0498 1.0764 0.0498 0.0110

−0.0008 0.0110 0.0498 1.0764 0.0506

−0.0000 −0.0008 0.0110 0.0506 1.0654

)

(39)

with the residual ‖𝑋−𝐴∗
1
𝑋
−1

𝐴
1
−𝐴
∗

2
𝑋
−0.5

𝐴
2
−𝐼‖ = 5.0832𝑒−

011.

Example 2. In this example, we consider the corresponding
perturbation bound for the solution 𝑋 in Theorem 10. We
consider the following matrix equation:

𝑋 − 𝐴
∗

1
𝑋
−1

𝐴
1
− 𝐴
∗

2
𝑋
−0.5

𝐴
2
= 𝐼, (40)

with

𝐴
1
=
1/3 + 2 × 10

−2

‖𝐴‖
𝐴

𝐴
2
=
1/6 + 3 × 10

−2

‖𝐴‖
𝐴,

𝐴 =(

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

).

(41)

Choose 𝑋
0
= 𝐴. Let the approximate solution 𝑋

𝑘
of 𝑋 be

given with the iterative method (7), where 𝑘 is the iterative
number.

The residual 𝑅(𝑋
𝑘
) ≡ 𝐼 + 𝐴

∗

1
𝑋
−0.5

𝑘
𝐴
1
+ 𝐴
∗

2
𝑋
−0.25

𝑘
𝐴
2
− 𝑋
𝑘

satisfies the conditions inTheorem 10. ByTheorem 10, we can
compute residual bounds for𝑋

𝑘
as

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘
− 𝑋

󵄩󵄩󵄩󵄩󵄩
≤ 𝜃

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋
𝑘
)
󵄩󵄩󵄩󵄩󵄩
, (42)

where

𝜃 =

2
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑋
−1

𝑘

󵄩󵄩󵄩󵄩󵄩

𝜃
1
+ √𝜃
2

1
− 4

󵄩󵄩󵄩󵄩󵄩
𝑋
−1

𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋
𝑘
)
󵄩󵄩󵄩󵄩󵄩

,

𝜃
1
≡ 1 +

󵄩󵄩󵄩󵄩󵄩
𝑋
−1

𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑅 (𝑋
𝑘
)
󵄩󵄩󵄩󵄩󵄩

− (0.5
󵄩󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

−1/4

𝐴
1
𝑋
𝑘

−1/2󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 0.25
󵄩󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

−1/8

𝐴
2
𝑋
𝑘

−1/2󵄩󵄩󵄩󵄩󵄩󵄩

2

) .

(43)

Some results are listed in Table 1.
The results listed in Table 1 show that the residual bound

given byTheorem 10 is fairly sharp.
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