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From the viewpoint of operator theory, we deal with the temperature dependence of the solution to the BCS gap equation for
superconductivity. When the potential is a positive constant, the BCS gap equation reduces to the simple gap equation. We first
show that there is a unique nonnegative solution to the simple gap equation, that it is continuous and strictly decreasing, and that it
is of class 𝐶2 with respect to the temperature. We next deal with the case where the potential is not a constant but a function. When
the potential is not a constant, we give another proof of the existence and uniqueness of the solution to the BCS gap equation, and
show how the solution varies with the temperature. We finally show that the solution to the BCS gap equation is indeed continuous
with respect to both the temperature and the energy under a certain condition when the potential is not a constant.

1. Introduction

We use the unit 𝑘
𝐵

= 1, where 𝑘
𝐵
stands for the Boltzmann

constant. Let 𝜔
𝐷

> 0 and 𝑘 ∈ R3 stand for the Debye fre-
quency and the wave vector of an electron, respectively. Let
ℎ > 0 be Planck’s constant, and set ℎ = ℎ/(2𝜋). Let𝑚 > 0 and
𝜇 > 0 stand for the electron mass and the chemical potential,
respectively. We denote by 𝑇(≥ 0) the absolute temperature,
and by 𝑥 the kinetic energy of an electronminus the chemical
potential; that is,𝑥 = ℎ

2
|𝑘|
2
/(2𝑚)−𝜇. Note that 0 < ℎ𝜔

𝐷
≪ 𝜇.

In the BCSmodel [1, 2] of superconductivity, the solution
to the BCS gap equation (1) is called the gap function. The
gap function corresponds to the energy gap between the
superconducting ground state and the superconducting first
excited state. Accordingly, the value of the gap function (the
solution) is nonnegative. We regard the gap function as a
function of both 𝑇 and 𝑥 and denote it by 𝑢; that is, 𝑢 :

(𝑇, 𝑥) 󳨃→ 𝑢(𝑇, 𝑥) (≥ 0).The BCS gap equation is the following
nonlinear integral equation (0 < 𝜀 ≤ 𝑥 ≤ ℎ𝜔

𝐷
):

𝑢 (𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢 (𝑇, 𝜉)

√𝜉2 + 𝑢(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢(𝑇, 𝜉)

2

2𝑇
𝑑𝜉,

(1)

where 𝑈(⋅, ⋅) > 0 is the potential multiplied by the density of
states per unit energy at the Fermi surface and is a function
of 𝑥 and 𝜉. In (1) we introduce 𝜀 > 0, which is small enough
and fixed (0 < 𝜀 ≪ ℎ𝜔

𝐷
). In the original BCS model, the

integration interval is [0, ℎ𝜔
𝐷
]; it is not [𝜀, ℎ𝜔

𝐷
]. However,

we introduce very small 𝜀 > 0 for the following mathematical
reasons. In order to show the continuity of the solution to
the BCS gap equation with respect to the temperature and in
order to show that the transition to a superconducting state
is a second-order phase transition, we make the form of the
BCS gap equation somewhat easier to handle. So we choose
the closed interval [𝜀, ℎ𝜔

𝐷
] as the integration interval in (1).

The integral with respect to 𝜉 in (1) is sometimes replaced
by the integral over R3 with respect to the wave vector 𝑘.
Odeh [3] and Billard and Fano [4] established the existence
and uniqueness of the positive solution to the BCS gap equa-
tion in the case𝑇 = 0. For𝑇 ≥ 0, Vansevenant [5] determined
the transition temperature (the critical temperature) and
showed that there is a unique positive solution to the BCS gap
equation. Recently, Frank et al. [6] gave a rigorous analysis
of the asymptotic behavior of the transition temperature at
weak coupling. Hainzl et al. [7] proved that the existence of a
positive solution to the BCS gap equation is equivalent to the
existence of a negative eigenvalue of a certain linear operator
to show the existence of a transition temperature. Moreover,
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Hainzl and Seiringer [8] derived upper and lower bounds on
the transition temperature and the energy gap for the BCS gap
equation.

Since the existence and uniqueness of the solution were
established for each fixed𝑇 in the previous literature, the tem-
perature dependence of the solution is not covered. It is well
known that studying the temperature dependence of the solu-
tion to the BCS gap equation is very important in condensed
matter physics. This is because, by dealing with the ther-
modynamical potential, this study leads to a mathematical
proof of the statement that the transition to a superconduct-
ing state is a second-order phase transition. So, in condensed
matter physics, it is highly desirable to study the temperature
dependence of the solution to the BCS gap equation.

When the potential𝑈(⋅, ⋅) in (1) is a positive constant, the
BCS gap equation reduces to the simple gap equation (3). In
this case, one assumes in the BCSmodel that there is a unique
nonnegative solution to the simple gap equation (3) and that
the solution is of class 𝐶

2 with respect to the temperature
𝑇 (see e.g., [1] and [9, (11.45), page 392]). In this paper,
applying the implicit function theorem,we first show that this
assumption of the BCSmodel indeed holds true; we show that
there is a unique nonnegative solution to the simple gap equa-
tion (3) and that the solution is of class 𝐶2 with respect to the
temperature𝑇.We next deal with the case where the potential
is not a constant but a function. In order to show how the
solution varies with the temperature, we then give another
proof of the existence and uniqueness of the solution to the
BCS gap equation (1) when the potential is not a constant.
More precisely, we show that the solution belongs to the
subset 𝑉

𝑇
(see (12)). Note that the subset 𝑉

𝑇
depends on 𝑇.

We finally show that the solution to the BCS gap equation (1)
is indeed continuous with respect to both 𝑇 and 𝑥 when 𝑇

satisfies (20) when the potential is not a constant.
Let

𝑈 (𝑥, 𝜉) = 𝑈
1

at all (𝑥, 𝜉) ∈ [𝜀, ℎ𝜔
𝐷
]
2

, (2)

where 𝑈
1
> 0 is a constant. Then the gap function depends

on the temperature 𝑇 only. So we denote the gap function by
Δ
1
in this case; that is, Δ

1
: 𝑇 󳨃→ Δ

1
(𝑇). Then (1) leads to the

simple gap equation

1 = 𝑈
1
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + Δ
1
(𝑇)
2

tanh
√𝜉2 + Δ

1
(𝑇)
2

2𝑇
𝑑𝜉. (3)

The following is the definition of the temperature 𝜏
1
> 0.

Definition 1 (see [1]). Consider

1 = 𝑈
1
∫

ℎ𝜔𝐷

𝜀

1

𝜉
tanh 𝜉

2𝜏
1

𝑑𝜉. (4)

2. The Simple Gap Equation

Set

Δ =

√(ℎ𝜔
𝐷
− 𝜀𝑒1/𝑈1) (ℎ𝜔

𝐷
− 𝜀𝑒−1/𝑈1)

sinh (1/𝑈
1
)

. (5)

Proposition 2 (see [10, Proposition 2.2]). Let Δ be as in (5).
Then there is a unique nonnegative solution Δ

1
: [0, 𝜏

1
] →

[0,∞) to the simple gap equation (3) such that the solution
Δ
1
is continuous and strictly decreasing on the closed interval

[0, 𝜏
1
]:

Δ
1
(0) = Δ > Δ

1
(𝑇
1
) > Δ

1
(𝑇
2
)

> Δ
1
(𝜏
1
) = 0, 0 < 𝑇

1
< 𝑇
2
< 𝜏
1
.

(6)

Moreover, the solution Δ
1
is of class 𝐶2 on the interval [0, 𝜏

1
)

and satisfies

Δ
󸀠

1
(0) = Δ

󸀠󸀠

1
(0) = 0, lim

𝑇↑𝜏1

Δ
󸀠

1
(𝑇) = −∞. (7)

Proof. Setting 𝑌 = Δ
1
(𝑇)
2 turns (3) into

1 = 𝑈
1
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + 𝑌

tanh
√𝜉2 + 𝑌

2𝑇
𝑑𝜉. (8)

Note that the right side is a function of the two variables𝑇 and
𝑌.We see that there is a unique function𝑇 󳨃→ 𝑌defined by (8)
implicitly, that the function 𝑇 󳨃→ 𝑌 is continuous and strictly
decreasing on [0, 𝜏

1
], and that 𝑌 = 0 at 𝑇 = 𝜏

1
. We moreover

see that the function 𝑇 󳨃→ 𝑌 is of class 𝐶
2 on the closed

interval [0, 𝜏
1
].

Remark 3. We set Δ
1
(𝑇) = 0 for 𝑇 > 𝜏

1
.

Remark 4. In Proposition 2, Δ
1
(𝑇) is nothing but √𝑓(𝑇) in

[10, Proposition 2.2].

We introduce another positive constant 𝑈
2
> 0. Let 0 <

𝑈
1
< 𝑈
2
. We assume the following condition on 𝑈(⋅, ⋅):

𝑈
1
≤ 𝑈 (𝑥, 𝜉)

≤ 𝑈
2

at all (𝑥, 𝜉) ∈ [𝜀, ℎ𝜔
𝐷
]
2

, 𝑈 (⋅, ⋅) ∈ 𝐶 ([𝜀, ℎ𝜔
𝐷
]
2

) .

(9)

When 𝑈(𝑥, 𝜉) = 𝑈
2
at all (𝑥, 𝜉) ∈ [𝜀, ℎ𝜔

𝐷
]
2, an argument

similar to that in Proposition 2 gives that there is a unique
nonnegative solutionΔ

2
: [0, 𝜏
2
] → [0,∞) to the simple gap

equation

1 = 𝑈
2
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + Δ
2
(𝑇)
2

× tanh
√𝜉2 + Δ

2
(𝑇)
2

2𝑇
𝑑𝜉, 0 ≤ 𝑇 ≤ 𝜏

2
.

(10)

Here, 𝜏
2
> 0 is defined by

1 = 𝑈
2
∫

ℎ𝜔𝐷

𝜀

1

𝜉
tanh 𝜉

2𝜏
2

𝑑𝜉. (11)

We again set Δ
2
(𝑇) = 0 for 𝑇 > 𝜏

2
. A straightforward calcu-

lation gives the following.
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x fixed

0 𝜏1 𝜏2

Temperature

Δ2(0)

Δ1(0)

Δ1(T)

Δ 2(T)

Figure 1: The graphs of the functions Δ
1
and Δ

2
.

Lemma 5 ([11, Lemma 1.5]). (a) The inequality 𝜏
1
< 𝜏
2
holds.

(b) If 0 ≤ 𝑇 < 𝜏
2
, then Δ

1
(𝑇) < Δ

2
(𝑇). If 𝑇 ≥ 𝜏

2
, then

Δ
1
(𝑇) = Δ

2
(𝑇) = 0.

Note that Proposition 2 and Lemma 5 point out how Δ
1

and Δ
2
depend on the temperature and how Δ

1
and Δ

2
vary

with the temperature; see Figure 1.

Remark 6. On the basis of Proposition 2, the present author
[10, Theorem 2.3] proved that the transition to a supercon-
ducting state is a second-order phase transition under the
restriction (2).

3. The BCS Gap Equation

Let 0 ≤ 𝑇 ≤ 𝜏
2
and fix 𝑇, where 𝜏

2
is that in (11). We consider

the Banach space 𝐶[𝜀, ℎ𝜔
𝐷
] consisting of continuous func-

tions of 𝑥 only and deal with the following subset 𝑉
𝑇
:

𝑉
𝑇
= {𝑢 (𝑇, ⋅) ∈ 𝐶 [𝜀, ℎ𝜔

𝐷
] : Δ
1
(𝑇)

≤ 𝑢 (𝑇, 𝑥) ≤ Δ
2
(𝑇) at 𝑥 ∈ [𝜀, ℎ𝜔

𝐷
]} .

(12)

Remark 7. The subset 𝑉
𝑇
depends on 𝑇. So we denote each

element of 𝑉
𝑇
by 𝑢(𝑇, ⋅); see Figure 1.

As it is mentioned in the introduction, the existence and
uniqueness of the solution to the BCS gap equation were
established for each fixed 𝑇 in the previous literature, and the
temperature dependence of the solution is not covered. We
therefore give another proof of the existence and uniqueness
of the solution to the BCS gap equation (1) so as to show how
the solution varies with the temperature. More precisely, we
show that the solution belongs to 𝑉

𝑇
.

Theorem 8 (see [11, Theorem 2.2]). Assume condition (9)
on 𝑈(⋅, ⋅). Let 𝑇 ∈ [0, 𝜏

2
] be fixed. Then there is a unique

x fixed

0 𝜏1 𝜏2

Temperature

Δ2(0)

Δ1(0)

Δ1(T)

Δ 2(T)

Figure 2: For each 𝑇, the solution 𝑢
0
(𝑇, 𝑥) lies between Δ

1
(𝑇) and

Δ
2
(𝑇).

nonnegative solution 𝑢
0
(𝑇, ⋅) ∈ 𝑉

𝑇
to the BCS gap equation

(1) (𝑥 ∈ [𝜀, ℎ𝜔
𝐷
]):

𝑢
0
(𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢
0
(𝑇, 𝜉)

√𝜉2 + 𝑢
0
(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢

0
(𝑇, 𝜉)
2

2𝑇
𝑑𝜉.

(13)

Consequently, the solution is continuous with respect to 𝑥 and
varies with the temperature as follows:

Δ
1
(𝑇) ≤ 𝑢

0
(𝑇, 𝑥)

≤ Δ
2
(𝑇) at (𝑇, 𝑥) ∈ [0, 𝜏

2
] × [𝜀, ℎ𝜔

𝐷
] .

(14)

Proof. We define a nonlinear integral operator 𝐴 on 𝑉
𝑇
by

𝐴𝑢 (𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢 (𝑇, 𝜉)

√𝜉2 + 𝑢(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢(𝑇, 𝜉)

2

2𝑇
𝑑𝜉,

(15)

where 𝑢(𝑇, ⋅) ∈ 𝑉
𝑇
. Clearly,𝑉

𝑇
is a bounded, closed, and con-

vex subset of the Banach space 𝐶[𝜀, ℎ𝜔
𝐷
]. A straightforward

calculation gives that the operator 𝐴 : 𝑉
𝑇

→ 𝑉
𝑇
is compact.

Therefore, the Schauder fixed point theorem applies, and
hence the operator 𝐴 : 𝑉

𝑇
→ 𝑉
𝑇
has at least one fixed point

𝑢
0
(𝑇, ⋅) ∈ 𝑉

𝑇
. Moreover, we can show the uniqueness of the

fixed point; see Figure 2.

The existence of the transition temperature 𝑇
𝑐
is pointed

out in the previous papers [5–8]. In our case, it is defined as
follows.

Definition 9. Let 𝑢
0
(𝑇, ⋅) ∈ 𝑉

𝑇
be as in Theorem 8. The tran-

sition temperature 𝑇
𝑐
stemming from the BCS gap equation

(1) is defined by

𝑇
𝑐
= inf {𝑇 > 0 : 𝑢

0
(𝑇, 𝑥) = 0 at all 𝑥 ∈ [𝜀, ℎ𝜔

𝐷
]} . (16)
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Remark 10. Combining Definition 9 withTheorem 8 implies
that 𝜏

1
≤ 𝑇
𝑐

≤ 𝜏
2
. For 𝑇 > 𝑇

𝑐
, we set 𝑢

0
(𝑇, 𝑥) = 0 at all

𝑥 ∈ [𝜀, ℎ𝜔
𝐷
].

4. Continuity of the Solution with respect to
the Temperature

Let 𝑈
0

> 0 be a constant satisfying 𝑈
0

< 𝑈
1

< 𝑈
2
. An

argument similar to that in Proposition 2 gives that there is
a unique nonnegative solution Δ

0
: [0, 𝜏
0
] → [0,∞) to the

simple gap equation

1 = 𝑈
0
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + Δ
0
(𝑇)
2

× tanh
√𝜉2 + Δ

0
(𝑇)
2

2𝑇
𝑑𝜉, 0 ≤ 𝑇 ≤ 𝜏

0
.

(17)

Here, 𝜏
0
> 0 is defined by

1 = 𝑈
0
∫

ℎ𝜔𝐷

𝜀

1

𝜉
tanh 𝜉

2𝜏
0

𝑑𝜉. (18)

We set Δ
0
(𝑇) = 0 for 𝑇 > 𝜏

0
. A straightforward calculation

gives the following.

Lemma 11. (a) 𝜏
0
< 𝜏
1
< 𝜏
2
.

(b) If 0 ≤ 𝑇 < 𝜏
0
, then 0 < Δ

0
(𝑇) < Δ

1
(𝑇) < Δ

2
(𝑇).

(c) If 𝜏
0
≤ 𝑇 < 𝜏

1
, then 0 = Δ

0
(𝑇) < Δ

1
(𝑇) < Δ

2
(𝑇).

(d) If 𝜏
1
≤ 𝑇 < 𝜏

2
, then 0 = Δ

0
(𝑇) = Δ

1
(𝑇) < Δ

2
(𝑇).

(e) If 𝜏
2
≤ 𝑇, then 0 = Δ

0
(𝑇) = Δ

1
(𝑇) = Δ

2
(𝑇).

Remark 12. Let the functionsΔ
𝑘
(𝑘 = 0, 1, 2) be as above. For

eachΔ
𝑘
, there is the inverseΔ−1

𝑘
: [0, Δ

𝑘
(0)] → [0, 𝜏

𝑘
]. Here,

Δ
𝑘
(0) =

√(ℎ𝜔
𝐷
− 𝜀𝑒1/𝑈𝑘) (ℎ𝜔

𝐷
− 𝜀𝑒−1/𝑈𝑘)

sinh (1/𝑈
𝑘
)

, (19)

and Δ
0
(0) < Δ

1
(0) < Δ

2
(0).

We introduce another temperature. Let 𝑇
1
satisfy 0 <

𝑇
1
< Δ
−1

0
(Δ
0
(0)/2) and

Δ
0
(0)

4Δ
−1

2
(Δ
0
(𝑇
1
))

tanh
Δ
0
(0)

4Δ
−1

2
(Δ
0
(𝑇
1
))

>
1

2
(1 +

4ℎ
2
𝜔
2

𝐷

Δ
0
(0)
2
) .

(20)

Remark 13. Numerically, the temperature 𝑇
1
is very small.

Consider the following subset 𝑉 of the Banach space
𝐶([0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
]) consisting of continuous functions of

both the temperature 𝑇 and the energy 𝑥:

𝑉 = {𝑢 ∈ 𝐶 ([0, 𝑇
1
] × [𝜀, ℎ𝜔

𝐷
]) : Δ

1
(𝑇) ≤ 𝑢 (𝑇, 𝑥)

≤ Δ
2
(𝑇) at (𝑇, 𝑥) ∈ [0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
]} .

(21)

x fixed

0 𝜏1 𝜏2

Temperature

Δ2(0)

Δ1(0)

Δ1(T)

Δ 2(T)

T1

Figure 3: The solution 𝑢
0
is continuous on [0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
].

Theorem 14 (see [12, Theorem 1.2]). Assume (9). Let 𝑢
0
be as

inTheorem 8 and𝑉 as in (21). Then 𝑢
0
∈ 𝑉. Consequently, the

gap function 𝑢
0
is continuous on [0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
].

Proof. We define a nonlinear integral operator 𝐵 on 𝑉 by

𝐵𝑢 (𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢 (𝑇, 𝜉)

√𝜉2 + 𝑢(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢(𝑇, 𝜉)

2

2𝑇
𝑑𝜉,

(22)

where 𝑢 ∈ 𝑉.
Clearly, 𝑉 is a closed subset of the Banach space

𝐶([0, 𝑇
1
] × [𝜀, ℎ𝜔

𝐷
]). A straightforward calculation gives that

the operator 𝐵 : 𝑉 → 𝑉 is contractive as long as (20) holds
true. Therefore, the Banach fixed-point theorem applies, and
hence the operator 𝐵 : 𝑉 → 𝑉 has a unique fixed point
𝑢
0
∈ 𝑉. The solution 𝑢

0
∈ 𝑉 to the BCS gap equation is thus

continuous both with respect to the temperature and with
respect to the energy 𝑥; see Figure 3.
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