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We present a new version of the reproducing kernel Hilbert space method (RKHSM) for the solution of systems of fractional
integrodifferential equations. In this approach, the solution is obtained as a convergent series with easily computable components.
Several illustrative examples are given to demonstrate the effectiveness of the present method. The method described in this paper
is expected to be further employed to solve similar nonlinear problems in fractional calculus.

1. Introduction

In this paper, we consider the following system of fractional
integrodifferential equations:

𝐷
𝛼𝑖𝑥
𝑖
(𝑡)

= 𝐹
𝑖
(𝑡, 𝑥
1
(𝑡) , . . . , 𝑥

(𝑘)

1
(𝑡) , . . . , 𝑥

𝑖−1
(𝑡) , . . . , 𝑥

(𝑘)

𝑖−1
(𝑡) ,

𝑥
𝑖+1
(𝑡) , . . . , 𝑥

(𝑘)

𝑖+1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , . . . , 𝑥

(𝑘)

𝑛
(𝑡))

+ ∫

𝑡

0

𝐺
𝑖
(𝑡, 𝜏, 𝑥

1
(𝜏) , . . . , 𝑥

(𝑘)

1
(𝜏) , . . . , 𝑥

𝑛
(𝜏) ,

. . . , 𝑥
(𝑘)

𝑛
(𝜏)) 𝑑𝜏,

(1)

where 𝑖 = 1, . . . , 𝑛, 𝑘 = 0, 1, . . . , 𝑚, 0 ≤ 𝑡 ≤ 1, and 𝐷𝛼𝑖 is
derivative of order 𝛼

𝑖
in the sense of Caputo and𝑚−1 < 𝛼

𝑖
≤

𝑚, subject to the initial conditions:

𝑥
(𝑗)

𝑖
(𝑎) = 𝑎

𝑗𝑖
, 𝑗 = 0, 1, . . . , 𝑚 − 1, 𝑖 = 1, 2, . . . , 𝑛, 𝑎 ≥ 0.

(2)

In the last two decades, fractional calculus has found
diverse applications in various scientific and technologi-
cal fields [1, 2], such as thermal engineering, acoustics,

electromagnetism, control, robotics, viscoelasticity, diffu-
sion, edge detection, turbulence, signal processing, and
many other physical and biological processes. Fractional dif-
ferential equations have also been applied in modeling
many physical and engineering problems. Most systems of
fractional integrodifferential equations do not have exact
solutions, so numerical techniques are used to solve such
systems. The homotopy perturbation method, the Adomian
decomposition method, and other methods are used to give
an approximate solution to linear and nonlinear problems;
see [3–13] and the references therein.

In our previous work [14], we proposed a reproducing
kernel Hilbert space method for solving integrodifferential
equations of fractional order based on the reproducing kernel
theory [14, 15]. In this paper, we will generalize the idea of
the RKHSM to provide a numerical solution for systems of
fractional integrodifferential equations (1). To demonstrate
the effectiveness of the RKHSM algorithm, several numerical
experiments of linear and nonlinear systems of fractional
equations (1) will be presented.

This paper is organized as follows. An introduction of the
algorithm for solving systems of fractional integrodifferential
equations is given in Section 2. In Section 3, we introduce
several examples to show the efficiency of themethod. Finally,
a conclusion is given in Section 4.
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2. The Algorithm

After homogenizing the initial conditions (2), we apply the
operator 𝐼𝛼𝑖 , the Riemann-Liouville fractional integral of
order 𝛼

𝑖
[2, 16–20], to both sides of (1) to have

𝑥
𝑖
(𝑡) = 𝑀

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (3)

where
𝑀
𝑖
(𝑡)

= 𝐼
𝛼𝑖 (𝐹
𝑖
(𝑡, 𝑥
1
(𝑡) , . . . , 𝑥

(𝑘)

1
(𝑡) , . . . , 𝑥

𝑖−1
(𝑡) , . . . , 𝑥

(𝑘)

𝑖−1
(𝑡) ,

𝑥
𝑖+1
(𝑡) , . . . , 𝑥

(𝑘)

𝑖+1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , . . . , 𝑥

(𝑘)

𝑛
(𝑡))

+ ∫

𝑡

0

𝐺
𝑖
(𝑡, 𝜏, 𝑥

1
(𝜏) , . . . , 𝑥

(𝑘)

1
(𝜏) , . . . , 𝑥

𝑛
(𝜏) ,

. . . , 𝑥
(𝑘)

𝑛
(𝜏)) 𝑑𝜏) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 0, 1, . . . , 𝑚.

(4)

It is clear that (3) is equivalent to (1), so every solution
of the integral equation (3) is also a solution of our original
problem (1) and vice versa.

To solve (3) by means of the reproducing kernel Hilbert
space method, first, we need to construct a reproducing
kernel of certain spaces𝑊𝑚+1

2
[𝑎, 𝑏] := {𝑢 | 𝑢

(𝑗) is absolutely
continuous, 𝑗 = 1, 2, . . . , 𝑚 − 1, and 𝑢(𝑚) ∈ 𝐿2[𝑎, 𝑏]} in which
every function satisfies the homogenous initial conditions of
(1).

(i) The inner product of the space 𝑊1
2
[0, 1] = {𝑢 | 𝑢

is absolutely continuous real value function, 𝑢󸀠 ∈
𝐿
2

[0, 1]} is given by

⟨𝑢, V⟩
𝑊
1

2

:= ∫

1

0

(𝑢 (𝑡) V (𝑡) + 𝑢󸀠 (𝑡) V󸀠 (𝑡)) 𝑑𝑡 (5)

and norm ||𝑢||
𝑊
1

2

= √⟨𝑢, 𝑢⟩
𝑊
1

2

.

In [21], Li and Cui proved that𝑊1
2
[0, 1] is a reproduc-

ing kernel Hilbert space and its reproducing kernel is
given by

𝑅 (𝑥, 𝑦) :=
1

2 sinh 1

× [cosh (𝑥 + 𝑦 − 1) + cosh 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 − 1] .

(6)

(ii) The inner product of the space𝑊2
2
[0, 1] = {𝑢 | 𝑢, 𝑢

󸀠

are absolutely continuous real value functions, 𝑢󸀠󸀠 ∈
𝐿
2

[0, 1], 𝑢(0) = 0} is given by

⟨𝑢, V⟩
𝑊
2

2

:= 𝑢 (0) V (0) + 𝑢󸀠 (0) V󸀠 (0)

+ ∫

1

0

𝑢
󸀠󸀠

(𝑡) V󸀠󸀠 (𝑡) 𝑑𝑡
(7)

and norm ||𝑢||
𝑊
2

2

= √⟨𝑢, 𝑢⟩
𝑊
2

2

. 𝑊2
2
[0, 1] is a repro-

ducing kernel Hilbert space and its reproducing
kernel is given by

𝑆 (𝑥, 𝑦) :=

{{{

{{{

{

1

6
𝑦 (−𝑦

2

+ 3𝑥 (2 + 𝑦)) , 𝑦 ≤ 𝑥

1

6
𝑥 (−𝑥

2

+ 3𝑦 (2 + 𝑥)) , 𝑦 > 𝑥.

(8)

(iii) The inner product of the space 𝑊3
2
[0, 1] = {𝑢 |

𝑢, 𝑢
󸀠

, 𝑢
󸀠󸀠 are absolutely continuous real value func-

tions, 𝑢󸀠󸀠󸀠 ∈ 𝐿2[0, 1], 𝑢(0) = 𝑢󸀠(0) = 0} is given by

⟨𝑢, V⟩
𝑊
3

2

:=

2

∑

𝑖=0

𝑢
(𝑖)

(0) V(𝑖) (0) + ∫
1

0

𝑢
󸀠󸀠󸀠

(𝑡) V󸀠󸀠󸀠 (𝑡) 𝑑𝑡 (9)

and norm ||𝑢||
𝑊
3

2

= √⟨𝑢, 𝑢⟩
𝑊
3

2

. 𝑊3
2
[0, 1] is a

reproducing kernel Hilbert space and its reproducing
kernel is given by

𝑀(𝑥, 𝑦) := {
𝑓 (𝑥, 𝑦) , 𝑦 ≤ 𝑥

𝑓 (𝑦, 𝑥) , 𝑦 > 𝑥,
(10)

where 𝑓(𝑥, 𝑦) = (1/120)𝑦2(−𝑥2(−126 + 10𝑥 − 5𝑥2 + 𝑥3) +
5(−1 + 𝑥)𝑥𝑦

2

− (−1 + 𝑥
2

)𝑦
3

).
The method of obtaining the reproducing kernel can be

found in [15].
Let 𝐿

𝑖
: 𝑊
𝑚+1

2
[0, 1] → 𝑊

1

2
[0, 1] such that 𝐿

𝑖
𝑥
𝑖
(𝑡) =

𝑥
𝑖
(𝑡). Then 𝐿

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are bounded linear operators.

Let {𝑡
𝑗
}
∞

𝑗=1

be a countable dense set in [0, 1]. Let 𝜑𝑖
𝑗
(𝑡) =

𝑅(𝑡
𝑗
, 𝑡) and 𝜓𝑖

𝑗
(𝑡) = 𝐿

∗

𝑖
𝜑
𝑖

𝑗
(𝑡), where 𝐿∗

𝑖
is the adjoint operator

of 𝐿
𝑖
.
By Gram-Schmidt process we can construct an orthonor-

mal system {𝜓𝑖
𝑗
(𝑡)}
∞

𝑗=1

of𝑊𝑚+1
2
[0, 1], where

𝜓
𝑖

𝑗
(𝑡) =

𝑗

∑

𝑘=1

𝛽
𝑖

𝑗𝑘
𝜓
𝑖

𝑘
(𝑡) , 𝛽

𝑖

𝑗𝑗
> 0,

∀𝑗 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛.

(11)

Theorem 1. Let {𝑡
𝑗
}
∞

𝑗=1
be a dense set in [0, 1]. Then {𝜓𝑖

𝑗
(𝑡)}
∞

𝑗=1

is a complete system of𝑊𝑚+1
2
[0, 1].

For the proof, see [14].

Theorem 2. Let {𝑡
𝑗
}
∞

𝑗=1
be a dense set in [0, 1] and the solution

of (3) is unique on𝑊𝑚+1
2
[0, 1].Then the solution of (3) is given

by 𝑥
𝑖
(𝑡) = ∑

∞

𝑗=1
𝐴
𝑗
𝜓
𝑖

𝑗
(𝑡), where 𝐴

𝑗
= ∑
𝑗

𝑘=1
𝛽
𝑖

𝑗𝑘
𝑀
𝑖
(𝑡
𝑘
).

For the proof, see [14].
One can get an approximate solution 𝑥

𝑖𝑛
(𝑡) by taking

finitely many terms in the series representation of 𝑥
𝑖
(𝑡) and

𝑥
𝑖𝑛
(𝑡) = ∑

𝑛

𝑗=1
𝐴
𝑗
𝜓
𝑖

𝑗
(𝑡).

Since 𝑊
𝑚+1

2
[0, 1] is a Hilbert space, then

∑
∞

𝑗=1
∑
∞

𝑘=1
𝛽
𝑖

𝑗𝑘
𝑀
𝑖
(𝑡
𝑘
) < ∞.
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Figure 1: Graphical results for Example 1 when 𝛼
1
= 𝛼
2
= 𝛼 = 1, 0.9, 0.8, and 0.7.

Theorem 3. The approximate solution 𝑥
𝑖𝑛
(𝑡) and its deriva-

tives 𝑥(𝑗)
𝑖𝑛

are uniformly convergent to 𝑥(𝑗)
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 0, 1, . . ..

Proof. By the reproducing kernel property of 𝐾(𝑥, 𝑦) and
Schwarz inequality, we can obtain

󵄨󵄨󵄨󵄨𝑥𝑖𝑛 (𝑡) − 𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝑥
𝑖𝑛
(𝑡) − 𝑥

𝑖
(𝑡) , 𝐾 (𝑥, 𝑦)⟩

𝑊
𝑚+1

2

󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝐾 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩𝑊𝑚+1
2

󵄩󵄩󵄩󵄩𝑥𝑖𝑛 (𝑡) − 𝑥𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝑊𝑚+1
2

≤ 𝑐
0

󵄩󵄩󵄩󵄩𝑥𝑖𝑛 (𝑡) − 𝑥𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝑊𝑚+1
2

,

(12)

where 𝑐
0
is a constant.

By the representation of𝐾(𝑥, 𝑦) we can obtain

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑖𝑛
(𝑡) − 𝑥

(𝑗)

𝑖
(𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝑥
(𝑗)

𝑖𝑛
(𝑡) − 𝑥

(𝑗)

𝑖
(𝑡) , 𝐾

(𝑗)

(𝑥, 𝑦)⟩
𝑊
𝑚+1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝑗)

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩𝑊𝑚+1
2

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)

𝑖𝑛
(𝑡) − 𝑥

(𝑗)

𝑖
(𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩𝑊𝑚+1
2

.

(13)

Since 𝐾(𝑗)(𝑥, 𝑦), 𝑗 = 1, 2, . . ., is uniformly bounded about 𝑥
and 𝑦, we have

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝑗)

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩𝑊𝑚+1
2

≤ 𝑐
𝑗
, 𝑗 = 1, 2, . . . , (14)
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Figure 2: Graphical results for Example 2 when 𝛼
1
= 𝛼
2
= 𝛼 = 1, 0.9, 0.8, and 0.7.

and so

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑖𝑛
(𝑡) − 𝑥

(𝑗)

𝑖
(𝑡)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)

𝑖𝑛
(𝑡) − 𝑥

(𝑗)

𝑖
(𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩𝑊𝑚+1
2

,

𝑗 = 1, 2, . . . .

(15)

Thus 𝑥
𝑖
(𝑡) and its derivatives 𝑥(𝑗)

𝑖𝑛
(𝑡) are uniformly convergent

to 𝑥(𝑗)
𝑖
(𝑡), 𝑗 = 1, 2, . . ..

3. Numerical Results

In this paper, three numerical examples are given to show the
accuracy of this method.The computations are performed by
Mathematica 8.0.We compare the results by thismethodwith
the exact solution of each example.

Example 1. Consider the following linear system of fractional
integrodifferential equations:

𝐷
𝛼1𝑥 (𝑡) = 1 + 𝑡 + 𝑡

2

− 𝑦 (𝑡) − ∫

𝑡

0

(𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏,

𝐷
𝛼2𝑥 (𝑡) = −1 − 𝑡 + 𝑥 (𝜏) − ∫

𝑡

0

(𝑥 (𝜏) − 𝑦 (𝜏)) 𝑑𝜏,

𝑥 (0) = 1, 𝑦 (0) = −1, 0 < 𝛼
1
, 𝛼
2
≤ 1.

(16)

The exact solution for𝛼
1
= 𝛼
2
= 1 is𝑥(𝑡) = 𝑡+𝑒𝑡, 𝑦(𝑡) = 𝑡− 𝑒𝑡.

After homogenizing the initial conditions and using this
method, taking 𝑡

𝑖
= 𝑖/𝑛, 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 = 20, the graphs

of the approximate solutions for different values of 𝛼
1
and

𝛼
2
are plotted in Figure 1. From Figure 1, it is clear that the

approximate solutions are in good agreement with the exact
solutions when 𝛼

1
= 𝛼
2
= 1, and the solution continuously

depends on the fractional derivative.
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Figure 3: Graphical results for Example 3 when 𝛼
1
= 𝛼
2
= 𝛼 = 2, 1.9, 1.8, and 1.7.

Example 2. Consider the following nonlinear system of
fractional integrodifferential equations:

𝐷
𝛼1𝑥 (𝑡) = 1 −

1

2
𝑦
󸀠
2

(𝑡) + ∫

𝑡

0

[(𝑡 − 𝜏) 𝑦 (𝜏) + 𝑥 (𝜏) 𝑦 (𝜏)] 𝑑𝜏,

𝐷
𝛼2𝑥 (𝑡) = 2𝑡 + ∫

𝑡

0

[(𝑡 − 𝜏) 𝑥 (𝜏) − 𝑦
2

(𝜏) + 𝑥
2

(𝜏)] 𝑑𝜏,

𝑥 (0) = 0, 𝑦 (0) = 1, 0 < 𝛼
1
, 𝛼
2
≤ 1.

(17)

The exact solution for 𝛼
1
= 𝛼
2
= 1 is 𝑥(𝑡) = sinh 𝑡, 𝑦(𝑡) =

cosh 𝑡.
After homogenizing the initial conditions and using this

method, taking 𝑡
𝑖
= 𝑖/𝑛, 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 = 30, the graphs

of the approximate solutions for different values of 𝛼
1
and 𝛼

2

are plotted in Figure 2.

Example 3. Consider the following nonlinear system of
fractional integrodifferential equations:

𝐷
𝛼1𝑥 (𝑡) = 1 −

𝑡
3

3
−
1

2
𝑦
󸀠
2

(𝑡) +
1

2
∫

𝑡

0

(𝑥
2

(𝜏) + 𝑦
2

(𝜏)) 𝑑𝜏,

𝐷
𝛼2𝑥 (𝑡) = −1 + 𝑡

2

− 𝑡𝑥 (𝑡) +
1

4
∫

𝑡

0

(𝑥
2

(𝜏) − 𝑦
2

(𝜏)) 𝑑𝜏,

𝑥 (0) = 1, 𝑥
󸀠

(0) = 2, 𝑦 (0) = −1,

𝑦
󸀠

(0) = 0, 1 < 𝛼
1
, 𝛼
2
≤ 2.

(18)

The exact solution for 𝛼
1
= 𝛼
2
= 2 is 𝑥(𝑡) = 𝑡 + 𝑒3, 𝑦(𝑡) =

𝑡 − 𝑒
𝑡.
After homogenizing the initial conditions and using this

method, taking 𝑡
𝑖
= 𝑖/𝑛, 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 = 20, the graphs
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of the approximate solutions for different values of 𝛼
1
and 𝛼

2

are plotted in Figure 3.

4. Conclusion

In this paper, we introduce a new algorithm for solving sys-
tems of fractional integrodifferential equations. The approxi-
mate solution obtained by this method and its derivative are
both uniformly convergent.The obtained results demonstrate
the reliability of the algorithm and its wider applicability
to linear and nonlinear systems of fractional differential
equations.
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