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Data envelopment analysis (DEA) is used to evaluate the performance of decision making units (DMUs) with multiple inputs and
outputs in a homogeneous group. In this way, the acquired relative efficiency score for each decision making unit lies between zero
and one where a number of them may have an equal efficiency score of one. DEA successfully divides them into two categories
of efficient DMUs and inefficient DMUs. A ranking for inefficient DMUs is given but DEA does not provide further information
about the efficient DMUs. One of the popular methods for evaluating and ranking DMUs is the common set of weights (CSW)
method.We generate a CSWmodel with considering nondiscretionary inputs that are beyond the control of DMUs and using ideal
point method. The main idea of this approach is to minimize the distance between the evaluated decision making unit and the
ideal decision making unit (ideal point). Using an empirical example we put our proposed model to test by applying it to the data
of some 20 bank branches and rank their efficient units.

1. Introduction

Data envelopment analysis (DEA) which was first proposed
by Charnes et al. [1] and developed by Banker et al. [2] is a
nonparametric technique for measuring the efficiency of a
homogeneous group of decision making units (DMUs) on
the basis of multiple inputs and outputs based on observed
data [3–7]. DEA provides weights that are DMU-specific and
permits individual circumstances of operation of the DMUs
and for each DMU, it provides efficiency scores in the form of
a ratio of a weighted sum of the outputs to a weighted sum of
the inputs [8].

This method was applied to evaluate productivity and
performance of airports, efficiency of air force maintenance
units, hospitals, university departments, schools, industries,
banks, products and services, strategic decision making, and
technologies [9].

On the basis of various assumptions, a number of dif-
ferent models have been developed. The DEA models may
be generally classified into radial and nonradial models. The

radial models include the CCR and the BCCmodels, and the
nonradial models include the additive model, the multipli-
cation model, the range-adjusted measure (RAM), and the
slack-based measure (SBM) [5, 10, 11].

Fundamental assumptions of the original DEA models
[12] are that inputs and outputs are measured by exact values
or are factual and definite factors [4] and assume that the
assessed units (DMUs) are homogeneous. In other words,
they perform the same tasks with similar objectives, consume
similar inputs and similar outputs, and operate in similar
operational environments and generally called discretionary
factors [6]. However, in the real world situations and in
many applications of the efficiency evaluation of the units, the
assumption of homogeneous environments may be violated
and the factors that describe the differences in the environ-
ments may need to be included in the analysis. These factors
as well as other factors that are beyond the control of the
DMU’smanagement, frequently called “exogenously fixed” or
nondiscretionary, also need to be considered. Some examples
of nondiscretionary factors in the DEA literature are the
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number of competitors in a restaurant chain and snowfall or
weather in evaluating the efficiency of maintenance units and
so forth [6, 9, 13].

The efficiency scores of decisionmaking units, whenDEA
models are used, are between zero and one inclusively [3, 5].
DEA successfully divides them into two categories: efficient
DMUs and inefficient DMUs. A ranking for inefficient DMUs
is given; however, efficient DMUs cannot be ranked [7]. In
order to differentiate these efficient units, a variety ofmethods
or “ranking efficient units” in the DEA are proposed [3]. For
example, Anderson and Petersen [14] and Mehrabian et al.
[15] introduced two of themost popularmethods, namely, AP
and MAJ. Cook et al. [16] divided efficient units with equal
scores on the boundary, by imposing the restrictions on the
weights in aDEA analysis. Jahanshahloo et al. [17] introduced
L1-norm approach that removes some deficiencies arising
from AP and MAJ but fails to rank nonextreme DMUs. Liu
and Hsuan Peng [18] introduced a common set of weights
(CSW) to create the best efficiency score of one group com-
posed of efficient DMUs. They then used this common set
of weights to evaluate the absolute efficiency of each efficient
DMU in order to rank it [5, 7].

Here in this paper, we use a method to rank the efficiency
of DMUs and obtain the common set of weights model, that
is, extended with nondiscretionary inputs to evaluate the
absolute efficient DMUs. Using this common set of weights,
the efficiency scores forDMUs are also obtained. In Section 2,
we propose our model according to the CCR model which
was initially proposed by Charnes, Cooper, and Rhodes in
1978, and we briefly review a general CSW method while
the CSW with ideal point method is described in Section 3.
Nondiscretionary version of the DEA model is extended in
Section 4. Section 5 includes the extended proposed mode
and in Section 6, we apply the model in empirical example.
Finally Section 7 includes the paper’s conclusions and future
research ideas.

2. CCR Model

Using the traditional denotations in DEA, we assume that
there are a set of 𝑛 DMUs, and each DMU𝑗 (𝑗 = 1, . . . ,

𝑛) produces 𝑠 different outputs using𝑚 different inputs which
are denoted by 𝑥𝑖𝑗 (𝑖 = 1, . . . , 𝑚) and 𝑦𝑟𝑗 (𝑟 = 1, . . . , 𝑠),
respectively. Here 𝑥𝑖𝑗 and 𝑦𝑟𝑗 are all positive [1]. For any
evaluated DMU𝑗, the efficiency score𝐻 can be calculated by
the following CCRmodel according to following hypotheses:

𝑗 is the number of decision making units (DMUs)
being compared in the DEA analysis,

DMU𝑗 the 𝑗th decision making unit,

𝜃 the efficiency rating of the decision making unit
being evaluated by DEA,

𝑦𝑟𝑗 the amount of output 𝑟 used by decision making
unit 𝑗,

𝑥𝑖𝑗 the amount of input 𝑖 used by decision making
unit 𝑗,
𝑖 the number of inputs used by the DMUs,
𝑟 the number of outputs generated by the DMUs,
𝑢𝑟 the coefficient or weight assigned to output 𝑟 by
DEA, and
V𝑖 the coefficient or weight assigned to input 𝑖 byDEA.

Also,

Max 𝐻 =

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑜,

subject to
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑜 = 1, 𝑢𝑟 ≥ 0, V𝑖 ≥ 0,

𝑟 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑚.

(1)

And the dual of model (1) is

Min 𝐷 = 𝜃𝑜

subject to
𝑛

∑

𝑗=1

𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑜𝑥𝑖𝑜, 𝑖 = 1, . . . , 𝑚.

𝑛

∑

𝑗=1

𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑖𝑜, 𝑟 = 1, . . . , 𝑠;

𝜆𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(2)

A characteristic of the above DEAmodel can be used to eval-
uate the relative efficiency of its favorable weights in order
to calculate its maximum efficiency score for each decision
making unit. We note that these efficiency scores usually
lie in (0, 1]. The DEA successfully divides them into two
categories: efficient DMUs and inefficient DMUs. A ranking
for inefficient DMUs is given; however, DEA does not
provide sufficient information about the efficient DMUs. It is
noteworthy that one of the popular methods for evaluating
and ranking DMUs is the common set of weights (CSW)
method [7, 43].

3. Common Set of Weights

As the mathematical models in DEA are run separately for
each DMU, the set of weights will be different for the various
DMUs, and in some cases it is unacceptable that the same
factor is accorded widely differing weights. This flexibility in
selecting the weights deters the comparison amongDMUs on
a common base. A possible answer to this difficulty lies in
the specification of a common set of weights, which was first
introduced by Cook et al. [44] and Roll et al. [21] in the con-
text of applying DEA to evaluate highway maintenance units.
In other words, the major purpose for generating a common
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set of weights is to provide a common base for ranking the
DMUs [18, 34].

It is argued by Kao and Hung [31] that using different
sets of weights to classify the DMUs as efficient or inefficient
is acceptable to the practitioners; however, if different sets
of weights are used for ranking, most practitioners may not
agree. To reduce the flexibility in selecting input and output
weights, common weights have been suggested instead of
variable weights for assessing the performances of DMUs.
The use of common weights makes it possible to compare
and rank the performances of the DMUs on the same basis
[39].

Table 1 gives a brief summary of some relevant research
on DEA to find CSW.

3.1. Common Set of Weights by Comparing with Ideal DMU
(Ideal Point). DEA was initially developed as a methodology
for assessing the comparative efficiencies of organized units.
In conventional DEA models each DMU in turn maximizes
the efficiency score, under the constraint that none of the
DMUs efficiency scores is allowed to exceed 1.0. Decision
maker always intuitively takes the maximal efficiency score
1.0 as the commonbenchmark level forDMUs. Liu andHsuan
Peng [18] have taken advantage of this benchmark level to
concretely describe the concept of the generation of common
weights. By the definition of the efficiency score, the common
benchmark level is one straight line with slope 1.0 that passes
through the origin. Some might argue that it cares too much
about distance of each DMU’s input and output itself and
wonder why not consider the distance between the evaluated
decision making unit and the ideal decision making unit.
Here we attempt to rank efficiency of DMUs with common
weights by comparison of ideal point (ideal DMU: DMU).

Definition 1. Assume that there are a set of 𝑛 DMUs. Each
DMU𝑗 (𝑗 = 1, . . . , 𝑛) has 𝑚 different inputs and 𝑠 dif-
ferent outputs, which are denoted by 𝑥𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚)

and 𝑦𝑟𝑗 (𝑟 = 1, 2, . . . , 𝑠), respectively. All the data are required
to be positive just like the traditional DEA model [1]. The
input data of all DMUs form an𝑚 by 𝑛matrix and output data
form an 𝑠 by 𝑛matrix. The smallest data of each row of input
matrix is selected to be the input of the virtual ideal DMU,
and the biggest data of each row of output matrix is selected
to be the output of the virtual ideal DMU.

The virtual ideal DMU is a DMU with minimized inputs
of all of DMUs as its input and maximized outputs of all of
DMUs as its output. Generally, if we show ideal DMU with
DMU = (𝑋, 𝑌), thenwe have𝑥𝑖 = min{𝑥𝑖𝑗 | 𝑗 = 1, . . . , 𝑛} (𝑖 =
1, . . . , 𝑚) and 𝑦𝑟 = max{𝑦𝑟𝑗 | 𝑗 = 1, . . . , 𝑛} (𝑟 = 1, . . . , 𝑠).

Definition 2. An ideal level is one straight line that passes
through the origin and ideal DMU with slope 1.0.

In Figure 1, the vertical and horizontal axes are set to be
the weighted sum of 𝑠 outputs and the weighted sum of 𝑚
inputs, respectively. Line “ox” is an ideal line representing
that all the points on the line must satisfy the constraint
that the weighted sum of 𝑠 outputs equals the weighted sum

Output

Input
O

x

DMUL

DMUN

DMUM

DMU

Figure 1: An illustration of the model for gap analysis, showing
DMUs below the virtual ideal DMU.

of 𝑚 inputs and so DMU = (∑
𝑚
𝑖=1 𝑥𝑖V́𝑖, ∑

𝑠
𝑟=1 𝑦𝑟𝑢́𝑟) is an

ideal DMU. Given one set of weights 𝑢́𝑟 (𝑟 = 1, . . . , 𝑠) and
V́𝑖 (𝑖 = 1, . . . , 𝑚), the virtual gaps, between points 𝑀 and
DMU on the horizontal axis and vertical axis, are denoted by
Δ
𝐼
𝑀 = ∑

𝑛
𝑗=1 V𝑀𝑥𝑀𝑗 − ∑

𝑛
𝑗=1 V𝑀𝑥min and Δ

𝑅
𝑀 = ∑

𝑛
𝑗=1 𝑢𝑀𝑦max −

∑
𝑠
𝑟=1 𝑢𝑀𝑦𝑀𝑗, respectively. Similarly, for points 𝑁 and 𝐿, the

gaps will be calculated (Δ𝐼𝑁, Δ
𝑅

𝑁
and Δ𝐼𝐿, Δ

𝑅

𝐿
). Observing that

there exists a total virtual gap to the ideal point, we aim to
determine an optimal set of weights 𝑢∗𝑟 (𝑟 = 1, . . . , 𝑠) and
V∗𝑖 (𝑖 = 1, . . . , 𝑚) such that both points 𝑀∗ and 𝑁∗ below
the ideal line could be as possibly close to their ideal point
(DMU) on the ideal line. In other words, by adopting the
optimal weights, the total virtual gaps Δ𝐼𝑀 + Δ

𝑅

𝑀
+Δ
𝐼
𝑁 + Δ

𝑅

𝑁
+

Δ
𝐼
𝐿 + Δ
𝑅

𝐿
to the ideal point are the shortest to DMU.

As for the constraint, the numerator is the weighted sum
of outputs plus the vertical gap∑𝑛𝑗=1 Δ

𝐼
𝑗 and the denominator

is the weighted sum of inputs minus the horizontal virtual
gap ∑𝑛𝑗=1 Δ

𝑅
𝑗 . The equations in constraints are equal to 1.0,

meaning that the projection point (ideal DMU) is reached.
Therefore we have the following model:

Min Δ
∗
=

𝑛

∑

𝑗=1

(Δ
𝐼
𝑗) +

𝑚

∑

𝑗=1

(Δ
𝑅
𝑗)

subject to
𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛

𝑚

∑

𝑖=1

V𝑖𝑥min = 1;
𝑠

∑

𝑟=1

𝑢𝑟𝑦max = 1,

V𝑖, 𝑢𝑟 ≥ 𝜀 ≥ 0, 𝑖 = 1, . . . ., 𝑚,

𝑟 = 1, . . . ., 𝑠.

(3)
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Table 1

Number CSWmethods developed Authors Year

1
Provided a subjective ordinal preference ranking by developing

common weights through a series of bounded DEA runs, by closing
the gap between the upper and lower limits of the weights.

Cook and Kress [19, 20] 1990,
1991

2

Used a general unbounded DEA model to obtain different sets of
weights and then taking their average or weighted average with DEA

efficiencies as the weights, maximizing the average efficiency of
DMUs, maximizing the number of DEA efficient units, and ranking
various factors by some order of importance and then assigning low
weights to less important factors and maximal feasible weights to

important ones

Roll et al. [21]
Roll [22]

1991
1993

3
Considered the common weights for all the units, by maximizing the
sum of efficiency ratios of all the units, in order to rank each unit as
well as suggesting a potential use of the common weights for ranking

DMUs.

Ganley and Cubbin [23] 1992

4 Developed a two-stage linear discriminate analysis approach to
generate the common weights Sinuany-Stern, et al. [24] 1994

5 Developed a maxi-min efficiency ratio model which also creates
common weights for evaluation Troutt [25] 1995

6 Used the canonical correlation analysis to provide a single weight
vector for inputs and outputs, respectively, common to all DMUs.

Friedman and Sinuany-Stern
[26] 1997

7 Presented a nonlinear discriminate analysis to provide the common
weights for all DMUs.

Sinuany-Stern and Friedman
[27] 1998

8 Presented the multiple objectives max-min model to determine CSW Chiang and Tzeng [28] 2000

9 Minimizes a convex combination of these deviations measured in
terms of a couple of distances in such family Despotis [29] 2002

10
Proposed a DEA-CP (compromise programming) model which aims
at seeking a common set of weights across the DMUs by combining

the DEA and the compromise programming.
Hashimoto and Wu [30] 2004

11

Based on multiple objective nonlinear programming and by using
compromise solution approach, proposed a method to generate a
common set of weights for all DMUs which are able to produce a
vector of efficiency scores closest to the efficiency scores calculated

from the standard DEA model (ideal solution)

Kao and Hung [31] 2005

12
Based on multiple objective nonlinear programming and

maximization of the minimum value of the efficiency scores,
proposed a method to generate a common set of weights for all

DMUs.

Jahanshahloo et al. [32] 2005

13

Developed a goal-programming model for this setting that seeks to
derive such a common-multiplier set. The important feature of this
multiplier set is that it minimizes the maximum discrepancy among
the within-group scores from their ideal levels. And deal with these
distances but relax the objective to groups of DMUs which operate in

similar circumstances

Cook and Zhu [33] 2007

14 Used a multiple objective linear programming (MOLP) approach for
generating a common set of weights in the DEA framework. Makui et al. [34] 2008

15 Proposed a common weights analysis (CWA) methodology to search
for a common set of weights for DMUs. Liu and Peng [18] 2008

16 Dealt with deviations regarding the total input virtual and the total
output virtual Franklin Liu and Peng [35] 2009

17

Introduced a minimum weight restriction and as a side effect,
common weights are also achieved. Imposed weight restrictions to

incorporate value judgment are widely researched within DEA but as
these methods originally do not necessarily and purposefully provide

a full ranking, they are not explicitly discussed here.

Wang et al. [36] 2009
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Table 1: Continued.

Number CSWmethods developed Authors Year

18
Proposed two approaches to obtain the set of common weights for
ranking efficient DMUs by comparing with an ideal line and the

special line.
Jahanshahloo et al. [6] 2010

19 Proposed a CSW as the average of the profiles of weights provided by
the so-called “neutral” model used in the cross-efficiency evaluation. Wang and Chin [37] 2010

20
Proposed a common weight MCDA-DEA method with a more
discriminating power over the existing ones that enable us to

construct CIs using a set of common weights.
Hatefi and Torabi [38] 2010

21
Used methods based on regression analysis to seek a common set of
weights that are easy to estimate and can produce a full ranking for

DMUs.
Wang et al. [39] 2011

22
A separation method is proposed for locating a set of weights, also
known as a common set of weights (CSW), in the data envelopment

analysis (DEA).
Chiang et al. [40] 2011

23
Extended a common-weights DEA approach involving a linear
programming problem to gauge the efficiency of the DMUs with

respect to the multiobjective model.
Davoodi and Rezai. [41] 2012

24

Used an approach to minimize the deviations of the CSW from the
DEA profiles of weights without zeros of the efficient DMUs. This

minimization reduces, in particular, the differences between the DEA
profiles of weights that are chosen, so the CSW proposed is a

representative summary of such DEA weights profiles. Several norms
to the measurement of such differences are used.

Ramón et al. [8] 2012

25
Proposed two models considering ideal and anti-ideal DMU to

generate common weights from the view of multiple criteria decision
analysis (MADA), for performance evaluation and ranking.

Sun et al. [42] 2013

Then, if we let Δ𝐼𝑗 be ∑
𝑚
𝑖=1 V𝑖𝑥𝑖𝑗 − ∑

𝑚
𝑖=1 V𝑖𝑥min and let Δ𝑅𝑗 be

∑
𝑠
𝑟=1 𝑢𝑟𝑦max − ∑

𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗, model (3) is then simplified to the

following linear programming (4):

Min Δ
∗
=

𝑛

∑

𝑗=1

(

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑚

∑

𝑖=1

V𝑖𝑥min)

+

𝑛

∑

𝑗=1

(

𝑠

∑

𝑟=1

𝑢𝑟𝑦max −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗) ,

subject to
𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑚

∑

𝑖=1

V𝑖𝑥min = 1;
𝑠

∑

𝑟=1

𝑢𝑟𝑦max = 1,

V𝑖, 𝑢𝑟 ≥ 𝜀 ≥ 0, 𝑖 = 1, . . . , 𝑚,

𝑟 = 1, . . . , 𝑠.

(4)

Definition 3. Theperformance of DMU𝑗 is better than that of
DMU𝑗 if Δ 𝑗 < Δ 𝑖.

From the model (4), it is found that the distance between
DMU and DMU𝑗 is defined as Δ𝐼DMU

𝑗 = (∑
𝑚
𝑖=1 V𝑖𝑥𝑖𝑗 −

∑
𝑚
𝑖=1 V𝑖𝑥min) + (∑

𝑠
𝑟=1 𝑢𝑟𝑦max − ∑

𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗). Note that the pur-

pose of the model (4) is to obtain an optimal solution (V∗𝑖 , 𝑢
∗
𝑟 )

to make the total distances between all DMUs and DMU as
short as possible [6, 42].

Next we find efficiency of each DMU with optimal
weights. If a DMU𝑗 is on ideal point then we use definition
of the CSW efficiency score of DMU𝑗 that was defined by the
following equation (e.g., see [18, 45]):

𝜇
∗
𝑗 =

∑
𝑠
𝑟=1 𝑦𝑟𝑗𝑢

∗
𝑟 − ∑

𝑛
𝑖=1 𝑧𝑖𝑗V́

∗
𝑖

∑
𝑛
𝑖=1 𝑥𝑖𝑗V

∗
𝑖

. (5)

4. Nondiscretionary Model

Assume that there are 𝑛 DMUs, where each DMU𝑗 (𝑗 =

1, 2, . . . , 𝑛), uses 𝑡 different discretionary inputs, 𝑥𝑖𝑗 (𝑖 =

1, . . . , 𝑡), and 𝑘 different nondiscretionary inputs, 𝑧𝑖𝑗 (𝑖 =

1, . . . , 𝑘) for 𝑡 + 𝑘 = 𝑚, to produce 𝑠 different outputs 𝑦𝑟𝑗 (𝑟 =
1, . . . , 𝑠).

There are somemodels that incorporate nondiscretionary
inputs intoDEAmodels. Banker andMorey [45] provided the
first model by modifying the constraints on the fixed factors
within the DEA model. This model differs from the original
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CCR DEA model by breaking the link between nondiscre-
tionary inputs and efficiency:

Max 𝜔 =

𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑜 −

𝑘

∑

𝑖=1

V́𝑖𝑧𝑖𝑜

subject to
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −

𝑘

∑

𝑖=1

V́𝑖𝑧𝑖𝑗 −
𝑡

∑

𝑖=1

V𝑖𝑥𝑖𝑗 ≤ 0,

𝑗 = 1, 2, . . . , 𝑛,

𝑡

∑

𝑖=1

V𝑖𝑥𝑖𝑜 = 1, V𝑖 ≥ 𝜀, 𝑖 = 1, 2, . . . , 𝑡,

𝑢𝑟 ≥ 𝜀, 𝑟 = 1, 2, . . . , 𝑠,

V́𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑘.

(6)

We note that there is a great similarity between fixed factor
constraints and constraints on the nondiscretionary inputs
while both constraints aremodified.Thismodification is used
to take the fixed factors of production under control in order
to break the link between the efficiency and the fixed factors
[7, 46].

Although this model allows each DMU to measure the
efficiency with its favorable weights, to calculate its efficiency
it may not be compared and ranked on the same basis. More-
over, some of the efficient DMUs may have their efficiency
scores equal to one because of the flexibility in the selection
of weights.

5. Proposed Model

To address the problems mentioned above, using ideal point
(ideal DMU) method, we propose a newmodel to extend the
existing nondiscretionary DEA model for generating com-
mon weights. This model allows us to obtain and compare
the efficiency scores from multiple different angles.

Assume that there are 𝑛 DMUs, where each DMU𝑗 (𝑗 =
1, 2, . . . , 𝑛) uses 𝑡 different discretionary inputs, 𝑥𝑖𝑗 (𝑖 =

1, . . . , 𝑡) and 𝑘 different nondiscretionary inputs, 𝑧𝑖𝑗 (𝑖 =

1, . . . , 𝑘) for 𝑡 + 𝑘 = 𝑚, to produce 𝑠 different outputs 𝑦𝑟𝑗 (𝑟 =
1, . . . , 𝑠).

Definition 1. The virtual ideal DMU is a DMU with mini-
mized inputs of all of the DMUs as its input and maximized
outputs of all of the DMUs as its output. Generally, if we
show ideal DMU with DMU = (𝑋, 𝑌) then we have 𝑥𝑖 =
min{𝑥𝑖𝑗 | 𝑗 = 1, . . . , 𝑛} (𝑖 = 1, . . . , 𝑚) and 𝑦𝑟 =

max{𝑦𝑟𝑗 | 𝑗 = 1, . . . , 𝑛} (𝑟 = 1, . . . , 𝑠). Here 𝑋 consists of two
parts, comprehensive minimum discretionary and nondis-
cretionary inputs and one maximum output for ideal DMU.

For this reason, we have DMU = (𝑋, 𝑌) that 𝑥𝑖1 =

min{𝑥𝑖𝑗, | 𝑗 = 1, . . . , 𝑛} (𝑖 = 1, . . . , 𝑚), 𝑥𝑖2 = min{𝑧𝑖𝑗, | 𝑗 = 1,
. . . , 𝑛} (𝑖 = 1, . . . , 𝑚), and 𝑦𝑟 = max{𝑦𝑟𝑗 | 𝑗 = 1, . . . , 𝑛} (𝑟 =
1, . . . , 𝑠).

Then, according to models (4) and (6) we can construct
the following model

Min 𝐸 =

𝑛

∑

𝑗=1

[

𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 −
𝑚

∑

𝑖=1

V𝑖𝑥1min]

+

𝑛

∑

𝑗=1

[

𝑚

∑

𝑖=1

V́𝑖𝑧𝑖𝑗 −
𝑚

∑

𝑖=1

V́𝑖𝑥2min]

+

𝑛

∑

𝑗=1

[

𝑠

∑

𝑟=1

𝑢𝑟𝑦max −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗]

subject to
𝑚

∑

𝑖=1

V𝑖𝑥𝑖𝑗 +
𝑚

∑

𝑖=1

V́𝑖𝑧𝑖𝑗 −
𝑠

∑

𝑟=1

𝑢𝑟𝑦𝑟𝑗 ≥ 0,

𝑗 = 1, 2, . . . , 𝑛,

𝑚

∑

𝑖=1

V𝑖𝑥1min = 1,
𝑠

∑

𝑟=1

𝑢𝑟𝑦max −
𝑚

∑

𝑖=1

V́𝑖𝑥2min = 1,

V𝑖, 𝑢𝑟, V́𝑖 ≥ 𝜀 > 0, 𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠.
(7)

The dual of model (7) is

Max 𝑇 = 𝛼 + 𝛽 + 𝜀

𝑚

∑

𝑖=1

𝛾𝑖 + 𝜀

𝑚

∑

𝑖=1

𝛾𝑖 + 𝜀

𝑠

∑

𝑟=1

𝛿𝑟

subject to
𝑛

∑

𝑗=1

𝜆𝑗𝑥𝑖𝑗 + 𝛼𝑥1min + 𝛾𝑖 ≤ 𝑛(
𝑚

∑

𝑖=1

𝑥𝑖𝑗 − 𝑥1min) ,

𝑖 = 1, 2, . . . , 𝑡.

𝑛

∑

𝑗=1

𝜆𝑗𝑧𝑖𝑗 − 𝛽𝑥2min + 𝛾𝑖 ≤ 𝑛(
𝑚

∑

𝑖=1

𝑧𝑖𝑗 − 𝑥2min) ,

𝑖 = 1, 2, . . . , 𝑡.

𝛽𝑦max −
𝑛

∑

𝑗=1

𝜆𝑗𝑦𝑟𝑗 + 𝛿𝑟 ≤ 𝑛(𝑦max −
𝑠

∑

𝑟=1

𝑦𝑟𝑗) ,

𝑟 = 1, 2, . . . , 𝑠, 𝜆𝑗, 𝛾𝑖, 𝛾𝑖, 𝛿𝑟 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑖 = 1, 2, . . . , 𝑚, 𝑟 = 1, 2, . . . , 𝑠, 𝛼, 𝛽 → free.
(8)

6. Numerical Examples

In this section we provide an empirical study of bank perfor-
mance evaluation in order to demonstrate the robustness of
our method as well as having a better understanding of the
performance of our proposed model.

6.1. Empirical Example. To illustrate the proposed model
consider 20 bank branches in Iran with 2 discretionary inputs
and 1 nondiscretionary input and 2 outputs. In Tables 2, 3, 4,
and 5, we applymodels (6) and (7) to evaluate efficientDMUs.
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Table 2: Labels of inputs and outputs.

Inputs Description Outputs Description
X1 The number of personnel Y1 The number of insurance policies
X2 The total number of computers

Y2 The received total sum (income)
Z1 Distance of each branch to city centre

Table 3: The data of 20 bank branches.

DMUs Discretionary inputs Nondiscretionary inputs Outputs
X1 X2 Z1 Y1 Y2

1 96 86 64 30 145
2 75 88 1.2 0.001 175
3 77 85 0.4 11 113
4 91 93 2.3 10 128
5 89 83 68 9 101
6 102 97 0.8 7 82
7 96 90 6.5 47 154
8 85 92 2.3 11 54
9 106 84 20.1 43 179
10 107 95 1.4 9 117
11 94 78 49 81 37
12 78 89 1.7 11 124
13 102 107 0.7 30 185
14 82 92 1.4 28 51
15 77 92 1.7 6 28
16 89 85 23.5 15 85
17 84 104 5.4 15 109
18 94 91 1.9 13 72
19 97 95 3.5 13 129
20 82 100 1.2 29 150

Table 4: The results of 20 bank branches from models (5)–(7).

DMUs Model (6) Rank Models (5) and (7) Rank DMUs Model (6) Rank Models (5) and (7) Rank
1 0.8193072 7 0.814882 5 11 1.0000000 1 0.274558 19
2 1.0000000 1 1.000001 2 12 0.7129804 9 0.703550 7
3 0.6949586 11 0.667146 9 13 0.9295474 6 0.864070 3
4 0.6982259 10 0.677215 8 14 0.7662059 8 0.293495 18
5 0.5892561 13 0.586333 11 15 0.1801541 20 0.157402 20
6 0.4343827 16 0.409140 15 16 0.4927510 15 0.489511 14
7 1.0000000 1 0.845831 4 17 0.5596400 14 0.541312 13
8 0.3169876 18 0.296808 17 18 0.4135209 17 0.388773 16
9 1.0000000 1 1.000017 1 19 0.2405702 19 0.663105 10
10 0.6294556 12 0.585199 12 20 1.0000000 1 0.777212 6

Table 5: The weights of model (6).

Weights Model (7) Weights Model (7) Weights Model (7)
V∗1 0.3080772𝐸 − 02

V́∗1 0.1000000𝐸 − 05

𝑢
∗
1 0.7204692𝐸 − 03

V∗2 0.9858232𝐸 − 02 𝑢
∗
2 0.6277616𝐸 − 02
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The second, third, seventh, and eighth columns of Table 4
report the model (6) efficiency scores with nondiscretionary
inputs and its rankings, respectively. This model allows
DMUs to measure their efficiencies with various weights.
Thus, the efficiencies of 20 DMUs obtained by 20 sets of
weights may not be possible to be compared and ranked on
the same basis, and so a common set of weights method in
model (7) is utilized.The efficiencies of the 20 bank branches
of model (7) with optimal weights and using (5) are shown
in the fourth, fifth, ninth, and tenth columns of Table 4,
respectively. Table 5 shows the weight results of the proposed
model. It is evident that the new models can all be used for
generating commonweights.We emphasize that they all offer
more reasonable results than the conventional DEA models.

Table 4 shows the efficiencies of all bank branches from
two models. The column of model (6) gives the CCR
efficiency scores with nondiscretionary inputs. Observe that
there are 5 efficient DMUs with different selection weights. It
is not possible to give them a full ranking.

In order to solve this problem, we propose a common
set of weights model considering nondiscretionary inputs to
calculate a set of optimal weights (see Table 5) for all DMUs.
Using these and (5), all efficiency scores for all DMUs are
calculated and ranked. The results are shown in the fourth,
fifth, ninth, and tenth columns of Table 4.

Using models (7) and (5), clearly we can find an optimal
set of weights for evaluating each DMU and calculate effi-
ciency scores to rank all the bank branches completely which
is preferable to that of using model (6).

The above empirical example shows that the new pro-
posed DEA model can successfully acquire a full ranking for
the DMUs. This method may be a good way for full ranking
DMUs with various data since they are accustomed to a good
unit of comparison.

7. Conclusions and Future Research

General DEA models are used to evaluate the relative effi-
ciency with its favorable weights in order to calculate the
efficiency score of each decision making unit.These obtained
scores are between zero and one, with a possibility of some
having an equal efficiency score of one (efficient DMUs)
which is due to the flexibility in the selection of weights. DEA
successfully divides DMUs into two categories: efficient
DMUs and inefficient DMUs. Ranking of DMUs inDEA is an
important phase for efficiency evaluation of DMUs. In DEA
techniques, a ranking for inefficient DMUs is given. However,
generally, DEA does not provide adequate information about
the efficient DMUs and does not rank them.

One of the popular methods for evaluating and ranking
efficiency and inefficiency DMUs is common set of weights
(CSW)method, that is, themost favorable in determining the
absolute efficiency for all of DMUs.

The conventional DEA methodology requires the inputs
and the outputs of the DMUs to be discretionary. Neverthe-
less, in reality, many observations are nondiscretionary in
nature. We generated a nondiscretionary version of a CSW
model, that is, beyond the control of DMUs, and for this pur-
pose we used ideal point method. The idea of this approach

is to minimize the distance between the evaluated decision
making unit and the ideal decisionmaking unit (ideal point).
Ranking DMUs determines the input and output weights by
minimizing the distance of all DMUs and the point (ideal
DMU) to get the best efficiency score.The optimal solution of
this model was considered as a set of weights for all DMUs.
Then DMUs were ranked according to (5). To validate our
model, we used an empirical example in rankingDMUs using
our proposed model.

We hope that this paper will inspire future researchers to
explore relevant ideas in developingCSWmethod to consider
various data such as nondiscretionary inputs and stochastic
data.
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