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For model-free time-delay systems, an analytical method is proposed to characterize the stabilizing PID region based on the
frequency response data. Such characterization uses linear programming which is computationally efficient. The characteristic
parameters of the controller are first extracted from the frequency response data. Subsequently, by employing an extendedHermite-
Biehler theorem on quasipolynomials, the stabilizing polygon region with respect to the integral and derivative gains (𝑘

𝑖
and 𝑘

𝑑
) is

described for a given proportional gain (𝑘
𝑝
) in term of the frequency response data. Simultaneously, the allowable stabilizing range

of 𝑘
𝑝
is derived such that the complete stabilizing set of the PID controller can be obtained easily. The proposed method avoids

the complexity and inaccuracy of the model identification and thus provides a convenient approach for the design and tuning of
the PID controller in practice. The advantage of the proposed algorithm lies in that the boundaries of the stabilizing region consist
of several simple straight lines, the complete stabilizing set can be obtained efficiently, and it can be implemented automatically in
computers.

1. Introduction

Time delay is ubiquitous in many control systems [1]. It may
cause the degradation of the control performance and may
even render the unstable controlled structure [2, 3]. Hence,
the problem of time delay has been studied quite extensively
in the literature. The closed-loop characteristic equation of
time-delayed systems has an infinite number of roots, which
makes the analysis and design extremely challenging.

In industry control, the majority of control systems
continue to be operated by PID controller despite the recent
advances in control theory and implementation. This pop-
ularity stems from their structural simplicity and robust
performance in a wide range of operating conditions [4].
Accordingly, the design of PID controllers for the time delay
processes is of great importance. Conventional approaches
to design a PID controller often involve the development
of a mathematical model with time delay, that is, transfer
function or state space model, which is obtained by using
some approximation or simplification. It inevitably causes
the identification error between the mathematical model

and the corresponding controlled plant. Thus, the control
result may not be reliable. Moreover, some variables or
parameters are unavailable or difficult to be obtained in
practical applications. Another kind of control technique for
the systems with time delay is to design a control system
by directly using the original input and output data of the
controlled plant which can be easily measured experimen-
tally, that is, model-free control design. Most of the model-
free approaches are based on fuzzy logic and neural networks
[5, 6]. On the other hand, model-free approaches received
special attention in the area of PID autotuning due to many
advantages for tuning PID parameters within a closed-loop
setting. Many popular tuning rules such as the Ziegler-
Nichols [7] procedure and the current practice in PID design
for process control are based on the frequency response of
the plant. Most of the model-free control methods are the
single tuning ones; that is to say, they can only satisfy a
specified criterion, but not several required design criteria
simultaneously. However, in the practical application, most
of the industrial controllers are required to satisfy different
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performance criteria simultaneously, either in time domain
(e.g., overshoot and settling time) or frequency domain (e.g.,
phase margin and gain margin). In order to reach this pur-
pose, a natural idea is to first present the stabilizing regions of
the PID controller and then determine the PID controller by
finding the intersection of the areas of the control parameters
meeting each required criterion under the constraint of
the resultant stabilizing regions. In the recent years, some
effective approaches on determining the stabilizing region of
the PID controllers have been reported for the system with
time delay based on the transfer function model [8–11]. The
approaches in [12] and [13] were developed to determine
the entire set of stabilizing first-order/PID controller only
based on the frequency response of a given LTI plant. In
[14], the D-composition approach is employed to determine
the stabilizing PID set for the time-delay plant without the
detailed model. Although the graphical method based on the
D-composition technique is feasible for the determination
of the stabilizing PID region, the characterization of the
stability boundaries is very complex and cannot be described
by using a simple function, which causes difficulty in the
practical application. In addition, the procedure for deriving
the stabilizing PID region has to be finished manually and
cannot be implemented automatically by the computer.

In this paper, a computationally efficient strategy is pro-
posed to generate the linear programming characterization
of the stabilizing PID controllers for the time-delay plant
based on frequency response data. Based on the extension
of the Hermite-Biehler Theorem, the stabilizing polygon
region with respect to (𝑘

𝑖
, 𝑘
𝑑
) is derived for a fixed 𝑘

𝑝
value.

Moreover, in order to present the entire stabilizing set of the
PID controller efficiently, the allowable stabilizing range of
𝑘
𝑝
is also derived on the basis of the frequency response

data. The results provide the important approach for the PID
controller design satisfying different performance criterion
simultaneously only based on the frequency response data of
the plant.

The paper is organized as follows. The problem state-
ment is given in Section 2. The method to determine the
characteristic parameters necessary for the determination
of the stabilizing PID controller is addressed in Section 3.
In Section 4, the stabilization of the PID controller for the
model-free linear time-delay system is analyzed, and the
algorithm of determining the set of all stabilizing sets is
proposed. Numerical examples are provided to illustrate the
main results in Section 5. Finally, the conclusion is given in
Section 6.

2. Problem Statement

Consider the feedback configuration with an LTI plant and a
PID controller as shown in Figure 1, where 𝑟 is the reference
input,𝑦 is the systemoutput, and𝐶(𝑠) is a PID controller with
the following form:

𝐶 (𝑠) = 𝑘
𝑝
+

𝑘
𝑖

𝑠
+ 𝑘
𝑑
𝑠, (1)

𝑟
+
−

𝐶(𝑠) 𝐺(𝑠)
𝑦

Figure 1: Block diagram of the unity feedback control systems.

where 𝐺(𝑠) is a single-input single output (SISO) linear time-
invariant (LTI) plant with the frequency response data, and
its detailed model is unknown.

The objective of this paper is to directly determine the
complete set of the PID controller that can guarantee the
system stability based on the frequency response data of the
plant, without constructing a state space or transfer function
model.

3. Determination of
the Characteristic Parameters

In this section, the characteristic parameters of the plant
that are required to determine the stabilizing set of the PID
controller will be presented. Assume that the plant 𝐺(𝑠) has
the following transfer function:

𝐺 (𝑠) =
𝑁 (𝑠)

𝐷 (𝑠)
𝑒
−𝜃𝑠

, (2)

where 𝜃 is the time delay 𝑁(𝑠) and 𝐷(𝑠) are polynomials
with real coefficients and high degrees 𝑛 and 𝑚, respectively.
Let 𝑟(𝑁), 𝑙(𝑁), and 𝑗(𝑁) denote the numbers of right-half-
plane(RHP), left half-plane(LHP), and imaginary-axis zeros
of 𝐺(𝑠), respectively, and let 𝑟(𝐷), 𝑙(𝐷), and 𝑗(𝐷) be the
numbers of its right half-plane(RHP), left half-plane(LHP),
and imaginary-axis poles of 𝐺(𝑠), respectively.

The time-delay 𝜃 can be easily determined by imposing
the step signal in the input. The lag time between the step
signal and the output response signal is 𝜃.

The frequency response of 𝐺(𝑠) only is characterized as

𝐺 (𝑠) =
𝑁 (𝑗𝜔)

𝐷 (𝑗𝜔)
𝑒
−𝑗𝜃𝜔

= 𝐺
𝑟 (𝜔) + 𝑗𝐺

𝑖 (𝜔) , (3)

where 𝐺
𝑟
(𝜔) and 𝐺

𝑖
(𝜔) are the real and imaginary parts of

the frequency response of the plant. For the stable plant, the
frequency response data can be obtained in terms of multiple
point relay test method in [15]. For the unstable plant, the fre-
quency response data cannot be presented directly. However,
we can find a controller 𝐶

0
(𝑠) that can make the closed-loop

system stable and then obtain the frequency response data
of the plant by measuring the frequency response data of the
stable closed-loop system.

The Nyquist and Bode diagrams can be easily sketched
based on the frequency response of 𝐺(𝑠). From the high
frequency slope of the Bode magnitude plot, the relative
degree 𝑛 − 𝑚 can be presented as follows:

𝑛 − 𝑚 = −
1

20
⋅

𝑑𝑃
𝑑𝑏 (𝜔)

𝑑 (log
10
𝜔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔→∞
, (4)
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where

𝑃
𝑑𝑏 (𝜔) = 20 log

10

󵄨󵄨󵄨󵄨𝐺 (𝑗𝜔)
󵄨󵄨󵄨󵄨 . (5)

Then, we compute 𝑗(𝑁) and 𝑗(𝐷). If there exists abrupt
increasing change for 𝑇 times at 𝜔 = 𝜔∗

𝑡
(𝑡 = 1, 2, 3, . . . , 𝑇)

in the Bode magnitude plot, 𝐺(𝑠) must have the imaginary-
axis poles 𝑠 = ± 𝑗𝜔

∗

𝑡
. To determine the number of multiple

imaginary-axis poles, the plot of |𝐺(𝑗𝜔)|/(1 − (𝜔∗
𝑡
)
2
)
𝑢
𝑡 is

drawn for 𝑢
𝑡
increasing from 1 till the abrupt increasing

change at 𝜔 = 𝜔∗ disappears. Assume that 𝑢
𝑡

= 𝑈
𝑡
when

the abrupt increasing change disappears. Thus, we have

𝑗 (𝐷) =

𝑇

∑
𝑡=1

2𝑈
𝑡
. (6)

Conversely, If there exists abrupt decreasing change for 𝑇

times at 𝜔 = 𝜔∗
𝑡
(𝑡 = 1, 2, 3, . . . , 𝑇) in the Bode magnitude

plot, 𝐺(𝑠) must have the imaginary-axis zeros 𝑠 = ± 𝑗𝜔∗
𝑡
. By

the similar lines as the computation of 𝑗(𝐷), 𝑗(𝑁) can also be
obtained from the Bode magnitude plot.

Take 𝑙
∗ to be a sufficiently large integer. The net change

of the phase angle of 𝐺(𝑗𝜔) as 𝜔 increases from 0 to
2𝑙∗𝜋, denoted as Δ

2𝑙
∗
𝜋/𝜃

0
∠𝐺(𝑗𝜔), can be easily obtained from

the phase plot. Moreover, when 𝑙∗ is sufficiently large, the
following equation holds

Δ
2𝑙
∗
𝜋/𝜃

0
∠𝐺 (𝑗𝜔) = − (𝑛 − 𝑚)

𝜋

2
− [𝑟 (𝑁) − 𝑟 (𝐷)] 𝜋

− [𝑗 (𝑁) − 𝑗 (𝐷)]
𝜋

2
− 2𝑙
∗
𝜋.

(7)

(1) When the plant is stable, we have 𝑟(𝐷) = 0. Then,
from (7), 𝑟(𝑁) can be obtained.

(2) When the plant is unstable, the controller 𝐶
0
(𝑠) that

canmake the closed-loop system stable, is introduced.
The closed-loop transfer function is given by

𝑇 (𝑠) =
𝐶
0 (𝑠) 𝐺 (𝑠)

1 + 𝐶
0 (𝑠) 𝐺 (𝑠)

. (8)

Transform 𝑇(𝑠) into the form

𝑇 (𝑠) =
𝑁
𝐶 (𝑠)𝑁 (𝑠)

𝑒𝜃𝑠𝐷
𝐶 (𝑠)𝐷 (𝑠) + 𝑁

𝐶 (𝑠)𝑁 (𝑠)
, (9)

where 𝑁
𝐶
(𝑠) and 𝐷

𝐶
(𝑠) are the numerator and denominator

of the transfer function of 𝐶
0
(𝑠), respectively.

Take the denominator of (9) as

𝛿 (𝑠) = 𝑒
𝜃𝑠
𝐷
𝐶 (𝑠)𝐷 (𝑠) + 𝑁

𝐶 (𝑠)𝑁 (𝑠) . (10)

Considering the argument of 𝑇(𝑠) in ((−2𝑙∗𝜋 + 𝜂)/𝜃, (2𝑙∗𝜋 +

𝜂)/𝜃), where 𝜂 can be chosen in the interval (0, 𝜋/4). Due to
the stability of the system, all zeros of 𝛿(𝑠) are in the left half-
plane. From the extension of the extended Hermite theorem
[11], the net change in phase of 𝛿(𝑠) in ((−2𝑙

∗𝜋+𝜂)/𝜃, (2𝑙∗𝜋+

𝜂)/𝜃) is (4𝑙∗ +𝑛+𝑛
𝑐
)𝜋, where 𝑛

𝑐
is the highest order of𝐷

𝐶
(𝑠).

Thus, the net change of the phase angle of𝑇(𝑗𝜔) as𝜔 increases
from (−2𝑙

∗𝜋 + 𝜂)/𝜃 to (2𝑙∗𝜋 + 𝜂)/𝜃 is

Δ
(2𝑙
∗
𝜋+𝜂)/𝜃

(−2𝑙
∗
𝜋+𝜂)/𝜃

∠𝑇 (𝑗𝜔)

= [𝑙 (𝑁) − 𝑟 (𝑁)] 𝜋 + [𝑙 (𝑁
𝐶
) − 𝑟 (𝑁

𝐶
)] 𝜋

− (4𝑙
∗
+ 𝑛 + 𝑛

𝑐
) 𝜋

= − (𝑛 − 𝑚) − [𝑗 (𝑁) + 2𝑟 (𝑁)]

− [𝑛
𝑐
− 𝑙 (𝑁

𝐶
) + 𝑟 (𝑁

𝐶
)] − 4𝑙

∗
,

(11)

where 𝑟(𝑁
𝐶
) and 𝑙(𝑁

𝐶
) denote the numbers of RHP and LHP

of the controller 𝐶
0
(𝑠). According to the frequency response

data of 𝑇(𝑗𝜔), Δ(2𝑙
∗
𝜋+𝜂)/𝜃

(−2𝑙
∗
𝜋+𝜂)/𝜃

∠𝑇(𝑗𝜔) can be easily derived. The
values of 𝑛 − 𝑚, 𝑙(𝑁

𝐶
), 𝑟(𝑁

𝐶
), and 𝑗(𝑁) have been known.

Hence, the value of 𝑟(𝑁) can be obtained from (11).
From the frequency response data of 𝑇(𝑗𝜔), we have

𝐺 (𝑗𝜔) =
𝑇 (𝑗𝜔)

𝐶
0
(𝑗𝜔) [1 − 𝑇 (𝑗𝜔)]

. (12)

From (12), the argument Δ
(2𝑙
∗
𝜋+𝜂)/𝜃

(−2𝑙
∗
𝜋+𝜂)/𝜃

∠𝐺(𝑗𝜔) is obtained.
Furthermore, in terms of (3),

Δ
(2𝑙
∗
𝜋+𝜂)/𝜃

(−2𝑙
∗
𝜋+𝜂)/𝜃

∠𝐺 (𝑗𝜔) = − (𝑛 − 𝑚) 𝜋 − 2 [𝑟 (𝑁) − 𝑟 (𝐷)] 𝜋

− [𝑗 (𝑁) − 𝑗 (𝐷)] 𝜋 − 4𝑙
∗
𝜋.

(13)

Hence, the value of 𝑟(𝐷) can be derived from (13).
In the case 𝑛 − 𝑚 = 1,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑛

𝑏
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= lim
𝜔→∞

󵄨󵄨󵄨󵄨𝐺 (𝑗𝜔) 𝑗𝜔
󵄨󵄨󵄨󵄨 . (14)

4. Stabilization Analysis of the PID Controller

The closed-loop characteristic function of unit feedback
system in Figure 1 is

𝑄 (𝑠) = 𝑠 + (𝑘
𝑖
+ 𝑘
𝑝
𝑠 + 𝑘
𝑑
𝑠
2
)𝐺 (𝑠) . (15)

Multiplying (15) by 𝑒𝜃𝑠, we have

𝑄 (𝑠) 𝑒
𝜃𝑠

= 𝑠𝑒
𝜃𝑠

+ (𝑘
𝑖
+ 𝑘
𝑝
𝑠 + 𝑘
𝑑
𝑠
2
)𝐺
0 (𝑠) , (16)

where

𝐺
0 (𝑠) =

𝑁 (𝑠)

𝐷 (𝑠)
. (17)
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Multiplying (16) by 𝐺
0
(−𝑠), we have

𝑄 (𝑠) = 𝐺
0 (−𝑠) 𝑠𝑒

𝜃𝑠
+ (𝑘
𝑖
+ 𝑘
𝑝
𝑠 + 𝑘
𝑑
𝑠
2
)𝐺
0 (𝑠) 𝐺0 (−𝑠)

=
1

𝐷 (𝑠)𝐷 (−𝑠)
[𝑠𝑒
𝜃𝑠
𝐷 (𝑠)𝑁 (−𝑠)

+ (𝑘
𝑖
+ 𝑘
𝑝
𝑠 + 𝑘
𝑑
𝑠
2
)𝑁 (𝑠)𝑁 (−𝑠)] .

(18)

Substituting 𝑠 = 𝑗(𝑧/𝜃) into (18) yields

𝑄
𝑟
(𝑧, 𝑘
𝑖
, 𝑘
𝑑
) =

𝑧

𝜃
𝐺
𝑖 (𝑧) + (𝑘

𝑖
− 𝑘
𝑑

𝑧
2

𝜃2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺 (𝑗

𝑧

𝜃
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

, (19)

𝑄
𝑖 (𝑧) =

𝑧

𝜃
[𝐺
𝑟 (𝑧) + 𝑘

𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺 (𝑗

𝑧

𝜃
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] , (20)

where𝑄
𝑟
(𝑧, 𝑘
𝑖
, 𝑘
𝑑
) and𝑄

𝑖
(𝑧) are the real and imaginary parts

of 𝑄(𝑗(𝑧/𝜃)). The numerator of 𝑄(𝑠)𝑒𝜃𝑠 in (16) is given by

𝐻(𝑠) = 𝑠𝑒
𝜃𝑠
𝐷 (𝑠) + (𝑘

𝑖
+ 𝑘
𝑝
𝑠 + 𝑘
𝑑
𝑠
2
)𝑁 (𝑠) . (21)

Substituting 𝑠 = 𝑗(𝑧/𝜃) into 𝐻(𝑠) yields

𝐻(𝑗
𝑧

𝜃
) = 𝐻

𝑟 (𝑧) + 𝑗𝐻
𝑖 (𝑧) , (22)

where𝐻
𝑟
(𝑧) and𝐻

𝑖
(𝑧) represent the real and imaginary parts

of 𝐻(𝑗(𝑧/𝜃)). It is seen that 𝐻(𝑠) and 𝑄(𝑠) have the same
zeros. Substituting 𝑠 = 𝑗(𝑧/𝜃) into 𝐻(𝑠) and multiplying it
by 𝑁(−𝑗(𝑧/𝜃)) yields

𝐻(𝑗
𝑧

𝜃
, 𝑘
𝑝
, 𝑘
𝑖
, 𝑘
𝑑
)𝑁(−𝑗

𝑧

𝜃
) = 𝑝 (𝑧, 𝑘

𝑖
, 𝑘
𝑑
) + 𝑗𝑞 (𝑧, 𝑘

𝑝
) ,

(23)

where

𝑝 (𝑘
𝑖
, 𝑘
𝑑
) = 𝑝
1 (𝑧) + (𝑘

𝑖
−

𝑘
𝑑
𝑧2

𝜃2
) [𝑁
2

𝑟
(𝑧) + 𝑁

2

𝑖
(𝑧)] , (24)

𝑞 (𝑧, 𝑘
𝑝
) =

𝑧

𝜃
{𝑞
1 (𝑧) + 𝑘

𝑝
[𝑁
2

𝑟
(𝑧) + 𝑁

2

𝑖
(𝑧)]} , (25)

𝑝
1 (𝑧) = −

𝑧

𝜃
[𝐷
𝑖 (𝑧)𝑁𝑟 (𝑧) − 𝐷

𝑟 (𝑧)𝑁𝑖 (𝑧)] cos (𝑧)

−
𝑧

𝜃
[𝐷
𝑟 (𝑧)𝑁𝑟 (𝑧) + 𝐷

𝑖 (𝑧)𝑁𝑖 (𝑧)] sin (𝑧) ,

(26)

𝑞
1 (𝑧) = [𝐷

𝑟 (𝑧)𝑁𝑟 (𝑧) + 𝐷
𝑖 (𝑧)𝑁𝑖 (𝑧)] cos (𝑧)

− [𝐷
𝑖 (𝑧)𝑁𝑟 (𝑧) − 𝐷

𝑟 (𝑧)𝑁𝑖 (𝑧)] sin (𝑧) .

(27)

Actually, 𝐻(𝑗(𝑧/𝜃), 𝑘
𝑝
, 𝑘
𝑖
, 𝑘
𝑑
)𝑁(−𝑗(𝑧/𝜃)) in (23) is the

numerator of (18).

Lemma 1. If all zeros of 𝐻(𝑠) lie in the left half-plane, the
net change of the phase angle of 𝐻(𝑗𝜔) for 𝜔 increasing from
−2𝑙
∗𝜋 + 𝜂 to 2𝑙∗𝜋 + 𝜂 satisfies the following:

Δ
(2𝑙
∗
𝜋+𝜂)

(−2𝑙∗𝜋+𝜂)
∠𝐻(𝑗

𝑧

𝜃
) = (4𝑙

∗
+ 𝑛 + 1) 𝜋. (28)

Proof. In terms of the results in [11], it is known that if all
zeros of 𝐻(𝑠) and 𝑄(𝑠) lie in the left half-plane, 𝐻

𝑟
(𝜔) and

𝐻
𝑖
(𝜔) have exactly 4𝑙∗ + 𝑛 + 1 real zeros in the interval

(−2𝑙∗𝜋 + 𝜂, 2𝑙∗𝜋 + 𝜂), and the zeros of 𝐻
𝑟
(𝜔) and 𝐻

𝑖
(𝜔)

interlace. Denote the minimal and maximal zeros of 𝐻
𝑖
(𝜔)

in (−2𝑙∗𝜋 + 𝜂, 2𝑙∗𝜋 + 𝜂) as 𝑧min and 𝑧max. It can be derived
that

Δ
𝑧max
𝑧min

∠𝐻(𝑗
𝑧

𝜃
) = (4𝑙

∗
+ 𝑛 + 1) 𝜋. (29)

As 𝑧 → +∞, we have

𝐻
𝑟 (𝑧) =

{{

{{

{

−
𝑧

𝜃
𝑎
𝑛
(𝑗)
𝑛
𝑧𝑛 sin (𝑧) for 𝑛 even

−
𝑧

𝜃
𝑎
𝑛
(𝑗)
𝑛−1

𝑧𝑛 cos (𝑧) for 𝑛 odd,
(30)

𝐻
𝑖 (𝑧) =

{{

{{

{

𝑧

𝜃
𝑎
𝑛
(𝑗)
𝑛
𝑧𝑛 cos (𝑧) for 𝑛 even

−
𝑧

𝜃
𝑎
𝑛
(𝑗)
𝑛−1

𝑧𝑛 sin (𝑧) for 𝑛 odd,
(31)

where 𝑎
𝑛
is the coefficient of the highest term of 𝐷(𝑠). In the

case of 𝑛 even, from (31), we have

Δ
𝑧min
−2𝑙
∗
𝜋+𝜂

∠𝐻(𝑗
𝑧

𝜃
) =

𝜋

2
− 𝜂,

Δ
2𝑙
∗
𝜋+𝜂

𝑧max
∠𝐻(𝑗

𝑧

𝜃
) =

𝜋

2
+ 𝜂.

(32)

Thus, we have

Δ
2𝑙
∗
𝜋+𝜂

−2𝑙
∗
𝜋+𝜂

∠𝐻(𝑗
𝑧

𝜃
) = Δ

𝑧min
−2𝑙
∗
𝜋+𝜂

∠𝐻(𝑗
𝑧

𝜃
) + Δ
𝑧max
𝑧min

∠𝐻(𝑗
𝑧

𝜃
)

+ Δ
2𝑙
∗
𝜋+𝜂

𝑧max
∠𝐻(𝑗

𝑧

𝜃
)

= (4𝑙
∗
+ 𝑛 + 1) 𝜋.

(33)

In the case of 𝑛 odd, from (31), we have

Δ
𝑧min
−2𝑙
∗
𝜋+𝜂

∠𝐻(𝑗
𝑧

𝜃
) = 𝜋 − 𝜂, (34)

Δ
2𝑙
∗
𝜋+𝜂

𝑧max
∠𝐻(𝑗

𝑧

𝜃
) = 𝜂. (35)

Thus, (28) also holds for 𝑛 odd.
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When 𝑧 → ∞, we have

𝑝 (𝑧) =

{{{{{{{{{{{

{{{{{{{{{{{

{

−
𝑧

𝜃
[𝑎
𝑛
𝑏
𝑚
(𝑗)
𝑛+𝑚

𝑧𝑛+𝑚 sin (𝑧) + 𝑂 (𝑧𝑛+𝑚−1)]

for 𝑚 + 𝑛 even
−
𝑧

𝜃
[𝑎
𝑛
𝑏
𝑚
(𝑗)
𝑛+𝑚

𝑧𝑛+𝑚−1 cos (𝑧) + 𝑂 (𝑧𝑛+𝑚−1)]

for 𝑛 odd and 𝑚 even
−
𝑧

𝜃
[−𝑎
𝑛
𝑏
𝑚
(𝑗)
𝑛+𝑚

𝑧𝑛+𝑚−1 cos (𝑧) + 𝑂 (𝑧𝑛+𝑚−1)]

for 𝑛 even and 𝑚 odd

𝑞 (𝑧) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑧

𝜃
[𝑎
𝑛
𝑏
𝑚
(𝑗)
𝑛+𝑚

𝑧𝑛+𝑚 cos (𝑧) + 𝑂 (𝑧𝑛+𝑚−1)]

for 𝑚 + 𝑛 even
𝑧

𝜃
[−𝑎
𝑛
𝑏
𝑚
(𝑗)
𝑛+𝑚−1

𝑧𝑛+𝑚 sin (𝑧) + 𝑂 (𝑧𝑛+𝑚−1)]

for 𝑛 odd and 𝑚 even
𝑧

𝜃
[𝑎
𝑛
𝑏
𝑚
(𝑗)
𝑛+𝑚−1

𝑧𝑛+𝑚 sin (𝑧) + 𝑂 (𝑧𝑛+𝑚−1)]

for 𝑛 even and 𝑚 odd,
(36)

where 𝑏
𝑚
is the coefficient of the highest term of 𝑁(𝑠).

Definition 2. Take 0 = 𝑧
0
< 𝑧
1
< 𝑧
2
< ⋅ ⋅ ⋅ < 𝑧

𝑑−1
to be the real

and distinct zeros of 𝑄
𝑖
in (0, 2𝑙∗𝜋 + 𝜂). These roots are also

the roots of 𝑞(𝑧) in (−2𝑙∗𝜋+𝜂, 2𝑙∗𝜋+𝜂). Define 𝑖
0
, 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑑

as follows.

(1) If the plant has the imaginary-axis zero at 𝑧
𝑡
/𝜃, then

define 𝑖
𝑡
= 0.

(2) If the plant has a zero at the origin, then define 𝑖
0

=

sgn(𝑑[𝑄
𝑖
(𝑧)]/𝑑𝑧|

𝑧=0
), where 𝑄

𝑖
(𝑧) is given in (20).

(3) For all other 𝑡 = 0, 1, 2, . . . 𝑑, 𝑖
𝑡
= 1 or − 1.

Definition 3. Let 𝐼 = {𝑖
0
, 𝑖
1
, . . .}. The signature 𝛾(𝐼) is denoted

by

𝛾 (𝐼)

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

{𝑖
0
⋅ (−1)
𝑑−1

+ 2

𝑑−3

∑
𝑡=1

𝑖
𝑡
⋅ (−1)
𝑑−1−𝑡

−
3

2
𝑖
𝑑−2

+
1

2
𝑖
𝑑−1

} ⋅ sgn𝑄
𝑖
(𝑧+
𝑑−1

, 𝑘
𝑝
)

for 𝑛 − 𝑚 odd

{𝑖
0
⋅ (−1)
𝑑−1

+ 2

𝑑−2

∑
𝑡=1

𝑖
𝑡
⋅ (−1)
𝑑−1−𝑡

+ 𝑖
𝑑−1

}

⋅ sgn𝑄
𝑖
(𝑧+
𝑑−1

, 𝑘
𝑝
) for 𝑛 − 𝑚 even.

(37)

Theorem 4. The necessary and sufficient conditions for the
stability of closed-loop system are that there exists 𝐼 =

{𝑖
0
, 𝑖
1
, . . .} such that

𝛾 (𝐼) = 4𝑙
∗
+ (𝑛 − 𝑚) + 𝑗 (𝑁) + 2𝑟 (𝑁) , (38)

where 𝑖
𝑡
= sgn[𝑄

𝑟
(𝑧
𝑐−1

, 𝑘
𝑖
, 𝑘
𝑑
)], and let 0 = 𝑧

0
< 𝑧
1

< 𝑧
2

<

⋅ ⋅ ⋅ < 𝑧
𝑑−1

be the real and distinct zeros of 𝑄
𝑖
in (0, 2𝑙∗𝜋 + 𝜂).

For a fixed 𝑘
𝑝
, if there exists one string 𝐼 = {𝑖

0
, 𝑖
1
, . . .} satisfying

(38), the stabilizing set of (𝑘
𝑑
, 𝑘
𝑖
) is the intersection of the

following inequalities:

[(𝑘
𝑖
− 𝑘
𝑑

𝑧2

𝜃2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺 (𝑗

𝑧

𝜃
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
𝑧

𝜃
𝐺
𝑖 (𝑧)] 𝑖

𝑡
> 0. (39)

In addition, for a given LTI time-delay plant with 𝑛 − 𝑚 = 1,
the stabilizing values of 𝑘

𝑑
have to satisfy another condition

−|𝑎
𝑛
/𝑏
𝑚
| < 𝑘
𝑑
< 1/|𝑎

𝑛
/𝑏
𝑚
|.

Proof. If 𝑧
𝑡
, 𝑧
𝑡+1

are the roots of 𝑞(𝑧), then the net change from
𝑧
𝑡
to 𝑧
𝑡+1

can be described as

Δ
𝑧
𝑡+1

𝑧
𝑡

∠𝑄(𝑗
𝑧

𝜃
)

=
1

2
𝜋 [sgn [𝑞 (𝑧

𝑡
)] − sgn [𝑞 (𝑧

𝑡+1
)]] ⋅ sgn [𝑝 (𝑧

+

𝑡
)] ,

(40)

where

sgn [𝑞 (𝑧
+

𝑡+1
)] = − sgn [𝑞 (𝑧

+

𝑡
)]

sgn [𝑞 (𝑧
+

𝑡
)] = (−1)

𝑑−𝑡−1 sgn [𝑞 (𝑧
+

𝑑−1
)] .

(41)

Take 𝑍
0

< 𝑍
1

< 𝑍
2

< ⋅ ⋅ ⋅ < 𝑍
𝑐−1

as the roots of 𝑄
𝑖
(𝑧) in

(−2𝑙∗𝜋 + 𝜂, 2𝑙∗𝜋 + 𝜂). It is obtained that

Δ
𝑍
𝑐−1

𝑍
0

∠𝑄(𝑗
𝑧

𝜃
)

=
𝜋

2
{sgn [𝑝 (𝑍

0
)] ⋅ (−1)

𝑐−1
+ 2

𝑐−2

∑
𝑡=1

sgn [𝑝 (𝑍
𝑡
)]

⋅(−1)
𝑐−1−𝑡

+ sgn [𝑝 (𝑍
𝑐−1

)] } ⋅ sgn [𝑞 (𝑍
+

𝑐−1
)] .

(42)

Since

Δ
𝑍
0

−2𝑙
∗
𝜋+𝜂

∠𝑄(𝑗
𝑧

𝜃
) + Δ
2𝑙
∗
𝜋+𝜂

𝑍
𝑐−1

∠𝑄(𝑗
𝑧

𝜃
) = 𝜋, (43)

we have

Δ
2𝑙
∗
𝜋+𝜂

−2𝑙
∗
𝜋+𝜂

∠𝑄(𝑗
𝑧

𝜃
)

=
𝜋

2
{sgn [𝑝 (𝑍

0
)] ⋅ (−1)

𝑐−1
+ 2

𝑐−2

∑
𝑡=1

sgn [𝑝 (𝑍
𝑡
)]

⋅ (−1)
𝑐−1−𝑡

+ sgn [𝑝 (𝑍
𝑐−1

)] } ⋅ sgn [𝑞 (𝑍
+

𝑐−1
)] + 𝜋.

(44)

It can be obtained that

Δ
2𝑙
∗
𝜋+𝜂

−2𝑙
∗
𝜋+𝜂

∠𝑄(𝑗
𝑧

𝜃
)

= Δ
2𝑙
∗
𝜋+𝜂

−2𝑙
∗
𝜋+𝜂

∠𝐻(𝑗
𝑧

𝜃
) − 𝜋 [𝑙 (𝑁) − 𝑟 (𝑁)] .

(45)
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In terms of Lemma 1, if all the zeros of 𝐻(𝑠) (𝑄(𝑠)) lie in the
left-half plane, then

Δ
(2𝑙
∗
𝜋+𝜂)

(−2𝑙
∗
𝜋+𝜂)

∠𝐻(𝑗
𝑧

𝜃
) = (4𝑙

∗
+ 𝑛 + 1) 𝜋. (46)

It follows that

Δ
2𝑙
∗
𝜋+𝜂

−2𝑙
∗
𝜋+𝜂

∠𝑄(𝑗
𝑧

𝜃
)

= (4𝑙
∗
+ 𝑛 + 1) 𝜋 − 𝜋 [𝑚 − 𝑗 (𝑁) − 2𝑟 (𝑁)] .

(47)

Substituting (44) into (47) yields

{sgn [𝑝 (𝑍
0
)] ⋅ (−1)

𝑐−1
+ 2

𝑐−2

∑
𝑡=1

sgn [𝑝 (𝑍
𝑡
)] ⋅ (−1)

𝑐−1−𝑡

+ sgn [𝑝 (𝑍
𝑐−1

)] } ⋅ sgn [𝑞 (𝑍
+

𝑐−1
)]

= 2 (4𝑙
∗
+ 𝑛) − 2 [𝑙 (𝑁) − 𝑟 (𝑁)] .

(48)

From (24), 𝑞(𝑧, 𝑘
𝑝
) is the odd function, and it has the same

roots in (−2𝑙
∗
𝜋 + 𝜂, 0) and (0, 2𝑙

∗
𝜋 − 𝜂). Furthermore, from

(35), 𝑞(𝑧, 𝑘
𝑝
) has no real zero in (2𝑙

∗
𝜋 − 𝜂, 2𝑙

∗
𝜋 + 𝜂) when

𝑚 + 𝑛, even and it has one real zero in (2𝑙∗𝜋 − 𝜂, 2𝑙∗𝜋 + 𝜂)

when 𝑚 + 𝑛 odd. Hence, by considering the roots of 𝑞(𝑧, 𝑘
𝑝
)

in the interval [0, 2𝑙∗𝜋 + 𝜂). It is easily known that

𝐷(𝑗
𝑧

𝜃
)𝐷(−𝑗

𝑧

𝜃
) = 𝐷

2

𝑟
(𝑧) + 𝐷

2

𝑖
(𝑧) > 0. (49)

Thus, the expression (48) can be rewritten as

𝛾 (𝐼) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

{ sgn [𝑄
𝑟
(𝑧
0
, 𝑘
𝑖
, 𝑘
𝑑
)] ⋅ (−1)

𝑑−1

+2
𝑑−3

∑
𝑡=1

sgn [𝑄
𝑟
(𝑧
𝑡
, 𝑘
𝑖
, 𝑘
𝑑
)] ⋅ (−1)

𝑑−1−𝑡

−
3

2
sgn [𝑄

𝑟
(𝑧
𝑑−2

, 𝑘
𝑖
, 𝑘
𝑑
)]

+
1

2
sgn [𝑄

𝑟
(𝑧
𝑑−1

, 𝑘
𝑖
, 𝑘
𝑑
)]}

⋅ sgn 𝑞 (𝑧+
𝑑−1

, 𝑘
𝑝
)

for 𝑛 − 𝑚 odd
{ sgn [𝑄

𝑟
(𝑧
0
, 𝑘
𝑖
, 𝑘
𝑑
)] ⋅ (−1)

𝑑−1

+2
𝑑−2

∑
𝑡=1

sgn [𝑄
𝑟
(𝑧
𝑡
, 𝑘
𝑖
, 𝑘
𝑑
)] ⋅ (−1)

𝑑−1−𝑡

+ sgn [𝑄
𝑟
(𝑧
𝑑−1

, 𝑘
𝑖
, 𝑘
𝑑
)]}

⋅ sgn 𝑞 (𝑧+
𝑑−1

, 𝑘
𝑝
)

for 𝑛 − 𝑚 even,
(50)

where 𝛾(𝐼) = 4𝑙∗ + (𝑛 − 𝑚) + 𝑗(𝑁) + 2𝑟(𝑁). By taking 𝑖
𝑡
=

sgn[𝑄
𝑟
(𝑧
𝑐−1

, 𝑘
𝑖
, 𝑘
𝑑
)], the expression (37) can be obtained.This

completes the proof.

The following theorem is given to determine the allowable
stabilizing range of 𝑘

𝑝
.

Theorem 5. The necessary condition for the 𝑘
𝑝
value leading

to the existence of the stabilizing (𝑘
𝑑
, 𝑘
𝑖
) region is that

𝑘
𝑝

= −
𝐺
𝑟 (𝑧)

󵄨󵄨󵄨󵄨𝐺 (𝑗 (𝑧/𝜃))
󵄨󵄨󵄨󵄨
2 (51)

has at least 𝑓 distinct roots in (0, 2𝑙∗𝜋 + 𝜂), where

𝑓 ≥

{{{{{{{

{{{{{{{

{

2𝑙
∗ +

(𝑛 − 𝑚) − 𝑗 (𝑁)

2
+ 𝑟 (𝑁) +

1

2
𝑓𝑜𝑟 𝑛 − 𝑚 𝑜𝑑𝑑

2𝑙∗ +
(𝑛 − 𝑚) − 𝑗 (𝑁)

2
+ 𝑟 (𝑁)

𝑓𝑜𝑟 𝑛 − 𝑚 𝑒V𝑒𝑛.

(52)

By Combining Theorem 4 and Definition 3, the proof of
Theorem 5 can be easily proved. Thus, its proof procedure is
omitted here.

Based on the results presented in Theorems 4 and 5, the
algorithm to determine the stabilizing sets of PID controller
based on the frequency response data of the plant is given as
follows.

Step 1. Determine the characteristic parameters 𝑛−𝑚, 𝜃, 𝑙(𝑁),
𝑙(𝐷), 𝑟(𝑁), 𝑟(𝐷), and |𝑎

𝑛
/𝑏
𝑚
|.

Step 2. Present the curve of |𝐺(𝑗(𝑧/𝜃))|,𝐺
𝑟
(𝑧) and𝐺

𝑖
(𝑧)with

respect to 𝑧 based on the frequency response data of 𝐺(𝑗𝜔),
where 𝑧 = 𝜃𝜔.

Step 3. Choose the proper values of 𝜂 and 𝑙
∗.

Step 4. Compute the allowable stabilizing range of 𝑘
𝑝
based

onTheorem 5.

Step 5. For a grid point of 𝑘
𝑝
, compute the real and distinct

zeros of 𝑄
𝑖
(𝑧) in (20) in the interval [0, 2𝑙∗𝜋 + 𝜂) and denote

them by 𝑧
0
, 𝑧
1
, 𝑧
2
, . . . 𝑧
𝑑−1

in the increasing order.

Step 6. According to Theorem 4 and Definition 3, find 𝐼

satisfying (38).

Step 7. Present the stabilizing set of (𝑘
𝑑
, 𝑘
𝑖
) by computing

the intersection of the inequalities determined by (39) with
respect to 𝐼.

Step 8. Go to Step 5 with another grid point of 𝑘
𝑝
till all the

grid points are considered.

5. Numerical Study

Example 6. First, we consider the plant in [11]. Collecting
the plant frequency response data, the Nyquist plot and the
Bode diagrams of the plant are shown in Figures 2 and 3,
respectively.

According to Section 3, the characteristic parameters of
the plant are firstly obtained. From the Bode magnitude plot
in Figure 3, we have

𝑛 − 𝑚 = 2. (53)
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Figure 2: The Nyquist plot for Example 6.
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Figure 3: The Bode diagram for Example 6.

Let 𝑙∗ = 8, and the net change of the phase is depicted in bode
plot as follows:

Δ
16𝜋

0
∠𝐺(𝑗

𝑧

𝜃
) = −3360 ≈ −19𝜋. (54)

Since the plant is stable, from the following equation:

Δ
2𝑙
∗
𝜋

0
∠𝐺(𝑗

𝑧

𝜃
)

= − (𝑛 − 𝑚) ⋅
𝜋

2
− 2 [𝑟 (𝑁) − 𝑟 (𝐷)] ⋅

𝜋

2
− 2𝑙
∗
𝜋.

(55)

It follows that 𝑟(𝑁) = 2.
Choose 𝜂 = 0.1 and 𝑙∗ = 4 to find the allowable stabilizing

range of 𝑘
𝑝
. It is seen from Theorem 5 that the following

equation must have at least 11 zeros in (0, 25.233) as follows:

𝑘
𝑝

= −
𝐺
𝑟 (𝑧)

󵄨󵄨󵄨󵄨𝐺 (𝑗 (𝑧/𝜃))
󵄨󵄨󵄨󵄨
2
. (56)
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Figure 4: Graph of the function 𝑘
𝑝
.
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Figure 6: The Nyquist plot for Example 7.



8 Journal of Applied Mathematics

Bode diagram
10

0

−10

−20

−30

M
ag

ni
tu

de
 (d

B)

360

270

180

90

Ph
as

e (
de

g)

10−2 10−1 100 101

Frequency (rad/s)

Figure 7: The Bode diagram for Example 7.
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Figure 8: Stabilizing range of (𝑘
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𝑑
) when 𝑘

𝑝
= 1.

By the plot in Figure 4, it is easy to verify that such a
condition holds within the interval −6.611 < 𝑘

𝑝
< 4.633.

Thus, the allowable stabilizing range of 𝑘
𝑝
can be obtained.

Choose 𝑘
𝑝

= 1within (−6.611, 4.633).The zeros of𝑄
𝑖
(𝑧)

are

𝑧
0
= 0, 𝑧

1
= 0.522, 𝑧

2
= 1.24, 𝑧

3
= 2.574,

𝑧
4
= 4.31, 𝑧

5
= 6.60, 𝑧

6
= 9.17, 𝑧

7
= 12.01,

𝑧
8
= 14.95, 𝑧

9
= 17.96, 𝑧

10
= 20.99, 𝑧

11
= 24.01.

(57)

FromTheorem 4, we have

(−𝑖
0
+ 2𝑖
1
− 2𝑖
2
+ 2𝑖
3
− 2𝑖
4
+ 2𝑖
5
− 2𝑖
6
+ 2𝑖
7
− 2𝑖
8

+2𝑖
9
− 2𝑖
10

+ 𝑖
11
) ⋅ sgn𝑄

𝑖
(𝑧
+

11
, 𝑘
𝑝
) = 22.

(58)
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Figure 9: Complete stabilizing set of the PID controller.

Thus, the corresponding stings 𝐼 is

{𝑖
0
, 𝑖
1
, 𝑖
2
, 𝑖
3
, 𝑖
4
, 𝑖
5
, 𝑖
6
, 𝑖
7
, 𝑖
8
, 𝑖
9
, 𝑖
10
, 𝑖
11
}

= {1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1} .
(59)

By using (39), it is concluded that the stabilizing (𝑘
𝑖
, 𝑘
𝑑
)

corresponding to 𝑘
𝑝

= 1 have to simultaneously satisfy the
following:

𝑘
𝑖
> 0, 𝑘

𝑖
< 0.2725𝑘

𝑑
+ 4,

𝑘
𝑖
> 1.5376𝑘

𝑑
− 8, 𝑘

𝑖
< 6.6255𝑘

𝑑
+ 21,

𝑘
𝑖
> 18.5761𝑘

𝑑
− 71,

𝑘
𝑖
< 43.56𝑘

𝑑
+ 258, 𝑘

𝑖
> 84.0889𝑘

𝑑
− 720,

𝑘
𝑖
< 144.2401𝑘

𝑑
+ 1658, 𝑘

𝑖
> 223.5025𝑘

𝑑
− 3245,

𝑘
𝑖
< 322.5616𝑘

𝑑
+ 5674, 𝑘

𝑖
> 440.5801𝑘

𝑑
− 9107,

𝑘
𝑖
< 576.4801𝑘

𝑑
+ 13360.

(60)

From these inequalities, the stabilizing region of (𝑘
𝑖
, 𝑘
𝑑
) is

sketched in Figure 5. The complete stabilizing set of the PID
controller can also be derived by sweeping over the allowable
stabilizing range of 𝑘

𝑝
.

Example 7. Let us consider the plant only with the frequency
response data, whose Nyquist plot and Bode diagrams are
shown in Figures 6 and 7, respectively.

Following the same lines as Example 6, it can be obtained,
that 𝑛 − 𝑚 = 1 and 𝑟(𝑁) = 1. Let 𝜂 = 0.1, and let 𝑙

∗ = 4.
From Theorem 5, it is derived that the feasible range of 𝑘

𝑝

is (−1, 4.6). For 𝑘
𝑝

= −0.5 within the resultant range, the
stabilizing region of (𝑘

𝑖
, 𝑘
𝑑
) is shown in Figure 8. By sweeping

over the 𝑘
𝑝
values in the interval (−1, 4.6), the complete

stabilizing set of the PID controller is presented, which is
shown in Figure 9.

6. Conclusion

In this paper, we have proposed an analytical method to
characterize the stabilizing PID region for a linear time-delay
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plant without parametric model using linear programming.
Several characteristic parameters, which are required for
the determination of the stabilizing PID controller, were
firstly provided by using the frequency response informa-
tion. By employing an extended Hermite-Biehler theorem
applicable to quasipolynomials, the 2D parametric region
in the (𝑘

𝑖
, 𝑘
𝑑
) space was analytically developed, and its

boundaries consist of only several straight lines. Meanwhile,
the allowable stabilizing range of 𝑘

𝑝
is developed. Thus, the

3D visualization of all the stabilizing PID controllers can be
conveniently presented only based on the frequency response
data of the controlled plant. The results are applicable to
arbitrary SISO linear time-delay system, including stable and
unstable plants, even the plants with imaginary zeros or poles.
The proposed algorithm can be extended to carry out the
optimal design of the PID controllers and the design of the
PID controllers that can satisfy various performance indices
without detailed models.
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