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In order to characterize the bivariate signals, minimum-energy bivariate wavelet frames with arbitrary dilation matrix are studied,
which are based on superiority of theminimum-energy frame and the significant properties of bivariate wavelet. Firstly, the concept
ofminimum-energy bivariate wavelet frame is defined, and its equivalent characterizations and a necessary condition are presented.
Secondly, based on polyphase form of symbol functions of scaling function and wavelet function, two sufficient conditions and an
explicit constructed method are given. Finally, the decomposition algorithm, reconstruction algorithm, and numerical examples
are designed.

1. Introduction

Frames theory is one of the efficient tools in the signal pro-
cessing. It was introduced byDuffin and Schaeffer [1] andwas
used to deal with problems in nonharmonic Fourier series.
However, people did not pay enough attention to frames
theory for a long time. When wavelets theory was booming,
Daubechies et al. [2] defined the affine frame (wavelet frame)
by combining the theory of continuous wavelet transform
with frame. After that, people started to research frames
and its application again. Benedetto and Li [3] gave the
definition of frame multiresolution analysis (FMRA), and
their work laid the foundation for other people to do further
research. Frames not only can overcome the disadvantages of
wavelets and multivariate wavelets but also increase redun-
dancy, and the numerical computation becomes much more
stable using frames to reconstruct signal. With well time-
frequency localization and shift invariance, frames can be
designed more easily than wavelets or multivariate wavelets.
At present, frames theory has been widely used in theoretical
and applicable domains [4–18], such as signal analysis, image
processing, numerical calculation, Banach space theory, and
Besov space theory.

In 2000, Chui and He [5] proposed the concept of min-
imum-energy wavelet frames. The minimum-energy wavelet

frames reduce the computational, and maintain the numer-
ical stability, and do not need to search dual frames in the
decomposition and reconstruction of functions (or signals).
Therefore, many people paid more attention to the study of
minimum-energy wavelet frames. Petukhov [6] studied the
(minimum-energy) wavelet frames with symmetry. Huang
andCheng [7] studied the construction and characterizations
of theminimum-energywavelet frameswith arbitrary integer
dilation factor. Gao and Cao [8] researched the structure of
the minimum-energy wavelet frames on the interval [0,1]
and its application on signal denoising. Liang and Zhao
[9] studied the minimum-energy multiwavelet frames with
dilation factor 2 andmultiplicity 2 and gave a characterization
and a necessary condition ofminimum-energymultiwavelets
frames. Huang et al. [10, 11] studied minimum-energy mul-
tiwavelet frames and wavelet frames on the interval [0,1]
with arbitrary dilation factor. It was well known that a
majority of real-world signals are multidimensional, such
as graphic and video signal. For this reason, many people
studiedmultivariate wavelets andmultivariate wavelet frames
[12–18]. In this paper, in order to deal with multidimen-
sional signals and combine organically the minimum-energy
wavelet frames with the significant properties of multivariate
wavelets, minimum-energy bivariate wavelet frames with
arbitrary dilation matrix are studied.
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The organization of this paper is as follows. In Section 2,
we give preliminaries and basic definitions. Then, in
Section 3, the main results are described. In Section 4, we
present the decomposition and reconstruction formulas of
minimum-energy bivariate wavelet frames. Finally, numeri-
cal examples are given in Section 5.

2. Preliminaries and Basic Definitions

2.1. Basic Concept and Notation. Let us recall the concept of
dilation matrix and give some notations.

Definition 1 (see [18]). Let 𝐴 be the 2 × 2 integer matrix.
Suppose that its eigenvalues have a modulus strictly greater
than 1, then 𝐴 is called a dilation matrix.

(1) Throughout this paper, letZ,R denote the set of inte-
gers and real numbers, respectively.Z2,R2 denote the
set of 2-tuple integers and two-dimensional Euclidean
space, respectively. For a given dilation matrix 𝐴, let
{𝜇
𝑖
, 𝑖 = 0, 1, . . . , 𝑠 − 1} be a complete set of represent-

atives of Z2/𝐴Z2, where 𝑠 = | det(𝐴)|.
(2) Let 𝐿2(R2) = {𝑓 : ∫

R2
|𝑓(𝑥)|

2
𝑑𝑥 < ∞} and 𝑙

2
(Z2) =

{𝑠 : ∑
𝑚∈Z2 |𝑠𝑚|

2
𝑑𝑥 < ∞}. For any 𝑓, 𝑔 ∈ 𝐿

2
(R2), the

inner product, norm, and the Fourier transform are
defined, respectively, by

⟨𝑓 (𝑥) , 𝑔 (𝑥)⟩ = ∫
R2

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

= ⟨𝑓, 𝑓⟩ ,

𝑓 (𝜉) =
1

√2𝜋
∫
R2

𝑓 (𝑥) 𝑒
−𝑖𝑥⋅𝜉

𝑑𝑥.

(1)

(3) For any function 𝑓 ∈ 𝐿
2
(R2), 𝑓

𝑗,𝑘
(𝑥) is defined by

𝑓
𝑗,𝑘

(𝑥) = 𝑠
𝑗/2
𝑓 (𝐴
𝑗
𝑥 − 𝑘) , 𝑗 ∈ Z, 𝑘 ∈ Z

2
. (2)

(4) We sort the elements of Z2 by lexicographical order.
That is, for any 𝑘 = (𝑘

1
, 𝑘
2
)
𝑇
, 𝑙 = (𝑙

1
, 𝑙
2
)
𝑇
, 𝑘, 𝑙 ∈ Z2,

and let

𝑚 = (𝑘
1
− 𝑙
1
, 𝑘
2
− 𝑙
2
) ; (3)

then 𝑘 = 𝑙 denotes that every component of 𝑚 is zero, 𝑘 >

𝑙 denotes that the first nonzero component of 𝑚 is positive,
and 𝑘 < 𝑙 denotes that the first nonzero component of 𝑚 is
negative.

(5) For any 𝑧 = (𝑧
1
, 𝑧
2
)
𝑇
, 𝑧
1

̸= 0, 𝑧
2

̸= 0, 𝑘 = (𝑘
1
, 𝑘
2
)
𝑇
∈

R2, 𝑧−1, 𝑧𝑘 are defined, respectively, by

𝑧
−1

= (𝑧
−1

1
, 𝑧
−1

2
)
𝑇

, 𝑧
𝑘
=

2

∏

𝑖=1

𝑧
𝑘
𝑖

𝑖
. (4)

(6) For any 𝐴 ∈ R2×2, 𝑧𝐴 is defined by

𝑧
𝐴
= (𝑧
𝐴
1 , 𝑧
𝐴
2)
𝑇

, (5)

where 𝐴
𝑖
is the 𝑖-th column of 𝐴.

Now, we give the definition of frame.

Definition 2 (see [18]). Let H be a complex and separable
Hilbert space. A sequence {𝑓

𝑘
: 𝑘 ∈ Z} is a frame for H if

there exist constants 0 < 𝐴, 𝐵 < ∞, such that, for any𝑓 ∈ H,

𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

≤ ∑

𝑘∈Z

󵄨󵄨󵄨󵄨⟨𝑓, 𝑓𝑘⟩
󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

. (6)

The numbers 𝐴, 𝐵 are called frame bounds.
A frame is tight if we can choose 𝐴 = 𝐵 as frame bounds

in the Definition 2. If a frame ceases to be a frame when
an arbitrary element is removed, it is called an exact frame.
When 𝐴 = 𝐵 = 1, then

𝑓 = ∑

𝑘∈Z

⟨𝑓, 𝑓
𝑘
⟩ 𝑓
𝑘
, ∀𝑓 ∈ H. (7)

2.2. Minimum-Energy Bivariate Wavelet Frame

Definition 3 (see [18]). A bivariate frame multiresolution
analysis (FMRA) for 𝐿2(R2) consists of a sequence of closed
subspaces {𝑉

𝑗
}
𝑗∈Z and a function 𝜙 ∈ 𝑉

0
such that

(1) 𝑉
𝑗
⊂ 𝑉
𝑗+1

, 𝑗 ∈ Z;

(2) ⋂
𝑗∈Z 𝑉
𝑗
= {0}, ⋃

𝑗∈Z 𝑉
𝑗
= 𝐿
2
(R2);

(3) 𝑓(𝑥) ∈ 𝑉
𝑗
⇔ 𝑓(𝐴𝑥) ∈ 𝑉

𝑗+1
, 𝑗 ∈ Z, 𝑥 ∈ R2;

(4) {𝜙(𝑥 − 𝑛)}
𝑛∈Z2 is a frame for 𝑉

0
,

where function 𝜙(𝑥) is called scaling function of FMRA.
Since𝑉

0
⊂ 𝑉
1
, 𝜙(𝑥) satisfies two-scale equation (refinable

equation)

𝜙 (𝑥) = ∑

𝑘∈Z2

𝑝
𝑘
𝜙 (𝐴𝑥 − 𝑘) , (8)

where {𝑝
𝑘
}
𝑘∈Z2 ∈ 𝑙

2
(Z2). The Fourier transform of (8) is

𝜙 (𝜉) = 𝑚
0
(𝐴
−𝑇
𝜉) 𝜙 (𝐴

−𝑇
𝜉) , 𝜉 ∈ R

2
, (9)

where

𝑚
0
(𝜉) =

1

|det (𝐴)|
∑

𝑘∈Z2

𝑝
𝑘
𝑒
−𝑖𝜉
𝑇
𝑘
=
1

𝑠
∑

𝑘∈Z2

𝑝
𝑘
𝑧
𝑘
, (10)

where𝑚
0
(𝜉) is the symbol function of scaling function 𝜙(𝑥),

𝑧 = 𝑒
−𝑖𝜉
𝑇

.
For simplicity, in this paper, we suppose that any symbol

function is trigonometric polynomial, and scaling function
and wavelet function are compactly supported.

Definition 4. Let 𝜙 ∈ 𝐿
2
(R2) satisfies 𝜙 ∈ 𝐿

∞ and 𝜙

continuous at 0 and 𝜙(0) = 1. Suppose that 𝜙 generates
a sequence of nested closed subspaces {𝑉

𝑗
}
𝑗∈Z, then Ψ =

{𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁
} ⊂ 𝑉

1
is called a minimum-energy bivariate

wavelet frame associated with 𝜙 if for all 𝑓 ∈ 𝐿
2
(R2):

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨⟨𝑓, 𝜙1,𝑘⟩
󵄨󵄨󵄨󵄨

2

= ∑

𝑘∈Z2

󵄨󵄨󵄨󵄨⟨𝑓, 𝜙0,𝑘⟩
󵄨󵄨󵄨󵄨

2

+

𝑁

∑

𝑙=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
𝑙

0,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

.

(11)
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By the Parseval identity, minimum-energy bivariate
wavelet frameΨmust be a tight frame for 𝐿2(R2) with frame
bound being equal to 1. At the same time, the formula (11) is
equivalent to

∑

𝑘∈Z2

⟨𝑓, 𝜙
1,𝑘
⟩ 𝜙
1,𝑘

= ∑

𝑘∈Z2

⟨𝑓, 𝜙
0,𝑘
⟩ 𝜙
0,𝑘

+

𝑁

∑

𝑙=1

∑

𝑘∈Z2

⟨𝑓, 𝜓
𝑙

0,𝑘
⟩𝜓
𝑙

0,𝑘
, ∀𝑓 ∈ 𝐿

2
(R
2
) .

(12)

The interpretation of minimum-energy bivariate wavelet
frame will be clarified later.

Consider Ψ = {𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁
} ⊂ 𝑉
1
, with

𝜓
𝑙
(𝑥) = ∑

𝑘∈Z2

𝑞
𝑙

𝑘
𝜙 (𝐴𝑥 − 𝑘) , 𝑙 = 1, 2, . . . , 𝑁. (13)

Using Fourier transform on the previous equation, we can get
their symbols as follows:

𝑚
𝑙
(𝜉) =

1

𝑠
∑

𝑘∈Z2

𝑞
𝑙

𝑘
𝑒
−𝑖𝜉
𝑇
𝑘
=
1

𝑠
∑

𝑘∈Z2

𝑞
𝑙

𝑘
𝑧
𝑘
, 𝑙 = 1, 2, . . . , 𝑁, (14)

where 𝑧 = 𝑒
−𝑖𝜉
𝑇

.
With𝑚

0
(𝜉), 𝑚

1
(𝜉), . . . , 𝑚

𝑁
(𝜉), we formulate the 𝑠×(𝑁+1)

matrix𝑀(𝜉):

𝑀(𝜉)

= (

𝑚
0 (𝜉) 𝑚

1 (𝜉) ⋅ ⋅ ⋅ 𝑚
𝑁 (𝜉)

𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
1
𝜋) 𝑚

1
(𝜉 + 2𝐴

−𝑇
𝜇
1
𝜋) ⋅ ⋅ ⋅ 𝑚

𝑁
(𝜉 + 2𝐴

−𝑇
𝜇
1
𝜋)

...
...

...
𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑠−1
𝜋) 𝑚

1
(𝜉 + 2𝐴

−𝑇
𝜇
𝑠−1
𝜋) ⋅ ⋅ ⋅ 𝑚

𝑁
(𝜉 + 2𝐴

−𝑇
𝜇
𝑠−1
𝜋)

),

(15)

and𝑀∗(𝜉) denotes the complex conjugate of the transpose of
𝑀(𝜉).

3. Main Result

In this section, we give a complete characterization of
minimum-energy bivariate wavelet frames with arbitrary
dilation matrix and two sufficient conditions and a necessary
condition of minimum-energy bivariate wavelet frame asso-
ciated with the given scaling function.

Proposition 5. Suppose that 𝐴 is a dilation matrix; let

A = (

𝑒
𝑖2𝜋𝜇
𝑇

1
𝐴
−1
𝜇
1 𝑒
𝑖2𝜋𝜇
𝑇

1
𝐴
−1
𝜇
2 ⋅ ⋅ ⋅ 𝑒

𝑖2𝜋𝜇
𝑇

1
𝐴
−1
𝜇
𝑠−1

𝑒
𝑖2𝜋𝜇
𝑇

2
𝐴
−1
𝜇
1 𝑒
𝑖2𝜋𝜇
𝑇

2
𝐴
−1
𝜇
2 ⋅ ⋅ ⋅ 𝑒

𝑖2𝜋𝜇
𝑇

2
𝐴
−1
𝜇
𝑠−1

...
...

...
𝑒
𝑖2𝜋𝜇
𝑇

𝑠−1
𝐴
−1
𝜇
1 𝑒
𝑖2𝜋𝜇
𝑇

𝑠−1
𝐴
−1
𝜇
2 ⋅ ⋅ ⋅ 𝑒

𝑖2𝜋𝜇
𝑇

𝑠−1
𝐴
−1
𝜇
𝑠−1

);

(16)

then,A is invertible matrix.

Thefollowing theorempresents the equivalent characteri-
zations of theminimum-energy bivariate wavelet frames with
arbitrary dilation matrix.

Theorem 6. Suppose that the symbols 𝑚
𝑙
(𝜉), 𝑙 = 0, 1, . . . , 𝑁

in (10) and (14) are Laurent polynomial, and generate the
refinable function 𝜙(𝑥) and Ψ = {𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑁
}. If 𝜙 is

continuous at 0 and𝜙(0) = 1 and𝜙(𝑥) generates a nested closed
subspaces sequence {𝑉

𝑗
}
𝑗∈Z, then the following statements are

equivalent.
(1) Ψ is a minimum-energy bivariate wavelet frame with

arbitrary dilation matrix 𝐴 associated with 𝜙(𝑥).
(2)

𝑀(𝜉)𝑀
∗
(𝜉) = 𝐼

𝑠
, ∀𝜉 ∈ R

2
. (17)

(3) 𝛼
𝑚𝑙

= ∑

𝑘∈Z2

(𝑝
∗

𝑚−𝐴𝑘
𝑝
𝑙−𝐴𝑘

+

𝑁

∑

𝑖=1

𝑞
𝑖∗

𝑚−𝐴𝑘
𝑞
𝑖

𝑙−𝐴𝑘
)

− 𝑠𝛿
𝑚𝑙

= 0, ∀𝑚, 𝑙 ∈ Z
2
.

(18)

Proof. By using the two-scale relations (8) and (13) and
notation 𝛼

𝑚𝑙
, then formula (12) is equivalent to

∑

𝑚,𝑙∈Z2

𝛼
𝑚𝑙
⟨𝑓, 𝜙 (𝐴𝑥 − 𝑚)⟩ 𝜙 (𝐴𝑥 − 𝑙) = 0, ∀𝑓 ∈ 𝐿

2
(R
2
) .

(19)

On the other hand, formula (17) can be reformulated as
𝑁

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑚𝑙 (𝜉)
󵄨󵄨󵄨󵄨

2

= 1,

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉)𝑚
∗

𝑙
(𝜉 + 2𝐴

−1
𝜇
𝑗
𝜋) = 0, 𝑗 = 1, . . . , 𝑠 − 1

(20)

which is equivalent to
𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉)

𝑠−1

∑

𝑗=0

𝑚
∗

𝑙
(𝜉 + 2𝐴

−1
𝜇
𝑗
𝜋) = 1,

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉)(𝑚

∗

0
(𝜉) −

𝑠−1

∑

𝑗=1

𝑚
∗

𝑙
(𝜉 + 2𝐴

−1
𝜇
𝑗
𝜋)) = 1,

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉)(

𝑠−1

∑

𝑗=0

𝑚
∗

𝑙
(𝜉+2𝐴

−1
𝜇
𝑗
𝜋) − 2𝑚

𝑙
(𝜉 + 2𝐴

−1
𝜇
𝑛
𝜋))=1,

𝑛 = 1, . . . , 𝑠 − 1; 𝜉 ∈ R
2
,

(21)
or

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉) ∑

𝑘∈Z2

𝑞
𝑙∗

−𝐴𝑘
𝑧
𝐴𝑘

= 1,

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉) (

𝑠−1

∑

𝑛=1

∑

𝑘∈Z2

𝑞
𝑙∗

𝜇
𝑛
−𝐴𝑘

𝑧
𝐴𝑘−𝜇

𝑛) = 𝑠 − 1,

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉) (

𝑠−1

∑

𝑛=1

𝑒
𝑖2𝜇
𝑇

𝑗
𝐴
−1
𝜇
𝑛
𝜋
∑

𝑘∈Z2

𝑞
𝑙∗

𝜇
𝑛
−𝐴𝑘

𝑧
𝐴𝑘−𝜇

𝑛) = −1,

𝑗 = 1, . . . , 𝑠 − 1; 𝜉 ∈ R
2
,

(22)
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where 𝑞0
𝑘
= 𝑝
𝑘
, 𝑘 ∈ Z2. Since A is an invertible matrix, the

previous equation is equivalent to

𝑁

∑

𝑙=0

𝑚
𝑙
(𝜉) ∑

𝑘∈Z2

𝑞
𝑙∗

𝜇
𝑛
−𝐴𝑘

𝑧
𝐴𝑘−𝜇

𝑛 = 1, 𝑛 = 0, 1, . . . , 𝑠 − 1. (23)

We multiply the identities in (23) by 𝑧
𝜇
𝑛𝜙(𝐴
−𝑇
𝜉), 𝑛 =

0, 1, . . . , 𝑠 − 1, respectively, where 𝑧 = 𝑒
−𝑖𝜉
𝑇
𝐴
−1

, and we get

𝜙 (𝐴
−𝑇
𝜉) 𝑧
𝜇
𝑛 =

𝑁

∑

𝑙=0

∑

𝑘∈Z2

𝑞
𝑙∗

𝜇
𝑛
−𝐴𝑘

𝑧
𝐴𝑘
𝜓̂
𝑙
(𝜉) , 𝑛 = 0, 1, . . . , 𝑠 − 1;

(24)

let 𝜓0 = 𝜙. Take the Fourier transform on the two sides of the
previous formula, (23) is equivalent to

𝑠𝜙 (𝐴𝑥 − 𝜇
𝑛
)=

𝑁

∑

𝑙=0

∑

𝑘∈Z2

𝑞
𝑙∗

𝜇
𝑛
−𝐴𝑘

𝜓
𝑙
(𝑥 − 𝑘) , 𝑛=0, 1, . . . , 𝑠 − 1.

(25)

Thus,

𝑠𝜙 (𝐴𝑥 − 𝜇) =

𝑁

∑

𝑙=0

∑

𝑘∈Z2

𝑞
𝑙∗

𝜇−𝐴𝑘
𝜓
𝑙
(𝑥 − 𝑘) , ∀𝜇 ∈ Z

2
. (26)

By using the two-scale relations (8) and (13), we can
rewrite formula (26) as

∑

𝑚∈Z2

𝛼
𝑚𝑙
𝜙 (𝐴𝑥 − 𝑚) = 0, ∀𝑙 ∈ Z

2
. (27)

In other words, the proof of Theorem 6 reduces to the proof
of the equivalences of (18), (19), and (27).

It is clear that (18) ⇒ (27) ⇒ (19). In order to prove
(19) ⇒ (18), let 𝑓 ∈ 𝐿

2
(R2) be any compactly supported

function. Let

𝛽
𝑙
(𝑓) = ⟨𝑓, ∑

𝑚∈Z2

𝛼
𝑚𝑙
𝜙 (𝐴𝑥 − 𝑚)⟩ , 𝑙 ∈ Z

2
. (28)

Then by using the properties that, for every fixed 𝑚, 𝛼
𝑚𝑙

= 0

except for finitely many 𝑙, and both 𝜙 and 𝑓 have compact
support, it is clear that only finitely many of the values 𝛽

𝑙
(𝑓)

is nonzero. Now, since 𝜙(𝜉) is a nontrivial function, by taking
the Fourier transformof (19), it follows that the trigonometric
polynomial∑

𝑙∈Z2 𝛽𝑙(𝑓)𝑒
−𝑖𝜉
𝑇
𝐴
−𝑇
𝑙
≡ 0. Obviously, 𝛽

𝑙
(𝑓) = 0, 𝑙 ∈

Z2. By choosing 𝑓 = ∑
𝑚∈Z2 𝛼𝑚𝑙𝜙(𝐴𝑥 − 𝑚), we get formula

(27).
By taking the Fourier transform of (27), we get 𝛼

𝑚𝑙
=

0, 𝑚, 𝑙 ∈ Z2. The proof of Theorem 6 is completed.

Theorem 6 characterizes the necessary and sufficient
condition for the existence of the minimum-energy bivariate
wavelet frames associated with 𝜙. But it is not a good
choice to use this theorem to construct the minimum-energy
bivariate wavelet frames with arbitrary dilation matrix. For
convenience, we need to present some sufficient conditions
in terms of the symbol functions.

Theorem 7. A compactly supported refinable function 𝜙 ∈

𝐿
2
(R2), with 𝜙 continuous at 0 and 𝜙(0) = 1, and 𝑚

0
(𝜉) is

the symbol function of 𝜙. Let Ψ = {𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑁
} be the

minimum-energy multiwavelet frames associated with 𝜙; then
𝑠−1

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑚
0
(𝜉 + 2𝐴

−1
𝜇
𝑛
𝜋)

󵄨󵄨󵄨󵄨󵄨

2

≤ 1, ∀𝜉 ∈ R
2
. (29)

Proof. Let 𝐷(𝜉) be the first column of 𝑀(𝜉) and 𝑀(𝜉) =

(𝐷(𝜉), 𝑄(𝜉)). Then,
𝐷 (𝜉)𝐷

∗
(𝜉) + 𝑄 (𝜉)𝑄

∗
(𝜉) = 𝐼

𝑠
. (30)

Since 𝑄(𝜉)𝑄
∗
(𝜉) is a Hermitian matrix, the matrix 𝐼

𝑠
−

𝐷(𝜉)𝐷
∗
(𝜉) is positive semidefinite.

We have

(
𝐼
𝑠

𝐷 (𝜉)

𝐷
∗
(𝜉) 1

)(
𝐼
𝑠

−𝐷 (𝜉)

−𝐷
∗
(𝜉) 1

)

= (
𝐼
𝑠
− 𝐷 (𝜉)𝐷

∗
(𝜉)

1 − 𝐷
∗
(𝜉)𝐷 (𝜉)

)

det( 𝐼
𝑠

𝐷 (𝜉)

𝐷
∗
(𝜉) 1

) = det(𝐼𝑠 𝐷 (𝜉)

1 − 𝐷
∗
(𝜉)𝐷 (𝜉)

) ,

det( 𝐼
𝑠

−𝐷 (𝜉)

−𝐷
∗
(𝜉) 1

) = det(𝐼𝑠 −𝐷 (𝜉)

1 − 𝐷
∗
(𝜉)𝐷 (𝜉)

) .

(31)

Therefore,
det (𝐼
𝑠
− 𝐷 (𝜉)𝐷

∗
(𝜉)) (1 − 𝐷

∗
(𝜉)𝐷 (𝜉))

= (1 − 𝐷
∗
(𝜉)𝐷 (𝜉)) (1 − 𝐷

∗
(𝜉)𝐷 (𝜉)) ,

(32)

that is,
1 − 𝐷

∗
(𝜉)𝐷 (𝜉) ≥ 0. (33)

The proof of Theorem 7 is completed.

According to the Theorem 7, there may not exist mini-
mum-energy bivariate wavelet frame associated with a given
scaling function. If there exists a minimum-energy bivariate
wavelet frame, then the symbol function of scaling func-
tion must satisfy (29). Based on the polyphase forms of
𝑚
0
(𝑧), 𝑚

1
(𝑧), . . . , 𝑚

𝑁
(𝑧), we give two sufficient conditions.

Let 𝑧 = 𝑒
−𝑖𝜉
𝑇

; then

𝑚
0
(𝜉) =

1

𝑠
∑

𝑘∈Z2

𝑝
𝑘
𝑒
−𝑖𝜉
𝑇
𝑘
=
1

𝑠

𝑠−1

∑

𝑖=0

∑

𝑘∈Z2

𝑝
𝜇
𝑖
+𝐴𝑘

𝑒
−𝑖𝜉
𝑇
(𝜇
𝑖
+𝐴𝑘)

=
1

𝑠

𝑠−1

∑

𝑖=0

𝑒
−𝑖𝜉
𝑇
𝜇
𝑖 ∑

𝑘∈Z2

𝑝
𝜇
𝑖
+𝐴𝑘

𝑒
−𝑖𝜉
𝑇
𝐴𝑘

=
1

𝑠

𝑠−1

∑

𝑖=0

𝑧
𝜇
𝑖 ∑

𝑘∈Z2

𝑝
𝜇
𝑖
+𝐴𝑘

𝑧
𝐴𝑘

=
1

√𝑠

𝑠−1

∑

𝑖=0

𝑧
𝜇
𝑖𝑓
0

𝑖
(𝑧
𝐴
) ,

(34)

where 𝑓0
𝑖
(𝑥) = (1/√𝑠)∑

𝑘∈Z2 𝑝𝜇𝑖+𝐴𝑘
𝑥
𝑘
, 𝑥 ∈ R2. Similarly,

𝑚
𝑙
(𝜉) =

1

√𝑠

𝑠−1

∑

𝑖=0

𝑧
𝜇
𝑖𝑓
𝑙

𝑖
(𝑧
𝐴
) , 𝑙 = 1, 2, . . . , 𝑁, (35)
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where 𝑓𝑙
𝑖
(𝑥) = (1/√𝑠)∑

𝑘∈Z2 𝑞
𝑙

𝜇
𝑖
+𝐴𝑘

𝑥
𝑘
, 𝑥 ∈ R2. Let

𝐶 (𝑧) =
1

√𝑠

×(

𝑧
𝜇0𝑒
−𝑖2𝜋𝜇
𝑇

0
𝐴
−1
𝜇0 𝑧

𝜇1𝑒
−𝑖2𝜋𝜇
𝑇

0
𝐴
−1
𝜇1 ⋅ ⋅ ⋅ 𝑧

𝜇𝑠−1𝑒
−𝑖2𝜋𝜇
𝑇

0
𝐴
−1
𝜇𝑠−1

𝑧
𝜇0𝑒
−𝑖2𝜋𝜇
𝑇

1
𝐴
−1
𝜇0 𝑧

𝜇1𝑒
−𝑖2𝜋𝜇
𝑇

1
𝐴
−1
𝜇1 ⋅ ⋅ ⋅ 𝑧

𝜇𝑠−1𝑒
−𝑖2𝜋𝜇
𝑇

1
𝐴
−1
𝜇𝑠−1

...
...

...
𝑧
𝜇0𝑒
−𝑖2𝜋𝜇
𝑇

𝑠−1
𝐴
−1
𝜇0 𝑧
𝜇1𝑒
−𝑖2𝜋𝜇
𝑇

𝑠−1
𝐴
−1
𝜇1 ⋅ ⋅ ⋅ 𝑧

𝜇3𝑒
−𝑖2𝜋𝜇
𝑇

𝑠−1
𝐴
−1
𝜇𝑠−1

);

(36)

thus,

𝑀(𝜉) = 𝐶 (𝑧)(

𝑓
0

0
(𝑧
𝐴
) 𝑓

1

0
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

0
(𝑧
𝐴
)

𝑓
0

1
(𝑧
𝐴
) 𝑓

1

1
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

1
(𝑧
𝐴
)

...
...

...
𝑓
0

𝑠−1
(𝑧
𝐴
) 𝑓
1

𝑠−1
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

𝑠−1
(𝑧
𝐴
)

) .

(37)

Since 𝐶(𝑧) is a unitary matrix, condition (17) is equivalent to

(

𝑓
0

0
(𝑧
𝐴
) 𝑓

1

0
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

0
(𝑧
𝐴
)

𝑓
0

1
(𝑧
𝐴
) 𝑓

1

1
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

1
(𝑧
𝐴
)

...
...

...
𝑓
0

𝑠−1
(𝑧
𝐴
) 𝑓
1

𝑠−1
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

𝑠−1
(𝑧
𝐴
)

)

×(

𝑓
0

0
(𝑧
𝐴
) 𝑓

1

0
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

0
(𝑧
𝐴
)

𝑓
0

1
(𝑧
𝐴
) 𝑓

1

1
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

1
(𝑧
𝐴
)

...
...

...
𝑓
0

𝑠−1
(𝑧
𝐴
) 𝑓
1

𝑠−1
(𝑧
𝐴
) ⋅ ⋅ ⋅ 𝑓

𝑁

𝑠−1
(𝑧
𝐴
)

)

∗

= 𝐼
𝑠
.

(38)

For convenience, let 𝑢 = 𝑧
𝐴, condition (29) can be

rewritten as ∑𝑠−1
𝑛=0

|𝑓
0

𝑛
(𝑢)|
2
≤ 1.

If there exists 𝑓0
𝑠
(𝑢) such that

𝑠

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑛
(𝑢)

󵄨󵄨󵄨󵄨󵄨

2

= 1, (39)

then, we have the followingTheorem 8.

Theorem 8. Let 𝜙(𝑥) ∈ 𝐿
2
(R2) be a compactly supported

refinable function, with 𝜙 continuous at 0 and 𝜙(0) = 1, and
its symbol function satisfies

𝑠−1

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑛
(𝑢)

󵄨󵄨󵄨󵄨󵄨

2

≤ 1. (40)

If there exists 𝑓0
𝑠
(𝑢) such that

𝑠

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑛
(𝑢)

󵄨󵄨󵄨󵄨󵄨

2

= 1, (41)

then there exists a minimum-energy bivariate wavelet frame
associated with 𝜙(𝑥).

Proof. Under the assumption, we know that the vector

f := [𝑓
0

0
(𝑢) , 𝑓

0

1
(𝑢) , . . . , 𝑓

0

𝑠−1
(𝑢) , 𝑓

0

𝑠
(𝑢)]
𝑇 (42)

is a unit vector.
Construct diagonal matrix 𝐷

0
= diag(𝑢𝑡0 , 𝑢𝑡1 , . . . , 𝑢𝑡𝑠)

such that

f
1
= 𝐷
0
f = [𝑢

𝑡
0𝑓
0

0
(𝑢) , 𝑢

𝑡
1𝑓
0

1
(𝑢) , . . . , 𝑢

𝑡
𝑠𝑓
0

𝑠
(𝑢)]
𝑇

=

𝐾

∑

𝑗=(0,0)

a
𝑗
𝑢
𝑗
, 𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑠
∈ Z
2
,

(43)

where a
𝑗
∈ R𝑠+1 with a

0
̸= 0 and a

𝐾
̸= 0. It is clear that f

1
is a

unit vector:

f∗
1
f
1
= (

𝐾

∑

𝑗=(0,0)

a
𝑗
𝑢
𝑗
)

∗

(

𝐾

∑

𝑗=(0,0)

a
𝑗
𝑢
𝑗
) = 1, ∀ |𝑢| = 1, (44)

and consequently a𝑇
0
a
𝐾
= 0. We next consider the (𝑠 + 1) ×

(𝑠 + 1)Householder matrix:

𝐻
1
= 𝐼
𝑠+1

−
2

‖k‖2
kk
𝑇
, (45)

where k = a
𝐾
±‖a
𝐾
‖e
1
, with e

1
= (1, 0, . . . , 0)

𝑇

𝑠+1
, and the + or

− signs are so chosen that k ̸= 0. Then

𝐻
1
a
𝐾
= ±

󵄩󵄩󵄩󵄩a𝐾
󵄩󵄩󵄩󵄩 e1. (46)

Since Householder matrix is orthogonal matrix, we have

(𝐻
1
a
0
)
𝑇

(𝐻
1
a
𝐾
) = a𝑇
0
𝐻
𝑇

1
𝐻
1
a
𝐾
= a𝑇
0
a
𝐾
= 0. (47)

By the previous equation, the first component of 𝐻
1
a
0
is 0.

Now 𝐻
1
f
1
= ∑
𝐾

𝑗=(0,0)
(𝐻
1
a
𝑗
)𝑢
𝑗, we construct diagonal matrix

𝐷
1
= diag(𝑢𝑡(1) , 1, . . . , 1), 𝑡

(1)
∈ Z2 such that

f
2
= 𝐷
1
𝐻
1
f
1
= 𝐷
1

𝐾

∑

𝑗=(0,0)

(𝐻
1
a
𝑗
) 𝑢
𝑗
=

𝐾

∑

𝑗=(0,0)

a(1)
𝑗
𝑢
𝑗 (48)

is also a unit vector and𝐾
1
< 𝐾, a(1)

0
̸= 0, a(1)
𝐾
1

̸= 0.
Similarly, we define the Householder matrix:

𝐻
2
= 𝐼
𝑠+1

−
2

‖k‖2
k k
𝑇
, (49)

where k = a
𝐾
1

± ‖a
𝐾
1

‖e
1

̸= 0, and 𝐷
2
= diag(𝑢𝑡(2) , 1, . . . , 1)

such that

f
3
= 𝐷
2
𝐻
2
f
2
= 𝐷
2

𝐾
1

∑

𝑗=(0,0)

(𝐻
2
a(1)
𝑗
) 𝑢
𝑗
=

𝐾
1

∑

𝑗=(0,0)

a(2)
𝑗
𝑢
𝑗 (50)

is also a unit vector and𝐾
2
< 𝐾
1
, a(2)
0

̸= 0, a(2)
𝐾
2

̸= 0.
Since every component of f is a finite sum, we repeat

this procedure finite times to get some unitary matrices
𝐷
𝐿
, 𝐻
𝐿
, 𝐷
𝐿−1

, 𝐻
𝐿−1

, . . . , 𝐻
2
, 𝐷
1
, 𝐻
1
,

𝐷
𝐿
𝐻
𝐿
𝐷
𝐿−1

𝐻
𝐿−1

⋅ ⋅ ⋅ 𝐻
2
𝐷
1
𝐻
1
𝐷
0
f = e
1
. (51)
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That is, f is the first column of the unitary matrix

𝐻 := 𝐷
∗

0
𝐻
∗

0
𝐷
∗

1
𝐻
∗

2
⋅ ⋅ ⋅ 𝐻
∗

𝐿−1
𝐷
∗

𝐿−1
𝐻
∗

𝐿
𝐷
∗

𝐿
. (52)

Let

𝐻 = (

𝑓
0

0
(𝑢) 𝑓

1

0
(𝑢) ⋅ ⋅ ⋅ 𝑓

𝑠

0
(𝑢)

𝑓
0

1
(𝑢) 𝑓

1

1
(𝑢) ⋅ ⋅ ⋅ 𝑓

𝑠

1
(𝑢)

...
...

...
𝑓
0

𝑠
(𝑢) 𝑓

1

𝑠
(𝑢) ⋅ ⋅ ⋅ 𝑓

𝑠

𝑠
(𝑢)

); (53)

then,𝐻 satisfies (38). In the formula (15), we let

𝑚
𝑙
(𝜉) =

1

√𝑠

𝑠−1

∑

𝑖=0

𝑧
𝜇
𝑖𝑓
𝑙

𝑖
(𝑧
𝐴
) , 𝑙 = 1, . . . , 𝑠. (54)

Then,we can obtain the formula (17).The proof ofTheorem 8
is completed.

Corollary 9. Let 𝜙(𝑥) ∈ 𝐿
2
(R2) be a compactly supported

refinable function, with 𝜙 continuous at 0 and 𝜙(0) = 1, and
its symbol function satisfies

𝑠−1

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑚
0
(𝜉 + 2𝐴

−1
𝜇
𝑛
𝜋)

󵄨󵄨󵄨󵄨󵄨

2

≤ 1, ∀𝜉 ∈ R
2
. (55)

If there exists 𝑓0
𝑠
(𝑢), . . . , 𝑓

0

𝑛
(𝑢), 𝑛 ≥ 𝑠, such that

𝑛

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑖
(𝑢)

󵄨󵄨󵄨󵄨󵄨

2

= 1, (56)

then there exists a minimum-energy bivariate wavelet frame
associated with 𝜙(𝑥).

Next, we present an explicit formula of constructing
minimum-energy bivariate wavelet frame. Suppose that 𝑚

0

satisfies (29); let

D (𝜉) = 𝐼
𝑠
− 𝐷 (𝜉)𝐷

∗
(𝜉) . (57)

Then

𝜆
1
= ⋅ ⋅ ⋅ = 𝜆

𝑠−1
= 1, 𝜆

𝑠
= 1 −

𝑠−1

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑛
𝜋)

󵄨󵄨󵄨󵄨󵄨

2

.

𝛽
1
=

1

Ω
1

(𝑚
∗

0
(𝜉 + 2𝐴

−𝑇
𝜇
1
𝜋), −𝑚

∗

0
(𝜉 + 2𝐴

−𝑇
𝜇
0
𝜋), 0, . . . , 0)

𝑇

𝛽
𝑘
=

1

Ω
𝑘

( − 𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
0
𝜋)𝑚
∗

0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑘
𝜋) ,

− 𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
1
𝜋)𝑚
∗

0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑘
𝜋) , . . . ,

− 𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑘−1

𝜋)𝑚
∗

0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑘
𝜋) ,

𝑘−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑗
𝜋)

󵄨󵄨󵄨󵄨󵄨

2

, 0, . . . , 0)

𝑇

𝑘 = 2, 3, . . . , 𝑠 − 1,

𝛽
𝑠
=

1

Ω
𝑠

(𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
0
𝜋) ,

𝑚
0
(𝜉 + 2𝐴

−𝑇
𝜇
1
𝜋) , . . . , 𝑚

0
(𝜉 + 2𝐴

−𝑇
𝜇
𝑠−1

𝜋))
𝑇

(58)
are the eigenvalues and eigenvectors of D(𝜉), respectively,
whereΩ

1
, Ω
2
, . . . , Ω

𝑠
ensure that𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑠
are unit vector.

Let
𝑆 (𝜉) = (𝛽1 𝛽

2
⋅ ⋅ ⋅ 𝛽
𝑠) , Λ (𝜉) = diag (1, . . . , 1, 𝜆

𝑠
) ,

(59)

then,
𝐼
𝑠
− 𝐷 (𝜉)𝐷

∗
(𝜉) = 𝑆 (𝜉) Λ (𝜉) 𝑆

∗
(𝜉) . (60)

Theorem 10. Let 𝜙(𝑥) ∈ 𝐿
2
(R2) be a compactly supported

refinable function, with 𝜙 continuous at 0 and 𝜙(0) = 1, and
its symbol function satisfies

𝑠−1

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑚
0
(𝜉 + 2𝐴

−1
𝜇
𝑛
𝜋)

󵄨󵄨󵄨󵄨󵄨

2

≤ 1, ∀𝜉 ∈ R
2
. (61)

If there exists 𝑓0
𝑠
(𝑢) satisfies

𝑠

∑

𝑖=0

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑖
(𝑢)

󵄨󵄨󵄨󵄨󵄨

2

= 1, (62)

then the symbol function of minimum-energy bivariate wavelet
frame associated with 𝜙(𝑥) is the first row of the matrix:

𝑄 (𝜉) = 𝑈 (𝜉)√Λ (𝜉)𝑆 (𝜉) , (63)

where 𝑈(𝜉) is any 𝑠 × 𝑠 unitary matrix, and 𝑆(𝜉), Λ(𝜉) are
defined in (59).

Proof. ByTheorem 8, there exists a minimum-energy bivari-
ate wavelet frame associated with the given scaling function,
and the existence of 𝑓0

𝑠
(𝑢) guarantees that the elements of

√Λ(𝜉) are trigonometric polynomial, and we have

𝑄 (𝜉)𝑄
∗
(𝜉) = 𝑆 (𝜉)√Λ (𝜉)𝑈 (𝜉) (𝑆 (𝜉)√Λ (𝜉)𝑈 (𝜉))

∗

= 𝑆 (𝜉) Λ (𝜉) 𝑆
∗
(𝜉) = 𝐼

𝑠
− 𝐷 (𝜉)𝐷

∗
(𝜉) ;

(64)

thus, symbol functions satisfy (17).

Theorems 8 and 10 give different methods to construct
minimum-energy bivariate wavelet frame.
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4. Decomposition and Reconstruction
Formulas of Minimum-Energy Bivariate
Wavelet Frames

Suppose that the bivariate scaling function𝜙(𝑥)has an associ-
ated minimum-energy bivariate wavelet frame {𝜓1, . . . , 𝜓𝑁}.
Let the projection operators P

𝑗
of 𝐿2(R2) onto the nested

subspace 𝑉
𝑗
be defined by

P
𝑗
𝑓 := ∑

𝑘∈Z2

⟨𝑓, 𝜙
𝑗,𝑘
⟩𝜙
𝑗,𝑘
. (65)

Then the formula (12) can be rewritten as

P
𝑗+1

𝑓 − P
𝑗
𝑓 :=

𝑁

∑

𝑖=1

∑

𝑘∈Z2

⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩𝜓
𝑖

𝑗,𝑘
. (66)

In other words, the error term 𝑔
𝑗
= P
𝑗+1

𝑓 − P
𝑗
𝑓 between

consecutive projections is given by the frame expansion:

𝑔
𝑗
=

𝑁

∑

𝑖=1

∑

𝑘∈Z2

⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩𝜓
𝑖

𝑗,𝑘
. (67)

Suppose that the error term 𝑔
𝑗
has another expansion in

terms of the frames {𝜓1, . . . , 𝜓𝑁}, that is,

𝑔
𝑗
=

𝑁

∑

𝑖=1

∑

𝑘∈Z2

𝑐
𝑗,𝑘
𝜓
𝑖

𝑗,𝑘
. (68)

Then by using both (67) and (68), we have

⟨𝑔
𝑗
, 𝑓⟩ =

𝑁

∑

𝑖=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

=

𝑁

∑

𝑖=1

∑

𝑘∈Z2

𝑐
𝑗,𝑘
⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩ , (69)

and this derives

0 ≤

𝑁

∑

𝑖=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗,𝑘

− ⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

=

𝑁

∑

𝑖=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨

2

− 2

𝑁

∑

𝑖=1

∑

𝑘∈Z2

𝑐
𝑗,𝑘
⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩

+

𝑁

∑

𝑖=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

=

𝑁

∑

𝑖=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨

2

−

𝑁

∑

𝑖=1

∑

𝑘∈Z2

󵄨󵄨󵄨󵄨󵄨
⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩
󵄨󵄨󵄨󵄨󵄨

2

.

(70)

This inequality means that the coefficients of the error term
𝑔
𝑗
in (67) have minimal 𝑙2-norm among all sequences {𝑐

𝑗,𝑘
}

which satisfy (68).
We next discuss minimum-energy bivariate wavelet

frames decomposition and reconstruction. For any 𝑓 ∈

𝐿
2
(R2), we define the coefficients

𝑐
𝑗,𝑘

:= ⟨𝑓, 𝜙
𝑗,𝑘
⟩ , 𝑑

𝑗,𝑘
:= ⟨𝑓, 𝜓

𝑖

𝑗,𝑘
⟩ 𝑖 = 1, . . . , 𝑁. (71)

Then we can derive the decomposition and reconstruction
formulas that are similar to those of orthonormal wavelets.

(1) Decomposition Algorithm. Suppose that coefficients {𝑐
𝑗+1,𝑙

:

𝑙 ∈ Z2} are known. By the two-scale relations (8) and (13), we
have

𝜙
𝑗,𝑙
(𝑥) =

1

√𝑠
∑

𝑘∈Z2

𝑝
𝑘−𝐴𝑙

𝜙
𝑗+1,𝑘

(𝑥) ,

𝜓
𝑖

𝑗,𝑙
(𝑥) =

1

√𝑠
∑

𝑘∈Z2

𝑞
𝑖

𝑘−𝐴𝑙
𝜓
𝑖

𝑗+1,𝑘
(𝑥) , 𝑖 = 1, . . . , 𝑁.

(72)

Then, decomposition algorithm is given as

𝑐
𝑗,𝑙
=

1

√𝑠
∑

𝑘∈Z2

𝑝
𝑘−𝐴𝑙

𝑐
𝑗+1,𝑘

,

𝑑
𝑖

𝑗,𝑙
=

1

√𝑠
∑

𝑘∈Z2

𝑞
𝑖

𝑘−𝐴𝑙
𝑑
𝑖

𝑗+1,𝑘
, 𝑖 = 1, . . . , 𝑁.

(73)

(2) Reconstruction Algorithm. From (26), it follows that

𝜙
𝑗+1,𝑙

(𝑥) =
1

√𝑠
∑

𝑘∈Z2

{𝑝
∗

𝑙−𝐴𝑘
𝜙
𝑗,𝑘

(𝑥) +

𝑁

∑

𝑖=1

𝑞
𝑖∗

𝑙−𝐴𝑘
𝜓
𝑖

𝑗,𝑘
(𝑥)} .

(74)

Take the inner products on both sides of (74) with 𝑓, we get

𝑐
𝑗+1,𝑙

=
1

√𝑠
∑

𝑘∈Z2

{𝑝
∗

𝑙−𝐴𝑘
𝑐
𝑗,𝑘

+

𝑁

∑

𝑖=1

𝑞
𝑖∗

𝑙−𝐴𝑘
𝑑
𝑖

𝑗,𝑘
} . (75)

5. Numerical Examples

In this section, we present some numerical examples to show
the effectiveness of the proposed methods.

Example 1. Let 𝐴 = 2𝐼
2
; then 𝑠 = 4 and

𝜇
0
= (0, 0)

𝑇
, 𝜇

1
= (1, 0)

𝑇
,

𝜇
2
= (0, 1)

𝑇
, 𝜇

3
= (1, 1)

𝑇
.

(76)

Suppose that the Fourier transform 𝜙(𝜉) of scaling func-
tion 𝜙(𝜉) is

𝜙 (𝜉) =
1 − 𝑒
−𝑖𝜉
1

𝑖𝜉
1

⋅
1 − 𝑒
−𝑖𝜉
2

𝑖𝜉
2

⋅
1 − 𝑒
−𝑖(𝜉
1
+𝜉
2
)

𝑖 (𝜉
1
+ 𝜉
2
)
. (77)

Then its symbol function𝑚
0
(𝜉) satisfies

𝑚
0
(𝜉) =

1

8
(1 + 𝑒

−𝑖𝜉
1) (1 + 𝑒

−𝑖𝜉
2) (1 + 𝑒

−𝑖(𝜉
1
+𝜉
2
)
) . (78)

Thus,

𝑓
0

0
(𝑢) =

1

4
(1 + 𝑢

(1,1)
𝑇

) , 𝑓
0

1
(𝑢) =

1

4
(1 + 𝑢

(0,1)
𝑇

) ,

𝑓
0

2
(𝑢) =

1

4
(1 + 𝑢

(1,0)
𝑇

) , 𝑓
0

3
(𝑢) =

2

4
.

(79)
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Let

𝑓
0

4
(𝑢) =

1

4
(1 − 𝑢

(1,0)
𝑇

) , 𝑓
0

5
(𝑢) =

1

4
(1 − 𝑢

(0,1)
𝑇

) ,

𝑓
0

6
(𝑢) =

1

4
(1 − 𝑢

(1,1)
𝑇

) .

(80)

Then we have ∑6
𝑙=0

|𝑓
0

𝑖
(𝑢)|
2
= 1. By Corollary 9, there exists

a minimum-energy bivariate wavelet frame associated with
𝜙(𝜉). UsingTheorem 8, let

𝐻
1
=

(
(
(
(
(
(

(

√2

2
−
√2

2
1

1

1

1

1

√2

2

√2

2

)
)
)
)
)
)

)

,

𝐻
2
=

(
(
(
(
(
(

(

1

1

√2

2
−
√2

2
1

√2

2

√2

2
1

1

)
)
)
)
)
)

)

,

𝐻
3
=

(
(
(
(
(
(

(

1

√2

2
−
√2

2
1

1

1

√2

2

√2

2
1

)
)
)
)
)
)

)

,

𝐻
4

=
1

4

(
(
(
(

(

√2 √2 √2 2 √2 √2 √2

0 0 2 −2√2 2 0 0

2√2 −2√2 0 0 0 0 0

0 0 0 0 0 −2√2 2√2

0 0 2√2 0 −2√2 0 0

2 2 0 0 0 −2 −2

√2 √2 −√2 −2 −√2 √2 √2

)
)
)
)

)

,

𝐷
1
= diag (𝑢(−1,−1), 1, 1, 1, 1, 1, 1) ,

𝐷
2
= diag (1, 1, 𝑢(−1,0), 1, 1, 1, 1) ,

𝐷
3
= diag (1, 𝑢(0,−1), 1, 1, 1, 1, 1) .

(81)

Thus, we have

𝐻
∗

1
𝐷
∗

1
𝐻
∗

2
𝐷
∗

2
𝐻
∗

3
𝐷
∗

3
𝐻
∗

4
=
1

4

(
(
(
(

(

1+ 𝑢
(1,1)

0 2𝑢
(1,1)

2 0 −√2 + √2𝑢
(1,1)

1 + 𝑢
(1,1)

1 + 𝑢
(0,1)

0 −2𝑢
(0,1)

−2 0 −√2 + √2𝑢
(0,1)

1 + 𝑢
(0,1)

1 + 𝑢
(1,0) √2+√2𝑢

(1,0)
0 0 −2+2𝑢

(1,0)
0 −1 − 𝑢

(1,0)

2 −2√2 0 0 0 0 −2

1 − 𝑢
(1,0) √2 − √2𝑢

(1,0)
0 0 −2 − 2𝑢

(1,0)
0 −1 + 𝑢

(1,0)

1 − 𝑢
(0,1)

0 2𝑢
(0,1)

−2 0 −√2 − √2𝑢
(0,1)

1 − 𝑢
(0,1)

1 − 𝑢
(1,1)

0 −2𝑢
(1,1)

2 0 −√2 − √2𝑢
(1,1)

1 − 𝑢
(1,1)

)
)
)
)

)

. (82)

Consequently, we obtain symbol functions

𝑚
1
(𝜉) =

1

8
(𝑒
−𝑖𝜉
2 (√2 + √2𝑒

−𝑖2𝜉
1) − 2√2𝑒

−𝑖(𝜉
1
+𝜉
2
)
) ,

𝑚
2
(𝜉) =

1

8
(2𝑒
−𝑖2(𝜉
1
+𝜉
2
)
− 2𝑒
−𝑖𝜉
1𝑒
−𝑖2𝜉
1) ,

𝑚
3
(𝜉) =

1

8
(2 − 2𝑒

−𝑖𝜉
1) ,

𝑚
4
(𝜉) =

1

8
𝑒
−𝑖𝜉
2 (−2 + 2𝑒

−𝑖2𝜉
1) ,

𝑚
5
(𝜉) =

1

8
(−√2 + √2𝑒

−𝑖(2𝜉
1
+2𝜉
2
)
+ 𝑒
−𝑖𝜉
1 (−√2 + √2𝑒

−𝑖2𝜉
2)) ,

𝑚
6
(𝜉) =

1

8
(1 + 𝑒

−𝑖(2𝜉
1
+2𝜉
2
)
+ 𝑒
−𝑖𝜉
1 (1 + 𝑒

−𝑖2𝜉
2)

−𝑒
−𝑖𝜉
2 (1 + 𝑒

−𝑖2𝜉
1) − 2𝑒

−𝑖(𝜉
1
+𝜉
2
)
) .

(83)

The functions generated by the previous symbol functions are
minimum-energy bivariate wavelet frame functions associ-
ated with 𝜙(𝑥).

Example 2. Let 𝐴 = 3𝐼
2
; then 𝑠 = 9 and

𝜇
0
= (0, 0)

𝑇
, 𝜇

1
= (1, 0)

𝑇
, 𝜇

2
= (2, 0)

𝑇
,

𝜇
3
= (0, 1)

𝑇
, 𝜇

4
= (0, 2)

𝑇
, 𝜇

5
= (1, 1)

𝑇
,

𝜇
6
= (2, 1)

𝑇
, 𝜇

7
= (1, 2)

𝑇
, 𝜇

8
= (2, 2)

𝑇
.

(84)
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Suppose that the Fourier transform 𝜙(𝜉) of scaling function
𝜙(𝜉) is

𝜙 (𝜉) =
1 − 𝑒
−𝑖𝜉
1

𝑖𝜉
1

⋅
1 − 𝑒
−𝑖𝜉
2

𝑖𝜉
2

⋅
1 − 𝑒
−𝑖(𝜉
1
+𝜉
2
)

𝑖 (𝜉
1
+ 𝜉
2
)
. (85)

Then its symbol function𝑚
0
(𝜉) satisfies

𝑚
0
(𝜉) =

1

27
(1 + 𝑒

−𝑖𝜉
1 + 𝑒
−𝑖2𝜉
1) (1 + 𝑒

−𝑖𝜉
2 + 𝑒
−𝑖2𝜉
2)

× (1 + 𝑒
−𝑖(𝜉
1
+𝜉
2
)
+ 𝑒
−𝑖2(𝜉
1
+𝜉
2
)
) .

(86)

Thus,

𝑓
0

0
(𝑢) =

1

9
(1 + 𝑢

(1,1)
𝑇

) ,

𝑓
0

1
(𝑢) =

1

9
(1 + 𝑢

(0,1)
𝑇

+ 𝑢
(1,1)
𝑇

) ,

𝑓
0

2
(𝑢) =

1

9
(1 + 2𝑢

(0,1)
𝑇

) ,

𝑓
0

3
(𝑢) =

1

9
(1 + 𝑢

(1,0)
𝑇

+ 𝑢
(1,1)
𝑇

) ,

𝑓
0

4
(𝑢) =

1

9
(1 + 2𝑢

(1,0)
𝑇

) , 𝑓
0

5
(𝑢) =

1

9
(2 + 𝑢

(1,1)
𝑇

) ,

𝑓
0

6
(𝑢) =

1

9
(2 + 𝑢

(0,1)
𝑇

) , 𝑓
0

7
(𝑢) =

1

9
(2 + 𝑢

(1,0)
𝑇

) ,

𝑓
0

8
(𝑢) =

3

9
.

(87)

Let

𝑓
0

9
(𝑢) =

√6

9
(1 − 𝑢

(1,0)
𝑇

) , 𝑓
0

10
(𝑢) =

√6

9
(1 − 𝑢

(0,1)
𝑇

) ,

𝑓
0

11
(𝑢) =

√6

9
(1 − 𝑢

(1,1)
𝑇

) .

(88)

Then we have ∑11
𝑙=0

|𝑓
0

𝑙
(𝑢)|
2
= 1. By Corollary 9, there exists

a minimum-energy bivariate wavelet frame associated with
𝜙(𝜉).

Example 3. Let 𝐴 = (
1 1

1 −1
); then 𝑠 = 2 and

𝜇
0
= (0, 0)

𝑇
, 𝜇

1
= (1, 0)

𝑇
. (89)

Suppose that the Fourier transform 𝜙(𝜉) of scaling func-
tion 𝜙(𝜉) satisfies

𝜙 (𝜉) =
1 − 𝑒
−𝑖𝜉
1

𝑖𝜉
1

⋅
1 − 𝑒
−𝑖𝜉
2

𝑖𝜉
2

⋅
1 − 𝑒
−𝑖(𝜉
1
+𝜉
2
)

𝑖 (𝜉
1
+ 𝜉
2
)

⋅
1 − 𝑒
−𝑖(𝜉
1
−𝜉
2
)

𝑖 (𝜉
1
− 𝜉
2
)
.

(90)

Then its symbol function𝑚
0
(𝜉) satisfies

𝑚
0
(𝜉) =

1

4
(1 + 𝑒

−𝑖𝜉
1) (1 + 𝑒

−𝑖𝜉
2) . (91)

Let 𝑧 = 𝑒
−𝑖𝜉
𝑇

= (𝑒
−𝑖𝜉
1 𝑒
−𝑖𝜉
2)
𝑇

, and we have 𝑧𝜇0 = 1, 𝑧
𝜇
1 =

𝑒
−𝑖𝜉
1 , 𝑢 = 𝑧

𝐴
= (𝑒
−𝑖(𝜉
1
+𝜉
2
)
, 𝑒
−𝑖(𝜉
1
−𝜉
2
)
). Therefore,

𝑓
0

0
(𝑢)=

1

2√2
(1+𝑢
(1,0)
𝑇

) , 𝑓
0

1
(𝑢)=

1

2√2
(1+𝑢
(0,−1)

𝑇

) .

(92)

Let

𝑓
0

2
(𝑢)=

1

2√2
(1 − 𝑢

(1,0)
𝑇

) , 𝑓
0

3
(𝑢)=

1

2√2
(1 − 𝑢

(0,−1)
𝑇

) ,

(93)

and we have ∑3
𝑙=0

|𝑓
0

𝑙
(𝑢)|
2
= 1. By Corollary 9, there exists

a minimum-energy bivariate wavelet frame associated with
𝜙(𝜉).

6. Conclusions

In this paper, we define the concept of minimum-energy
bivariate wavelet frame with arbitrary dilation matrix and
present its equivalent characterizations. We give a necessary
condition and two sufficient conditions forminimum-energy
bivariate wavelets frame and deduce the decomposition
and reconstruction formulas of minimum-energy bivariate
wavelets frame. Finally, we give several numerical examples
to show the effectiveness of the proposed methods.
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