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A discrete-time predator-prey model is proposed with Leslie-type numerical response, and the asymmetrical influence of Allee
effect on the proposed system is investigated. By mathematical analysis, locally stable conditions for the equilibrium points of the
considered systems with or without Allee effect are obtained firstly. Furthermore, numerical simulation is used to verify the results
and detect some new outcomes. The results show that Allee effect on predator leads the system to its stable state in much longer
time. Conversely, the prey population with Allee effect makes it much faster. In particular, a large value of Allee effect on prey results
in periodic dynamics of the system.

1. Introduction

In recent years, the Allee effect has drawn a considerable
attention in almost every aspect of ecology and conservation.
This effect, a reduction of individual fitness at low population
density, may come about through a number of mechanisms,
such as mate-search difficulty, increased predation risk due
to failing flocking or schooling behavior, or reduced foraging
efficiency in social predators [1–4]. StrongAllee effects lead to
threshold population densities, below which the population
growth is negative and the population is likely to go extinct
[5, 6]. Such effects may be observed on different organisms
including vertebrates, invertebrates, and plants. The effect
usually saturates or vanishes as the population size gets larger.
Although some work has shown that Allee effects might play
a stabilizing and protective role [7–10], most studies have
highlighted its negative impact on population persistence
[4, 5, 11–14].

Many investigators have explored the consequences and
the different ways of incorporating Allee effects into deter-
ministic continuous-time population models [15–19]. For
example, several recent papers have explored the role that
Allee effects played in competition and predator-prey interac-
tions. Wang et al. [15] highlighted that introducing an Allee

effect into a Lotka-Volterra competitor system would desta-
bilize it. Courchamp et al. [16] have shown that cooperative
species, because they are sensitive to an Allee effect, are
more sensitive to interactions with natural enemies such as
competitors or predators. Some studies have also shown that
structured prey populations and stage-specific predation lead
to Allee effects in the (top) predator population [17–19].

In this paper, we are interested in deterministic discrete-
time population models incorporating Allee effects. Consid-
ering many researches and studies in mathematical biology,
we can say that discrete-time models described by differ-
ence equations are more appropriate and realistic than the
continuous-time models in the case of populations having
distinct, nonoverlapping generations. In particular, discrete-
time models can also provide more efficient computational
models for numerical simulations and richer dynamics can
be observed from them. In two previous papers [20, 21], the
stability of a simple discrete-time predator-prey system with
Holling’s type I functional response is studied, while only the
prey obeys the Allee effect. However, Allee effect can occur
not only on prey but also on predator populations in real
ecosystems. If the predator and prey have the Allee effect
respectively, what will happen? For these issues, we propose
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a discrete-time Leslie-type predator-prey model and explore
the asymmetrical impact of Allee effect on that system.

This paper is organized as follows. In Section 2, we briefly
introduce the mathematical model which we will analyze
and obtain the local stability conditions for the equilibrium
points. After that, in Section 3, we study local behavior of the
equilibrium points when the predator and prey population
are subject to an Allee effect, respectively. In Section 4, some
numerical simulations are given and the asymmetrical impact
of Allee effect on the system is investigated. Finally, the last
section of the paper is devoted to the discussion and remarks.

2. The Mathematical Model and
Stability Analysis

We introduce the following discrete-time predator-prey sys-
tem:

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝑟𝑥
𝑛
(1 −

𝑥
𝑛

𝐾

) − 𝛼𝑥
𝑛
𝑦
𝑛
,

𝑦
𝑛+1

= 𝑦
𝑛
+ 𝛽𝑦
𝑛
(1 −

𝑦
𝑛

𝑥
𝑛

) ,

(1)

where 𝑟, 𝛼, and 𝛽 are positive constants, and 𝐾 is the
carrying capacity. The parameter 𝑟 is the maximal growth
rate of the prey, 𝛼 is the predation parameter, and 𝛽 is the
coefficient of food utilization. The variables 𝑥

𝑛
, 𝑦
𝑛
represent

the populations density of prey and its predator at the 𝑛th
generation, respectively. Here, the term 𝑥

𝑛
+ 𝑟𝑥
𝑛
(1 − 𝑥

𝑛
/𝐾)

stands for the increasing rate of the prey population in the
absence of predator, while the term 𝛼𝑥

𝑛
𝑦
𝑛
represents the

decreasing rate due to predation. Finally, the term 𝑦
𝑛
+

𝛽𝑦
𝑛
(1 − 𝑦

𝑛
/𝑥
𝑛
) stands for the variation of predator density

which depends on both the number of preys and predators.
The predator population grows logistically with a carrying
capacity, 𝑥

𝑛
, that is proportional to the number of prey.

This was firstly introduced by Leslie [22]. Notice that, if
the predator density disappears in this model, then the prey
density satisfies the discrete logistic-type model.

Next we will consider the local stability of the equilib-
rium points of system (1). To get this, firstly observe that
corresponding equilibrium points of system (1) are (𝐾, 0) and
(𝑥
∗

0
, 𝑦
∗

0
), where

𝑥
∗

0
= 𝑦
∗

0
=

𝑟𝐾

𝑟 + 𝛼𝐾

. (2)

Clearly, (𝑥∗
0
, 𝑦
∗

0
) is the unique positive equilibrium point of

system (1).
The Jacobianmatrix of system (1) at the equilibrium point

(𝐾, 0) is

𝐽
1

0
= (

1 − 𝑟 −𝛼

0 1 + 𝛽
) . (3)

Hence, (𝐾, 0) is not asymptotically stable. Usually, such a
point is called a nonhyperbolic equilibrium point.

For the positive equilibrium point (𝑥∗
0
, 𝑦
∗

0
), the Jacobian

matrix is given by

𝐽
2

0
= (

1 −

𝑟
2

𝑟 + 𝛼𝐾

−

𝛼𝑟𝐾

𝑟 + 𝛼𝐾

𝛽 1 − 𝛽

) . (4)

Then we have the corresponding characteristic equation to
the matrix 𝐽2

0
as follows:

Φ
0
(𝜆) = 𝜆

2

− (2 − 𝛽 −

𝑟
2

𝑟 + 𝛼𝐾

)𝜆 + 1 − 𝛽 −

𝑟
2

𝑟 + 𝛼𝐾

+ 𝛽𝑟.

(5)

It follows from the well-known Jury conditions (see in [23])
that the modulus of all roots of (5) is less than 1 if and only if

Φ
0
(1) > 0, Φ

0
(−1) > 0, det 𝐽2

0
< 1. (6)

Clearly, Φ
0
(1) = 𝛽𝑟 > 0 for any 𝛽, 𝑟 > 0. On the other

hand,Φ
0
(−1) > 0 holds if and only if 2(2−𝛽−𝑟2/(𝑟+𝛼𝐾))+

𝛽𝑟 > 0, which implies

𝑟

2

−

𝑟
2

𝛽 (𝑟 + 𝛼𝐾)

> 1 −

2

𝛽

. (7)

Again, the final inequality det 𝐽2
0
< 1 holds if and only if

1 − 𝛽 − 𝑟
2

/(𝑟 + 𝛼𝐾) + 𝛽𝑟 < 1, which is equivalent to

𝑟 −

𝑟
2

𝛽 (𝑟 + 𝛼𝐾)

< 1. (8)

Now combining (7) and (8), we can get the following
conclusion.

Theorem 1. The positive equilibrium point (𝑥∗
0
, 𝑦
∗

0
) of system

(1) is locally asymptotically stable if

1 +

𝑟

2

−

2

𝛽

< 𝑟 −

𝑟
2

𝛽 (𝑟 + 𝛼𝐾)

< 1. (9)

The following result is an immediate consequence of
Theorem 1.

Corollary 2. The positive equilibrium point (𝑥∗
0
, 𝑦
∗

0
) of system

(1) is unstable if and only if

1 −

2

𝛽

>

𝑟

2

−

𝑟
2

𝛽 (𝑟 + 𝛼𝐾)

or 𝑟 −

𝑟
2

𝛽 (𝑟 + 𝛼𝐾)

> 1. (10)

3. Asymmetrical Allee Effect

3.1. Allee Effect on Predator Population. Many predators may
be easier to experience an Allee effect because a low number
of viable hunters will suffer ineffectiveness in predation [24].
In order to show the influence of Allee effect on the dynamics
of system (1), we consider the system as subjecting to an Allee
effect on predator population and obtain the followingmodel:

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝑟𝑥
𝑛
(1 −

𝑥
𝑛

𝐾
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𝑛
𝑦
𝑛
,

𝑦
𝑛+1

= 𝑦
𝑛
+ 𝛽𝑦
𝑛
(

𝑦
𝑛

𝑦
𝑛
+ 𝑢
1

−

𝑦
𝑛

𝑥
𝑛

) ,

(11)
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where𝑦
𝑛
/(𝑦
𝑛
+𝑢
1
) denotes the predator with the “weak” Allee

effect, and 𝑢
1
the Allee constant satisfying the assumption

0 < 𝑢
1
< 𝐾. (12)

All the equilibrium points of system (11) are (𝐾, 0) and
(𝑥
∗

𝑢
1

, 𝑦
∗

𝑢
1

), where

𝑥
∗

𝑢
1

=

𝐾 (𝑟 + 𝛼𝑢
1
)

𝑟 + 𝛼𝐾

, 𝑦
∗

𝑢
1

=

𝑟 (𝐾 − 𝑢
1
)

𝑟 + 𝛼𝐾

. (13)

Under the above assumption, the predator-prey system
(11) has unique positive equilibrium point (𝑥∗

𝑢
1

, 𝑦
∗

𝑢
1

). It is clear
that 𝑥∗

𝑢
1

> 𝑥
∗

0
and 𝑦∗

𝑢
1

< 𝑦
∗

0
.

We can easily see that (𝐾, 0) is also a nonhyperbolic
equilibrium point of system (11). Next, we will focus on the
positive equilibrium point (𝑥∗

𝑢
1

, 𝑦
∗

𝑢
1

). The Jacobian matrix is

𝐽
𝑢
1

= (

1 −

𝑟

𝐾

𝑥
∗

𝑢
1

−𝛼𝑥
∗

𝑢
1

𝛽(1 −

𝑢
1

𝑥
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𝑢
1

)

2

1 − 𝛽(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2
). (14)

Thus the matrix 𝐽
𝑢
1

yields the characteristic equation

Φ
𝑢
1
(𝜆) = 𝜆

2

− (tr 𝐽
𝑢
1

) 𝜆 + det 𝐽
𝑢
1

= 0, (15)

where

tr 𝐽
𝑢
1

= 2 −

𝑟

𝐾

𝑥
∗

𝑢
1

− 𝛽(1 −

𝑢
1

𝑥
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𝑢
1

)

2

,

det 𝐽
𝑢
1

= 1 −

𝑟

𝐾

𝑥
∗

𝑢
1

− 𝛽(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

+

𝛽 (𝑟 + 𝛼𝐾)

𝐾

𝑥
∗

𝑢
1

(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

.

(16)

According to the Jury conditions we obtain that the
modulus of all roots of (15) is less than 1 which implies
the equilibrium point (𝑥∗

𝑢
1

, 𝑦
∗

𝑢
1

) is asymptotically stable if
Φ
𝑢
1

(1) > 0, Φ
𝑢
1

(−1) > 0, and det 𝐽
𝑢
1

< 1.
Firstly, Φ

𝑢
1

(1) > 0 holds for any positive parament of
system (11), since

Φ
𝑢
1
(1) =

𝛽 (𝑟 + 𝛼𝐾)

𝐾

𝑥
∗

𝑢
1

(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

. (17)

Again, under the assumption 0 < 𝑢
1
< 𝐾, Φ

𝑢
1

(−1) > 0

holds if

2 [2 −

𝑟

𝐾

𝑥
∗

𝑢
1

− 𝛽(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

]

+

𝛽 (𝑟 + 𝛼𝐾)

𝐾

𝑥
∗

𝑢
1

(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

> 0,

(18)

that is

1 −

2

𝑟 + 𝛼𝑢
1

> [

𝑟 (𝑟 + 𝛼𝑢
1
)

𝑟 + 𝛼𝐾

− 2]

2𝐾
2

(𝑟 + 𝛼𝑢
1
)

𝛽𝑟
2
(𝐾 − 𝑢

1
)
2
. (19)

Finally, det 𝐽
𝑢
1

< 1 holds if

1 −

𝑟

𝐾

𝑥
∗

𝑢
1

− 𝛽(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

+

𝛽 (𝑟 + 𝛼𝐾)

𝐾

𝑥
∗

𝑢
1

(1 −

𝑢
1

𝑥
∗

𝑢
1

)

2

< 1,

(20)

that is

1 −

1

𝑟 + 𝛼𝑢
1

<

𝐾
2

(𝑟 + 𝛼𝑢
1
)
2

𝛽𝑟 (𝑟 + 𝛼𝐾) (𝐾 − 𝑢
1
)
2
. (21)

Now we obtain the following conclusion.

Theorem 3. Assuming that 0<𝑢
1
<𝐾, the positive equilibrium

point (𝑥∗
𝑢
1

, 𝑦
∗

𝑢
1

) of system (11) is locally asymptotically stable if
the conditions (19) and (21) are satisfied.

The next result is an immediate consequence of
Theorem 3.

Corollary 4. The positive equilibrium point (𝑥∗
𝑢
1

, 𝑦
∗

𝑢
1

) of sys-
tem (11) is unstable if and only if

1 −

2

𝑟 + 𝛼𝑢
1

< [

𝑟 (𝑟 + 𝛼𝑢
1
)

𝑟 + 𝛼𝐾

− 2]

2𝐾
2

(𝑟 + 𝛼𝑢
1
)

𝛽𝑟
2
(𝐾 − 𝑢

1
)
2

(22)

or

1 −

1

𝑟 + 𝛼𝑢
1

>

𝐾
2

(𝑟 + 𝛼𝑢
1
)
2

𝛽𝑟 (𝑟 + 𝛼𝐾) (𝐾 − 𝑢
1
)
2
. (23)

When the predator is with Allee effect, the predator will
decrease and the prey will increase. According to Theorem 3
and Corollary 4, the predator must improve rates of their
predation and food utilization to avoid extinction (see
Figure 1(a)). The predator and prey would coexist when all
parameters of the system satisfy Theorem 3.

3.2. Allee Effect on Prey Population. Because of difficulties
in finding mates, social dysfunctions, inbreeding depression,
and dispersal cost, the prey is usually suffered from Allee
effect [5, 25]. In this section, we will consider the predator-
prey system (11) as subject to an Allee effect on prey popula-
tion and analyze the following system:

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝑟𝑥
𝑛
(1 −

𝑥
𝑛

𝐾

)

𝑥
𝑛

𝑥
𝑛
+ 𝑢
2

− 𝛼𝑥
𝑛
𝑦
𝑛
,

𝑦
𝑛+1

= 𝑦
𝑛
+ 𝛽𝑦
𝑛
(1 −

𝑦
𝑛

𝑥
𝑛

) ,

(24)

where we take 𝑥
𝑛
/(𝑥
𝑛
+ 𝑢
2
) as the Allee effect function and

𝑢
2
as the Allee constant satisfying the assumption

0 < 𝑢
2
<

𝑟

𝛼

. (25)
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Figure 1: Compare the parameter regions of coexistence when the predator and prey are with Allee effect (shaded area) with those when they
are without Allee effect, respectively. The area between lines a and b is the regions of coexistence when the predator-prey system is without
Allee effect. (a) The situation of the predator with Allee effect. Parameter values are 𝑟 = 10,𝐾 = 100, and 𝑢

1
= 6; (b) the situation of the prey

with Allee effect. Parameter values are 𝑟 = 0.1, 𝐾 = 100, and 𝑢
2
= 6.

Then we have two equilibrium points of system (24) as
(𝐾, 0) and (𝑥∗

𝑢
2

, 𝑦
∗

𝑢
2

), where

𝑥
∗

𝑢
2

= 𝑦
∗

𝑢
2

=

𝐾 (𝑟 − 𝛼𝑢
2
)

𝑟 + 𝛼𝐾

. (26)

Clearly, the equilibrium point (𝐾, 0) is a nonhyperbolic
equilibrium point of system (24).

Under the assumption (25), the predator-prey system (24)
has unique positive equilibriumpoint (𝑥∗

𝑢
2

, 𝑦
∗

𝑢
2

). It is clear that
𝑥
∗

𝑢
2

< 𝑥
∗

0
and 𝑦∗

𝑢
2

< 𝑦
∗

0
. After some simple calculations, the

Jacobian matrix of (24) turns out to be

𝐽
𝑢
2

= (

1 − 𝜔𝑥
∗

𝑢
2

−𝛼𝑥
∗

𝑢
2

𝛽 1 − 𝛽

) , (27)

where

𝜔 =

𝑟 − 𝛼𝑢
2

𝑢
2
+ 𝐾

−

𝛼𝑢
2
(𝑟 + 𝛼𝐾)

𝑟 (𝑢
2
+ 𝐾)

. (28)

Then the characteristic equation of matrix 𝐽
𝑢
2

is

Φ
𝑢
2
(𝜆) = 𝜆

2

− (tr 𝐽
𝑢
2

) 𝜆 + det 𝐽
𝑢
2

= 0, (29)

where
tr 𝐽
𝑢
2

= 2 − 𝛽 − 𝜔𝑥
∗

𝑢
2

,

det 𝐽
𝑢
2

= 1 − 𝛽 − 𝜔𝑥
∗

𝑢
2

+ 𝛽 (𝛼 + 𝜔) 𝑥
∗

𝑢
2

.

(30)

Again, by using the Jury conditions we obtain that the
equilibrium point (𝑥∗

𝑢
2

, 𝑦
∗

𝑢
2

) is asymptotically stable if and
only if Φ

𝑢
2

(1) > 0, Φ
𝑢
2

(−1) > 0 and det 𝐽
𝑢
2

< 1.
We first obtain thatΦ

𝑢
1

> 0 if and only if 𝛽(𝛼+𝜔)𝑥∗
𝑢
2

> 0,
and this implies 𝛼 + 𝜔 > 0. Now assume the following
function:

𝜑 (𝑢
2
) = 𝛼 + 𝜔 =

(𝑟 + 𝛼𝐾) (𝑟 − 𝛼𝑢
2
)

𝑟 (𝐾 + 𝑢
2
)

, 𝑢
2
∈ [0,

𝑟

𝛼

] . (31)

Since

𝜑
󸀠

(𝑢
2
) = −

(𝑟 + 𝛼𝐾)
2

𝑟(𝐾 + 𝑢
2
)
2
< 0, (32)

𝜑 is a strictly decreasing function on [0, 𝑟/𝛼]. Thus, 𝜑 attains
itsminimumvalue at𝑢

2
= 𝑟/𝛼. Since𝜑(𝑟/𝛼) = 0, we conclude

that

𝛼 + 𝜔 > 0 ∀𝑢
2
∈ (0,

𝑟

𝛼

) . (33)

So Φ
𝑢
2

(1) > 0 if and only if the condition (25) is satisfied.
Again,

Φ
𝑢
2
(−1) > 0 ⇐⇒ 2 (2 − 𝛽 − 𝜔𝑥

∗

𝑢
2

) + 𝛽 (𝛼 + 𝜔) 𝑥
∗

𝑢
2

> 0

⇐⇒

𝛼𝐾(𝑟 − 𝛼𝑢
2
)

𝛽 (𝑟 + 𝛼𝐾)

+ (

1

𝛽

−

1

2

)

×

𝐾(𝑟 − 𝛼𝑢
2
)
2

𝑟 (𝐾 + 𝑢
2
)

> 1 −

2

𝛽

,

det 𝐽
𝑢
2

< 1 ⇐⇒ 1 − 𝛽 − 𝜔𝑥
∗

𝑢
2

+𝛽 (𝛼 + 𝜔) 𝑥
∗

𝑢
2

⇐⇒

𝛼𝐾(𝑟 − 𝛼𝑢
2
)

𝛽 (𝑟 + 𝛼𝐾)

+(

1

𝛽

−1)

𝐾(𝑟 − 𝛼𝑢
2
)
2

𝑟 (𝐾 + 𝑢
2
)

< 1.

(34)

Now considering (34), we can get the following results.

Theorem 5. Assuming that 0 < 𝑢
2
< 𝑟/𝛼, the positive equi-

librium point (𝑥∗
𝑢
2

, 𝑦
∗

𝑢
2

) of system (24) is locally asymptotically
stable if

1 −

2

𝛽

+

𝐾(𝑟 − 𝛼𝑢
2
)
2

2𝑟 (𝐾 + 𝑢
2
)

<

𝛼𝐾 (𝑟 − 𝛼𝑢
2
)

𝛽 (𝑟 + 𝛼𝐾)

+ (

1

𝛽

− 1)

𝐾(𝑟 − 𝛼𝑢
2
)
2

𝑟 (𝐾 + 𝑢
2
)

< 1.

(35)



Journal of Applied Mathematics 5

0 50 100 150
20

25

30

35

Time

D
en

sit
ie

s

(a)

0 50 100 150 200
20

25

30

35

Time

D
en

sit
ie

s
(b)

Figure 2: Typical examples of predator (∇) and prey (∘) population dynamics. Allee effect of predator (or prey) starts to occur at 𝑡 = 50. (a)
Predator with Allee effect, and (b) prey with Allee effect. Before the Allee effect (𝑡 < 50), the system stays in steady state. Parameter values:
𝑟 = 0.8, 𝛼 = 0.02, 𝛽 = 0.09, 𝐾 = 100, and 𝑢

1
= 𝑢
2
= 5.

The next result is an immediate consequence of
Theorem 5.

Corollary 6. The positive equilibrium point (𝑥∗
𝑢
2

, 𝑦
∗

𝑢
2

) of sys-
tem (11) is unstable if and only if

1 −

2

𝛽

>

𝛼𝐾 (𝑟 − 𝛼𝑢
2
)

𝛽 (𝑟 + 𝛼𝐾)

+ (

1

𝛽

−

1

2

)

𝐾(𝑟 − 𝛼𝑢
2
)
2

𝑟 (𝐾 + 𝑢
2
)

(36)

or

𝛼𝐾 (𝑟 − 𝛼𝑢
2
)

𝛽 (𝑟 + 𝛼𝐾)

+ (

1

𝛽

− 1)

𝐾(𝑟 − 𝛼𝑢
2
)
2

𝑟 (𝐾 + 𝑢
2
)

> 1. (37)

When the prey is with Allee effect, both densities of
prey and predator will decrease. According to Theorem 5
and Corollary 6, decrease of the rates of prey predation and
food utilization is the way of the predator and prey to keep
coexistence (see Figure 1(b)).

4. Numerical Simulations and Analysis

In this section, some numerical simulations are performed to
verify our theoretical results showed in the previous sections
and further analyze the asymmetrical influence of Allee effect
on the predator-prey system.We used theMATLAB for these
computations. Mainly, we show the asymmetrical impact of
Allee effect on the predator-prey system in the following three
ways: (i) both specieswithoutAllee effect (model (1)), (ii) only
predatorwithAllee effect (model (11)), and (iii) only preywith
Allee effect (model (24)).

We assume that𝐾 = 100 throughout this section.
Typical population dynamics are shown in Figure 2,

where (a) and (b) denote the cases that the predator species
and prey start to be with Allee effect at 𝑡 = 50, respectively.
Before the Allee effect, the system stays in steady state.
Figure 2 exhibits the asymmetrical influence of Allee effect
between prey and predator. It is found from Figure 2(a) that
the density of prey species increases and predator decreases
in the final equilibrium by the Allee effect in predator (model
(11), 𝑢

1
= 5). In contrast, when the prey species obeys the

Allee effect (model (24), 𝑢
2
= 5), then both species finally

decrease their population size (see Figure 2(b)).
In Figure 3, we illustrate the trajectories of predator and

prey densities in systems (1), (11), and (24). Here (a1) and
(b1) show the trajectories of predator and prey densities in
models (1), (a2), and (b2) correspond to model (24) that
the predator is subject to the Allee effect; however, (a3) and
(b3) correspond to model (11) that the prey is subject to
the Allee effect. We use 𝑟 = 0.7, 𝛼 = 0.05, 𝛽 = 0.6,
𝑢
1
= 𝑢
2
= 5, and the initial conditions 𝑥

0
= 25, 𝑦

0
=

15 in Figure 3(a1–a3). We see from Figure 3(a1–a3), that,
when the predator population is subject to an Allee effect,
the local stability of the equilibrium point decreases and
it takes a long time to approximate to the corresponding
equilibrium point, while the prey population obeys an Allee
effect, the local stability of the equilibriumpoint increases and
trajectory of the solution approximates to the corresponding
equilibrium point much faster. Furthermore, Figure 3(b1–b3)
presents peculiar trajectories of predator and prey population
by taking 𝑟 = 3, 𝛼 = 0.04, 𝛽 = 0.04, 𝑢

1
= 𝑢
2
= 8,

and the initial conditions 𝑥
0

= 30, 𝑦
0

= 20. we find
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Figure 3: The trajectories of the prey and predator population described by model (1) ((a1) and (b1)), model (11) ((a2) and (b2)), and model
(24) ((a3) and (b3)). Parameter values: (a1–a3): 𝑟 = 0.7, 𝛼 = 0.05, 𝛽 = 0.6, 𝐾 = 100; 𝑢

1
= 𝑢
2
= 5, 𝑥

0
= 25, and 𝑦

0
= 15; (b1–b3): 𝑟 = 3,

𝛼 = 0.04, 𝛽 = 0.04, 𝐾 = 100, 𝑢
1
= 𝑢
2
= 8, 𝑥

0
= 30, and 𝑦

0
= 20.
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Figure 4: The population dynamics of the prey-predator system with and without Allee effect. ((a1) and (b1)) Without Allee effect, ((a2) and
(b2)) predator with Allee effect, and ((a3) and (b3)) prey with Allee effect. All parameter values are the same as Figure 2.

that the population dynamics of system (1) become more
oscillated and complicated when the predator is with Allee
effect. However, when the prey is subject to Allee effect, the
system becomes more stable.

The corresponding population dynamics (time versus
population) of systems (1), (11), and (24) are shown in
Figure 4. The paraments are the same as Figure 3. We can
clearly conclude that the predator with Allee effect retards the
time of system to reach the corresponding equilibrium point,
while the prey with Allee effect makes it much faster.

However, when the prey is with too large value of Allee
effect (𝑢

2
= 18 in Figure 5(a) and 𝑢

2
= 23 in Figure 5(b)),

there exists the limited cycle in system (24). In order to obtain
a more systematic investigation of system (24), we proceeded
to construct bifurcation diagrams of the maximum densities
of predator and prey versus 𝑢

2
and 𝑟, respectively. To do this

we first integrated the system numerically with 𝑟 = 3, 𝛼 =

0.04, and 𝛽 = 0.04. According to Theorem 1, the equilibrium
point (𝑥∗

0
, 𝑦
∗

0
) of system (1) is asymptotically stable. Letting

the system (24) approach the attractor for each value of 𝑢
2
, we

then plotted successive maxima of both species as a function
of 𝑢
2
.The resulting bifurcation diagram is plotted in Figure 5.

It provides evidence for a qualitative change in the steady state

to periodic dynamics and finally to chaotic dynamics as 𝑢
2
is

increased.
To construct bifurcation diagrams of the maximum value

of prey and predator versus 𝑟, we do almost the same work
as done to obtain those of both species versus 𝑢

2
(Figure 6),

except successive maximum densities of predator and prey
are plotted of a function of 𝑟 for 𝛼 = 0.03, 𝛽 = 0.1, and
𝑢
2
= 18. Then the periodic dynamics when 0.7 < 𝑟 < 1.8

are showed in Figure 7.

5. Discussion

For many years, Allee concept was mentioned as a minor
topic in most ecology textbooks but never given very much
importance. Over the last two decades, however, Allee con-
cepts began to surface from obscurity with emerging interest
in conservation biology and biological invasions. Ecologists
started to ponder the dynamics of low-density populations
and found that Allee effects can create thresholds below
which populations decline toward extinction [5, 6]. It became
apparent that Allee effects are prevalent in low-density
populations, arising from amultitude of causes such as mate-
location failure, lack of predator satiation, and inability to
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Figure 5:The phase portrait of system (24) by using the initial conditions 𝑥
0
= 30, 𝑦

0
= 20. There is a periodic solution when the prey obeys

the Allee effect which gets to a large value. Parameter values: (a) 𝑟 = 0.7, 𝛼 = 0.03, 𝛽 = 0.1, 𝐾 = 100, and 𝑢
2
= 18; (b) 𝑟 = 3, 𝛼 = 0.04,

𝛽 = 0.04, 𝐾 = 100, and 𝑢
2
= 23.
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Figure 6: Bifurcation diagrams of predator and prey densities in model (24) with the initial conditions 𝑥
0
= 30, 𝑦

0
= 20 and the parameter

values 𝑟 = 3, 𝛼 = 0.04, 𝛽 = 0.04, and 𝐾 = 100.

engage in group feeding. We now know that Allee effects
are critical to understanding the dynamics and persistence of
both endangered and invading populations [5, 26, 27].

Previous studies demonstrated that Allee effects play an
important role in the stability analysis of equilibrium points

of a population dynamics model. An Allee effect may have a
stabilizing or a destabilizing effect on population dynamics
[5, 7–12, 14]. Even if the system is stable at an equilibrium
point, the system subject to anAllee effectmay reach its stable
state in much longer time.
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Figure 7: Bifurcation diagrams of predator and prey densities in model (24) with the initial conditions 𝑥
0
= 30, 𝑦

0
= 20 and the parameter

values 𝛼 = 0.03, 𝛽 = 0.1, 𝐾 = 100, and 𝑢
2
= 18.

This paper focused on the asymmetrical influence of
Allee effect on two interacting species, each with nonover-
lapping generations. By combining mathematical analysis
and numerical simulation, we attempt to clarify the overall
characteristics of such systems with and without Allee effect.
When the predator obeys Allee effect, the predator-prey
system will take longer time to approach the steady state
and become more complicated, which is in agreement with
that of Zhou et al. [14]. However, when the prey population
is with Allee effect, the system may reach the equilibrium
point much faster. Here, an increase in stability refers to the
case that the system with Allee effect approximates to the
equilibrium point much faster than that without it. Clearly, in
our system, Allee effects not only stabilize but also destabilize
the population dynamics, which is in disagreement with
previous work [10, 14, 18–21]. The impact of the Allee
effect on the stability of population models shows different
dynamics when the corresponding model is difference. We
study the predator and prey subject to Allee effect in the same
system, respectively, and conclude that the Allee effect has a
stabilizing or a destabilizing effect also depending on which
species of the interacting system obeys it.

The asymmetrical Allee effects have an important influ-
ence on interacting species. Compared the dynamics when
the Allee effect on predator with that on prey, we obtain
successive new conclusions as follow.

(1) When the predator is with Allee effect, the density of
prey species increases and predator decreases in the
final equilibrium. The system reaches the stable state
in much longer time and the dynamics of it become
oscillated and complicated.

(2) When the prey is with Allee effect, both species
finally decrease their population densities.The system

approaches the stable state much faster. However, a
large value of Allee effect on prey results in periodic
dynamics which is in disagreement with the results
obtained by previous researchers [5, 11, 14].

In this paper, we investigated theAllee effectwhich occurs
on the predator and prey population, respectively.However, it
may be a very complicated structure when both populations
are subject to an Allee effect in our system. Thus, in the
future studies, it would be very interesting to improve such
structures.
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