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We consider a model operator 𝐻 associated with a system describing three particles in interaction, without conservation of the
number of particles. The operator 𝐻 acts in the direct sum of zero-, one-, and two-particle subspaces of the fermionic Fock
spaceF

𝑎
(𝐿
2

(T3)) over 𝐿2(T3). We admit a general form for the “kinetic” part of the Hamiltonian 𝐻, which contains a parameter
𝛾 to distinguish the two identical particles from the third one. (i) We find a critical value 𝛾

∗ for the parameter 𝛾 that allows
or forbids the Efimov effect (infinite number of bound states if the associated generalized Friedrichs model has a threshold
resonance) and we prove that only for 𝛾 < 𝛾

∗ the Efimov effect is absent, while this effect exists for any 𝛾 > 𝛾
∗. (ii) In the case

𝛾 > 𝛾
∗ , we also establish the following asymptotics for the number 𝑁(𝑧) of eigenvalues of 𝐻 below 𝑧 < 𝐸min = inf 𝜎ess(𝐻) :

lim
𝑧→𝐸min

(𝑁(𝑧)/| log |𝐸min − 𝑧||) = U
0
(𝛾) (U

0
(𝛾) > 0), for all 𝛾 > 𝛾

∗.

1. Introduction

In the spectral theory of the continuous and lattice three-
particle Schrödinger operators inR3, there is the remarkable
phenomenon known as Efimov effect: if all Hamiltonians
of the two-body subsystems are nonnegative and if at least
two of them have a zero-energy resonance, then the three-
body system has an infinite number of negative eigenvalues
accumulating at zero.

This remarkable spectral property was discovered by
Efimov [1] and has since become the subject of many papers
[2–11]. The first mathematical proof of the existence of this
effect was given by Jafaev [11], and Szlachányi and Vecsernyés
[8] established the asymptotics for the number of eigenvalues
near the threshold of the essential spectrum.

Recently, Wang [12] has proved the existence of the
Efimov effect in the system with 𝑁 ≥ 4 particles in R3 but in

this case the properties of the spectrum have not been fully
comprehended yet.

In statistical physics [13, 14], solid-state physics [15, 16],
and the theory of quantum fields [17–19], some impor-
tant problems arise where the number of quasiparticles is
bounded, but not fixed. The authers of [20] have developed
geometric and commutator techniques to find the location
of the spectrum and to prove absence of singular continuous
spectrum for Hamiltonians without conservation of the
particle number.

Notice that the study of systems describing 𝑛 particles in
interaction, without conservation of the number of particles,
is reduced to the investigation of the spectral properties of
self-adjoint operators acting in the cut subspace H(𝑛) of the
Fock space, consisting of 𝑟 ≤ 𝑛 particles [13, 16–18, 20, 21].

The model operator, associated with a system describing
two bosons and one particle, another nature in interaction,
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without conservation of the number of particles, was consid-
ered in [22, 23], and the existence of the Efimov effect was
proved. This model operator acts in the direct sum of zero-,
one-, and two-particle subspaces of the bosonic Fock space
F
𝑠
(𝐿
2

(T3)) over 𝐿2(T3).
In the present paper, we consider a model operator 𝐻,

acting in the direct sum of zero-, one-, and two-particle
subspaces of the fermionic Fock space F

𝑎
(𝐿
2

(T3)) over
𝐿
2

(T3), associated with a system describing two identical
fermions and one particle, another nature in interactions,
without conservation of the number of particles on the three-
dimensional lattice.

The main aim of the present paper is to study spectral
properties for a model operator 𝐻 with emphasis on the
asymptotics for the number of infinitely many eigenvalues
(Efimov’s effect case).

We admit a general form for the kinetic part of the
hamiltonian 𝐻, which contains a parameter 𝛾 to distinguish
the two identical particles from the third one (this parameter
would be the ratio of the mass). Under some smoothness
assumptions, we obtain the following results.

(i) We find a critical value 𝛾
∗ for the parameter 𝛾 that

allows or forbids the Efimov effect and we prove that
only for 𝛾 < 𝛾

∗ the Efimov effect is absent, while this
effect exists for any 𝛾 > 𝛾

∗.
(ii) In the case 𝛾 > 𝛾

∗, we also establish the following
asymptotics for the number 𝑁(𝑧) of eigenvalues
below 𝑧 < 𝐸min:

lim
𝑧→𝐸

−

min

𝑁(𝑧)

󵄨󵄨󵄨󵄨log
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

= U
0
(𝛾) (U

0
(𝛾) > 0) , ∀𝛾 > 𝛾

∗

.

(1)

We notice that the assertion (i) is surprising and similar
assertions are not true for the lattice model operators in the
bosonic Fock space [22, 23], but in both cases, the presence
of the Efimov effect is due to the annihilation and creation
operators.

However, the presence of the Efimov effect for the three-
particle Schrödinger operators is due to the two-particle
interaction operators (see, e.g., [8–11, 24, 25] in lattice case).

We remark that for a model operator 𝐻 associated to
a system describing three particles on the lattice the authors
Dell’Antonio et al. [26] found an explicit value of the parame-
ter 𝛾, say 𝛾

∗, such that only for values of 𝛾 below this number,
the Efimov effect is absent for the sector of the Hilbert
spacewhich contains functionswhich are antisymmetricwith
respect to the two identical particles, while it is present for all
values of the parameter 𝛾 on the symmetric sector. In case
of antisymmetric wavefunction, the number 𝛾

∗ is a critical
value for the mass ratio, where the Efimov effect is present or
absent.

In the continuous case, interestingly the case of a system
of three fermions, two identical and different from the third
one, with short-range interaction, was also considered from
a more physical point of view by Petrov [27], and he also
found a critical value for the mass ratio ≈13,6 (in our case
𝛾
∗

≈ 13, 60696570) that permits or forbids the Efimov effect.

The organization of the present paper is as follows.
Section 1 is an introduction to the whole work. In Section 2,
the model operator is described as a bounded self-adjoint
operator 𝐻 in H(3). Some spectral properties of the cor-
responding Friedrichs models ℎ(𝑝), 𝑝 ∈ T3, are studied,
the location and structure of the essential spectrum of 𝐻

are given, and the main result of the paper is formulated.
Section 3 deals with the review the Birman-Schwinger prin-
ciple for the operator 𝐻. In Section 4, we prove of the main
result.

In order to facilitate a description of the content of this
paper, we briefly introduce the notation used throughout
this paper. Let T3 = (R/2𝜋Z)

3

= (−𝜋, 𝜋]
3 be the three-

dimensional torus (the first Brillouin zone, i.e., the dual group
of Z3) equipped with its Haar measure. Denote by 𝐿

2

(Ω)

the Hilbert space of square-integrable functions defined on
a measurable set Ω ⊂ R𝑛. Denote by 𝐿

2

as((T
3

)
2

) the subspace
of antisymmetric functions of theHilbert space𝐿2((T3)2).We
denote by 𝑐,𝐶 several constants, whosemagnitudes are not of
interest.

2. The Model Operator and Statement of
the Main Results

Set

H
0
= C, H

1
= 𝐿
2

(T
3

) , H
2
= 𝐿
2

as ((T
3

)
2

) .

(2)

TheHilbert spaceH(3) = H
0
⊕H
1
⊕H
2
is called the direct

sum of zero-, one-, and two-particle subspaces of a fermionic
Fock spaceF

𝑎
(𝐿
2

(T3)) over 𝐿2(T3).
Let 𝐻

𝑖𝑗
be annihilation (creation) operators [18] defined

in the Fock space for 𝑖 < 𝑗 (𝑖 > 𝑗). We note that in physics, an
annihilation operator is an operator that lowers the number
of particles in a given state by one, a creation operator is an
operator that increases the number of particles in a given state
by one, and it is the adjoint of the annihilation operator.

In this paper, we consider the case, where the number of
annihilations and creations of the particles of the considering
system is equal to 1. It means that 𝐻

𝑖𝑗
≡ 0 for all |𝑖 − 𝑗| > 1.

So, themodel operator𝐻 associated with the energy operator
of a system describing three particles in interaction, without
conservation of the number of particles, acts in the Hilbert
spaceH(3) as a matrix operator

𝐻 = (

𝐻
00

𝐻
01

0

𝐻
10

𝐻
11

𝐻
12

0 𝐻
21

𝐻
22

) , (3)

where the operators𝐻
𝑖𝑗
: H
𝑗
→ H

𝑖
, 𝑖, 𝑗 = 0, 1, 2 are defined

by the forms

(𝐻
00
𝑓
0
)
0
= 𝑢
0
𝑓
0
, (𝐻

01
𝑓
1
)
0
= ∫

T3
𝑏 (𝑞
󸀠

) 𝑓
1
(𝑞
󸀠

) 𝑑𝑞
󸀠

,

(𝐻
10
𝑓
0
)
1
= 𝑏 (𝑝) 𝑓

0
, (𝐻

11
𝑓
1
)
1
= 𝑢 (𝑝) 𝑓

1
(𝑝) ,

(𝐻
12
𝑓
2
)
1
= ∫

T3
𝑏 (𝑞
󸀠

) 𝑓
2
(𝑝, 𝑞
󸀠

) 𝑑𝑞
󸀠

,
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(𝐻
21
𝑓
1
)
2
=

1

2
(𝑏 (𝑞) 𝑓

1
(𝑝) − 𝑏 (𝑝) 𝑓

1
(𝑞)) ,

(𝐻
22
𝑓
2
)
2
= 𝐸 (𝑝, 𝑞) 𝑓

2
(𝑝, 𝑞) .

(4)

Here 𝑓
𝑖
∈ H
𝑖
, 𝑖 = 0, 1, 2, 𝑢

0
-fixed real number, 𝑏(⋅), 𝑢(⋅)-

real-valued analytic functions on T3 and 𝐸(⋅, ⋅) is a real-
analytic symmetric function defined on (T3)

2.
Under these assumptions, the operator𝐻 is bounded and

self-adjoint inH(3).
Throughout this paper we assume the following addi-

tional technical assumptions.

Hypothesis 1. (a) The real-analytic function 𝐸(⋅, ⋅) which is
symmetric on (T3)

2 is even with respect to (𝑝, 𝑞) and has a
unique nondegenerate zero minimum at the origin (0, 0) ∈

(T3)
2 and there exist positive definite matrix 𝑊 and positive

real number 𝛾 > 0 such that

(
𝜕
2

𝐸 (0, 0)

𝜕𝑝
𝑖
𝜕𝑝
𝑗

)

3

𝑖,𝑗=1

= (1 + 𝛾)𝑊, (5)

(
𝜕
2

𝐸 (0, 0)

𝜕𝑝
𝑖
𝜕𝑞
𝑗

)

3

𝑖,𝑗=1

= 𝛾𝑊. (6)

(b) The functions 𝑢(⋅) and 𝑏(⋅) on T3 are even and 𝑢(⋅) has a
unique minimum at the origin.

By Hypothesis 1, for any 𝑝 ∈ T3 the integral

∫
T3

𝑏
2

(𝑡) 𝑑𝑡

𝐸 (𝑝, 𝑡) − 𝐸min
(7)

is finite and hence it defines a continuous even function on
T3, which will be denoted by Λ(𝑝).

Since the function 𝐸(𝑝, 𝑞) has a unique nondegenerate
minimum at the point (0, 0) ∈ (T3)

2 and 𝐸(0, 0) = 𝐸min the
function Λ(𝑝) is positive.

Hypothesis 2. For any nonzero 𝑝 ∈ T3, the inequality Λ(𝑝) <

Λ(0) holds.

Remark 1. For the functions

𝑢 (𝑝) = 𝜀 (𝑝) + 𝑐, 𝑏 (𝑝) = 𝜀 (𝑝) ,

𝐸 (𝑝, 𝑞) = 𝛾𝜀 (𝑝 + 𝑞) + 𝜀 (𝑝) + 𝜀 (𝑞) , 𝑝, 𝑞 ∈ T
3

,

(8)

where 𝑐 > 0 is a real number and 𝜀(⋅) is real valued analytic
conditionally negative definite function with a unique mini-
mum at the origin, Hypotheses 1 and 2 are fulfilled (see [22,
Lemma A1]).

Recall that a complex-valued bounded function 𝜀 : T𝑚 →

C is called conditionally negative definite if 𝜀(𝑝) = 𝜀(−𝑝) and
𝑛

∑

𝑖,𝑗=1

𝜀 (𝑝
𝑖
− 𝑝
𝑗
) 𝑧
𝑖
𝑧
𝑗
≤ 0 (9)

for all 𝑝
1
, . . . , 𝑝

𝑛
∈ T𝑚 and all z = (𝑧

1
, . . . , 𝑧

𝑛
) ∈ C𝑛 satisfying

∑
𝑛

𝑖=1
𝑧
𝑖
= 0.

2.1. The Friedrichs Model. To formulate the main results of
the paper we introduce a family of Friedrichs models ℎ(𝑝),
𝑝 ∈ T3, which act inH(2) ≡ H

0
⊕H
1
with the entries

(ℎ
00

(𝑝) 𝑓
0
)
0
= 𝑢 (𝑝) 𝑓

0
, ℎ

01
=

1

√2

𝐻
01
,

ℎ
10

= ℎ
∗

01
, (ℎ

11
(𝑝) 𝑓
1
)
1
(𝑞) = e

𝑝
(𝑞) 𝑓
1
(𝑞) ,

(10)

where e
𝑝
(⋅) = 𝐸(𝑝, ⋅).

Let the operator ℎ
0
(𝑝), 𝑝 ∈ T3, act inH(2) as

ℎ
0
(𝑝) (

𝑓
0

𝑓
1
(𝑞)

) = (
0

e
𝑝
(𝑞) 𝑓
1
(𝑞)

) . (11)

The perturbation ℎ(𝑝) − ℎ
0
(𝑝) of the operator ℎ

0
(𝑝) is a

self-adjoint operator of rank 2.Therefore, in accordance with
the invariance of the essential spectrum under finite rank
perturbations, the essential spectrum 𝜎ess(ℎ(𝑝)) of ℎ(𝑝) fills
the following interval on the real axis:

𝜎ess (ℎ (𝑝)) = [𝑚 (𝑝) ,𝑀 (𝑝)] , (12)

where

𝑚(𝑝) = min
𝑞∈T3

e
𝑝
(𝑞) , 𝑀 (𝑝) = max

𝑞∈T3
e
𝑝
(𝑞) . (13)

Definition 2. Let 𝑢(0) ̸= 𝐸min.The operator ℎ(0) is said to have
a threshold resonance if the number 1 is an eigenvalue of the
operator

(G𝜓) (𝑞)=
𝑏 (𝑞)

2 (𝑢 (0) − 𝐸min)
∫
T3

𝑏 (𝑡) 𝜓 (𝑡) 𝑑𝑡

e
0
(𝑡) − 𝐸min

, 𝜓 ∈ 𝐶 (T
3

) ,

(14)

and the associated eigenfunction 𝜓 (up to a constant factor)
satisfies the condition 𝜓(0) ̸= 0.

Remark 3. The spectrum and resonances of this Friedrichs
model are studied in [22, 23].

For any𝑝 ∈ T3, we define an analytic functionΔ(𝑝, 𝑧) (the
Fredholm determinant associated with the operator ℎ(𝑝)) in
C \ [𝑚(𝑝),𝑀(𝑝)] by

Δ (𝑝, 𝑧) = 𝑢 (𝑝) − 𝑧 −
1

2
∫
T3

𝑏
2

(𝑡) 𝑑𝑡

𝐸 (𝑝, 𝑡) − 𝑧
. (15)

Since Δ(0, ⋅) is continuous in 𝑧 ≤ 𝐸min, the following finite
limit exists:

Δ (0, 𝐸min) = lim
𝑧→𝐸min

Δ (0, 𝑧) . (16)

Lemma4. For any𝑝 ∈ T3 the operator ℎ(𝑝) has an eigenvalue
𝑧 ∈ C \ [𝑚(𝑝),𝑀(𝑝)] if and only if Δ(𝑝, 𝑧) = 0.
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Proof. One can see that the equation

ℎ (𝑝) 𝑓 = 𝑧𝑓, 𝑓 ∈ H
(2)

, 𝑧 ∈ C \ [𝑚 (𝑝) ,𝑀 (𝑝)] , (17)

is equivalent to the following equation:

(ℎ
00

(𝑝) − 𝑧) 𝑓
0
+ ℎ
01
𝑓
1
= 0,

𝑓
1
= −(ℎ

11
(𝑝) − 𝑧)

−1

ℎ
10
𝑓
0
.

(18)

Putting 𝑓
1
to the first equation and then according to the

equality Δ(𝑝, 𝑧) = ℎ
00
(𝑝) − 𝑧 − ℎ

01
(ℎ
11
(𝑝) − 𝑧)

−1

ℎ
10
we have

the fact that (17) is equivalent to the equation

Δ (𝑝, 𝑧) 𝑓
0
= 0. (19)

Thus (17) has nontrivial solution if and only ifΔ(𝑝, 𝑧) = 0.

Lemma 5. (i) The operator ℎ(0) has a threshold resonance if
and only if Δ(0, 𝐸min) = 0 and 𝑏(0) ̸= 0.

(ii) If 𝑢(0) ≤ 𝐸min, then the operator ℎ(0) has no a thresh-
old resonance.

(iii) Assume Δ(0, 𝐸min) = 0.

(a) If 𝑏(0) ̸= 0, then the operator ℎ(0) has a threshold
resonance and the vector 𝑓 = (𝑓

0
, 𝑓
1
), where

𝑓
0
= const ̸= 0,

𝑓
1
(𝑞) = −

𝑏 (𝑞) 𝑓
0

√2 (e
0
(𝑞) − 𝐸min)

∈ 𝐿
1

(T
3

) \ 𝐿
2

(T
3

) ,

(20)

obeys the equation ℎ(0)𝑓 = 𝐸min𝑓.
(b) If 𝑏(0) = 0, then the number 𝑧 = 𝐸min is an

eigenvalue of the operator ℎ(0) and the vector
𝑓 = (𝑓

0
, 𝑓
1
), where 𝑓

0
∈ C1 and 𝑓

1
∈ 𝐿
2

(T3)

defined by (20), is the corresponding eigenvector.

Proof. (i) “Only If Part.” Suppose that the operator ℎ(0) has a
threshold energy resonance.ThenbyDefinition 2 the number
1 is an eigenvalue of the operator (14) as

(G𝜓) (𝑞) =
𝑏 (𝑞)

2 (𝑢 (0) − 𝐸min)
∫
T3

𝑏 (𝑡) 𝜓 (𝑡) 𝑑𝑡

e
0
(𝑡) − 𝐸min

,

𝜓 ∈ 𝐶 (T
3

) ,

(21)

and the associated eigenfunction 𝜓 satisfies 𝜓(0) ̸= 0.
This solution is equal to the function 𝑏(⋅) (up to a constant

factor) and hence Δ(0, 𝐸min) = 0.
“If Part.” Let the equality Δ(0, 𝐸min) = 0 hold and let

𝑏(0) ̸= 0. Then the inequality 𝑢(0) ̸= 𝐸min holds and the func-
tion 𝑏(⋅) is an eigenfunction of 𝐺; that is, by Definition 2 the
operator ℎ(0) has a threshold energy resonance.

(ii) Since 𝑢(0) ≤ 𝐸min and −ℎ
01
(ℎ
11
(0) − 𝐸min)

−1

ℎ
10

< 0,
we get Δ(0, 𝐸min) < 0 which ends the proof together
with (ii).

(iii) Similarly to the proof of Lemma 4, one can check that
Δ(0, 𝐸min) = ℎ

00
(0) − 𝐸min − ℎ

01
(ℎ
11
(0) − 𝐸min)

−1

ℎ
10

holds, and it is a determinant of the equation

(ℎ
00

(𝑝) − 𝐸min) 𝑓0 + ℎ
01
𝑓
1
= 0,

𝑓
1
= −(ℎ

11
(0) − 𝐸min)

−1

ℎ
10
𝑓
0
,

that is𝑓
1
(𝑞) = −

𝑏 (𝑞) 𝑓
0

√2

(e
0
(𝑞) − 𝐸min)

−1

,

(22)

which is equivalent to the equation

ℎ (0) 𝑓 = 𝐸min𝑓, 𝑓 ∈ C ⊕ 𝐿
1

(T
3

) . (23)

Thus (23) has nontrivial solution if and only if Δ(0,

𝐸min) = 0.
By Hypothesis 1 there exist 𝑐, 𝐶 > 0 and a bounded,

partially continuous 𝑏(⋅) function such that

𝑐
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

≤ e
0
(𝑞) − 𝐸min ≤ 𝐶

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

,

𝑏 (𝑞) = 𝑏 (0) + 𝑏 (𝑞)
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

.

(24)

(a) If 𝑏(0) ̸= 0 by (i), the operator ℎ(0) has a threshold
resonance. Due to the fact 1/|𝑞|2 ∈ 𝐿

1

(T3) \ 𝐿
2

(T3)

and (24), we have 𝑓
1
∈ 𝐿
1

(T3) \ 𝐿
2

(T3).
(b) If 𝑏(0) = 0, then using (24) we can see 𝑓

1
∈ 𝐿
2

(T3)

and 𝑓 = (𝑓
0
, 𝑓
1
) ∈ H(2), with 𝑓 eigenfunction of ℎ(0)

corresponding to the eigenvalue 𝐸min.

Let 𝑊 be the 3 × 3 matrix defined in Hypothesis 1 and
𝑈
𝛿
(0) = {𝑝 ∈ T3 : |𝑝| < 𝛿} stands for a 𝛿 (𝛿 > 0)-

neighborhood of the origin. The following Lemma 6 plays a
crucial role in the proof of the infiniteness (finiteness, resp.)
of the number of eigenvalues lying below the bottom of the
essential spectrum for a model operator𝐻. The proof may be
handled in much the same way as in [22, 23].

Lemma 6. Let the operator ℎ(0) have a threshold resonance.
Then for any 𝑝 ∈ 𝑈

𝛿
(0), 𝛿 > 0 sufficiently small and 𝑧 ≤ 𝐸min,

the following decomposition

Δ (𝑝, 𝑧) =
4√2𝜋

2

𝑏
2

(0)

(1 + 𝛾)
3/2 det (W)

1/2

√𝑚(𝑝) − 𝑧

+ Δ
(02)

(𝑚 (𝑝) − 𝑧) + Δ
(20)

(𝑝, 𝑧)

(25)

holds, where Δ
(02)

(𝑚(𝑝) − 𝑧) (Δ(20)(𝑝, 𝑧), resp.) is a function
behaving like 𝑂(𝑚(𝑝) − 𝑧) (𝑂(|𝑝|

2

), resp.) as |𝑚(𝑝) − 𝑧| → 0

(𝑝 → 0 uniformly in 𝑧 ≤ 𝐸min, resp.).

Lemma 7. Let the operator ℎ(0) have a threshold resonance.
Then there exist positive numbers 𝑐, 𝐶 and 𝛿 such that

𝑐
󵄨󵄨󵄨󵄨𝑝

󵄨󵄨󵄨󵄨 ≤ Δ (𝑝, 𝐸min) ≤ 𝐶
󵄨󵄨󵄨󵄨𝑝

󵄨󵄨󵄨󵄨 for any𝑝 ∈ 𝑈
𝛿
(0) , (26)

Δ (𝑝, 𝐸min) ≥ 𝑐 for any𝑝 ∈ T
3

\ 𝑈
𝛿
(0) . (27)
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Proof. By the assumption (a) of Hypothesis 1, we have

𝐸 (𝑝, 𝑞) = 𝐸min + 𝐹 (𝑝, 𝑞) + 𝑂 (
󵄨󵄨󵄨󵄨𝑝

󵄨󵄨󵄨󵄨

4

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

4

) as𝑝, 𝑞 󳨀→ 0,

(28)

where
𝐹 (𝑝, 𝑞)

=
1

2
((1 + 𝛾) (𝑊𝑝, 𝑝) + 2𝛾 (𝑊𝑝, 𝑞) + (1 + 𝛾) (𝑊𝑞, 𝑞)) .

(29)

Since 𝐸(⋅, ⋅) has a nondegenerate minimum at the origin
and the equality

min
𝑞∈T3

𝐹 (𝑝, 𝑞) =
1

2

1 + 2𝛾

1 + 𝛾
(𝑊𝑝, 𝑝) (30)

Holds, we have

𝑚(𝑝) = min
𝑞∈T3

𝐸 (𝑝, 𝑞)

= 𝐸min +
1

2

1 + 2𝛾

1 + 𝛾
(𝑊𝑝, 𝑝) + 𝑂 (

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

4

) as𝑝 󳨀→ 0.

(31)

Consequently, these asymptotics and Lemma 6 yield (26)
for some positive numbers 𝑐, 𝐶.

By Hypotheses 1 and 2, we have 𝑢(𝑝) > 𝑢(0) and Λ(𝑝) >

Λ(0), 0 ̸= 𝑝 ∈ T3, and hence

Δ (𝑝, 𝐸min)

= 𝑢 (𝑝) − 𝐸min −
1

2
Λ (𝑝) > Δ (0, 𝐸min) , 0 ̸= 𝑝 ∈ T

3

.

(32)

Then the inequality (27) follows from Δ(0, 𝐸min) = 0 and
the continuity of the function Δ(𝑝, 𝐸min).

2.2. The Essential Spectrum of 𝐻. The following theorem
describes the essential spectrum of the operator 𝐻. Similar
results were obtained in the bosonic Fock space in [22, 23],
and we refer to these paper for the proof.

Theorem 8. For the essential spectrum 𝜎ess(𝐻) of the operator
𝐻, the equality

𝜎ess (𝐻) = ⋃

𝑝∈T3

𝜎
𝑑
(ℎ (𝑝)) ∪ [𝐸min, 𝐸max] (33)

holds, where 𝜎
𝑑
(ℎ(𝑝)) is the discrete spectrum of the operator

ℎ(𝑝), 𝑝 ∈ T3.

The following lemma describes the location of the essen-
tial spectrum of the operator𝐻.

Lemma 9. Let Hypothesis 1 be fulfilled and ℎ(0) has a thres-
hold resonance. Then

𝜎ess (𝐻) = [𝐸min, 𝐸max] ∪ 𝜎
2
, (34)

where 𝜎
2
= {𝑧 ∈ [𝐸max, +∞) : Δ(𝑝, 𝑧) = 0 for some𝑝 ∈ T3}.

Proof. According to Lemma 4, the zero of Δ(𝑝, ⋅) is the
eigenvalues of ℎ(𝑝), so

Υ = ⋃

𝑝∈T3

𝜎
𝑑
(ℎ (𝑝)) \ (𝐸min, 𝐸max)

= {𝑧 ∈ R \ [𝐸min, 𝐸max] : Δ (𝑝, 𝑧) = 0 for some𝑝 ∈ T
3

} .

(35)

By analyticity of Δ(𝑝, ⋅), the subset Υ of the essential
spectrum of 𝜎ess(𝐻) is described as a finite union of nonin-
tersecting closed intervals.

The function Δ(𝑝, ⋅) is decreasing in (−∞, 𝐸min), respec-
tively, with (𝐸max, +∞), and hence there may exist its unique
zero lying below, respectively, above the closed interval
[𝐸min, 𝐸max].

So, the setΥmay be described as the union of intervals 𝜎
1

and 𝜎
2
lying below and above of [𝐸min, 𝐸max], and

𝜎
1
= {𝑧 ∈ (−∞,𝐸min] : Δ (𝑝, 𝑧) = 0 for some𝑝 ∈ T

3

} ,

𝜎
2
= {𝑧 ∈ [𝐸max, +∞) : Δ (𝑝, 𝑧) = 0 for some𝑝 ∈ T

3

} .

(36)

By virtue of Hypothesis 2, we have Δ(𝑝, 𝐸min) ≥ Δ(0,

𝐸min) and using Lemma 5 we get Δ(0, 𝐸min) = 0, and so
Δ(𝑝, 𝑧) > Δ(𝑝, 𝐸min) ≥ Δ(𝑝, 𝐸min) = 0, that is

Δ (𝑝, 𝑧) > 0 ∀ 𝑧 < 𝐸min, (37)

since Δ(𝑝, ⋅) is decreasing in (−∞, 𝐸min). Then according to
Lemma 4 we get 𝜎

1
= 0.

Consequently, ∪
𝑝∈T3𝜎𝑑(ℎ(𝑝)) \ (𝐸min, 𝐸max) = 𝜎

2
and

Theorem 8 ends the proof of the lemma.

2.3. Statement of the Main Results. Henceforth we assume
that ℎ(0) has a threshold resonance.

According to Lemma 9 for the bottom of the essential
spectrum the equality𝐸min = inf 𝜎ess(𝐻) is valid, and by𝑁(𝑧)

we denote the number of eigenvalues and counted according
to their multiplicities of𝐻 lying below 𝑧 ≤ 𝐸min.

Let 𝛾∗ be a solution of the equation

2(1 + 𝛾)
2

𝜋𝛾√1 + 2𝛾
−

2(1 + 𝛾)
2

𝜋𝛾2
arcsin

𝛾

1 + 𝛾
= 1, 𝛾 > 0. (38)

Since the function at the r.h.s. of (38) is continuous,
strictly increasing and surjective from (0,∞) to (0,∞), the
number 𝛾∗ is a unique positive solution.

In the following main theorem, we aprecisely describe
the dependence of the number of eigenvalues of 𝐻 on the
parameters 𝛾 > 0.

Theorem 10. Let Hypothesis 1 be fulfilled and let ℎ(0) have a
threshold resonance at 𝐸min. Then we have the following.

(i) For any 0 < 𝛾 < 𝛾
∗, the operator 𝐻 has a finite

number of eigenvalues lying below the bottom 𝐸min of
the essential spectrum.
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(ii) For any 𝛾 > 𝛾
∗, the operator 𝐻 has infinitely many

eigenvalues lying below 𝐸min. The function 𝑁(𝑧) obeys
the relation

lim
𝑧→𝐸

−

min

𝑁(𝑧)

󵄨󵄨󵄨󵄨log
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

= U
0
(𝛾) (U

0
(𝛾) > 0) . (39)

It follows from the positivity of the limit (39) that the
discrete spectrum of the operator𝐻 is infinite.

Remark 11. The constantU
0
(𝛾) is given as a positive function

depending only on the variable 𝛾, 𝛾 > 𝛾
∗.

Remark 12. In [26], a result analogue to Theorem 10 has
been proven for a model operator 𝐻 associated to a system
describing three particles on the lattice Z𝑑.

3. The Birman-Schwinger Principle

For a bounded self-adjoint operator 𝐵, we define 𝑛(𝜆, 𝐵) by

𝑛 (𝜆, 𝐵) = sup {dim𝐹 : (𝐵𝑢, 𝑢) > 𝜆, 𝑢 ∈ 𝐹, ||𝑢|| = 1} . (40)

𝑛(𝜆, 𝐵) is equal to infinity if 𝜆 is in the essential spectrum
of 𝐵 and if 𝑛(𝜆, 𝐵) is finite, it is equal to the number of the
eigenvalues of 𝐵 larger than 𝜆. By the definition of 𝑁(𝑧), we
have

𝑁(𝑧) = 𝑛 (−𝑧, −𝐻) , −𝑧 > −𝐸min. (41)

In our analysis of the spectrum of 𝐻, the crucial role
is played by the self-adjoint compact Faddeev-Newton-type
integral operator 𝑇(𝑧), 𝑧 < 𝐸min, in the space H(2) with the
entries

(𝑇
00

(𝑧) 𝑓
0
)
0
= (1 − 𝑢

0
− 𝑧) 𝑓

0
,

(𝑇
01

(𝑧) 𝑓
1
)
0
= −∫

T3

𝑏 (𝑞
󸀠

) 𝑓
1
(𝑞
󸀠

) 𝑑𝑞
󸀠

√Δ (𝑞󸀠, 𝑧)

,

𝑇
10

(𝑧) = 𝑇
∗

01
(𝑧) ,

(𝑇
11

(𝑧) 𝑓
1
)
1
(𝑝)

= −
𝑏 (𝑝)

2√Δ (𝑝, 𝑧)

∫
T3

𝑏 (𝑞
󸀠

) 𝑓
1
(𝑞
󸀠

) 𝑑𝑞
󸀠

√Δ (𝑞󸀠, 𝑧) (𝐸 (𝑝, 𝑞󸀠) − 𝑧)

.

(42)

Now we describe 𝑇(𝑧) with the entries of 𝐻 in (3). We
split𝐻

21
into the sum of two operators

𝐻
21

=
1

2
(𝐻
(1)

21
− 𝐻
(2)

21
) , (𝐻

(1)

21
𝑓
1
)
2

= 𝑏 (𝑞) 𝑓
1
(𝑝) ,

(𝐻
(2)

21
𝑓
1
)
2

= 𝑏 (𝑝) 𝑓
1
(𝑞) ,

(43)

where 𝑓
1
∈ H
1
.

According to the last representation and (3), we take

𝑇
00

(𝑧) = (1 + 𝑧) 𝐼
0
− 𝐻
00
, 𝑇

01
(𝑧) = −𝐻

01
𝐷
−1/2

(𝑧) ,

𝑇
10

(𝑧) = −𝐷
−1/2

(𝑧)𝐻
10
,

𝑇
11

(𝑧) = −
1

2
𝐷
−1/2

(𝑧)𝐻
12
𝑅
1/2

22
(𝑧)𝐻
(2)

21
𝐷
−1/2

(𝑧) ,

(44)

where 𝑅
22
(𝑧) = (𝐻

22
− 𝑧𝐼
2
)
−1 is the resolvent of𝐻

22
,

𝐷 (𝑧) = 𝐻
11

− 𝑧𝐼
1
−

1

2
𝐷
−1/2

(𝑧)𝐻
12
𝑅
1/2

22
(𝑧)𝐻
(1)

21
𝐷
−1/2

(𝑧) .

(45)

One can verify that 𝐷(𝑧) is the multiplication operator
by the determinant Δ(⋅, 𝑧). So, logically we may denote by
𝐷
−1/2

(𝑧) the multiplication operator by Δ
−1/2

(⋅, 𝑧).
The following lemma is a modification of the Birman-

Schwinger principle for the three-particle Schrödinger oper-
ators (see [8, 10, 24]).

Lemma 13. The operator 𝑇(𝑧) is compact and continuous in
𝑧 < 𝐸min and

𝑁(𝑧) = 𝑛 (1, 𝑇 (𝑧)) . (46)

Proof. Set

𝑀(𝑧) = R
1/2

(𝑧) (R
−1

(𝑧) − (𝐻 − 𝑧𝐼))R
1/2

(𝑧) , (47)

where R(𝑧) = diag{𝐼
0
, 𝐼
1
,R
22
(𝑧)} and R−1(𝑧) is the inverse

ofR(𝑧).
For entries of matrix operator𝑀(𝑧), we have

𝑀
00

(𝑧) = (1 + 𝑧) 𝐼
0
− 𝐻
00
, 𝑀

01
(𝑧) = −𝐻

01
,

𝑀
02

(𝑧) = 0,

𝑀
10

(𝑧) = −𝐻
10
, 𝑀

11
(𝑧) = (1 + 𝑧) 𝐼

1
− 𝐻
11
,

𝑀
12

(𝑧) = −𝐻
12
𝑅
1/2

22
(𝑧) ,

𝑀
20

(𝑧) = 0, 𝑀
21

(𝑧) = −𝑅
1/2

22
(𝑧)𝐻
21
,

𝑀
22

(𝑧) = 0.

(48)

The correctness of

𝑁(𝑧) = 𝑛 (1,𝑀 (𝑧)) (49)

is shown by the fact 𝑔 ∈ H
−𝐻

(−𝑧), that is, (𝐻𝑔, 𝑔) < 𝑧(𝑔, 𝑔)

if and only if (𝑔, 𝑔) < (𝑀(𝑧)𝑔, 𝑔), 𝑔 ∈ H
𝑀(𝑧)

(1), where 𝑔 =

R−1/2(𝑧)𝑔.
For any 𝑧 < 𝜏ess(𝐻), we define an operator 𝑉(𝑧) acting in

the Hilbert spaceH
0
⊕H
1
by the form

𝑉 (𝑧) = (
𝑀
00

(𝑧) 𝑀
01

(𝑧)

𝑀
10

(𝑧) 𝑀
11

(𝑧) + 𝑀
12

(𝑧)𝑀
21

(𝑧)
) , (50)
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and prove the equality

𝑁(𝑧) = 𝑛 (1, 𝑉 (𝑧)) , 𝑧 < 𝜏ess (𝐻) . (51)

Let 𝑓 = (𝑓
0
, 𝑓
1
) ∈ H

𝑉(𝑧)
(1), and then for 𝑔 = (𝑓

0
, 𝑓
1
,

−𝑀
21
(𝑧)𝑓
1
) ∈ H(3), we get

(𝑀 (𝑧) 𝑔, 𝑔) = (𝑉 (𝑧) 𝑓, 𝑓) + (𝑀
21

(𝑧) 𝑓
1
, 𝑔
2
)

> (𝑓, 𝑓) + (𝑔
2
, 𝑔
2
) = (𝑔, 𝑔) ,

(52)

that is, 𝑔 ∈ H
𝑀(𝑧)

(1).
Therefore,

𝑛 (1, 𝑉 (𝑧)) ≤ 𝑛 (1,𝑀 (𝑧)) , 𝑧 < 𝜏ess (𝐻) . (53)

Using the equality

(𝑉 (𝑧) 𝑓, 𝑓) = (𝑀 (𝑧) 𝑔, 𝑔) + (𝑀
12

(𝑧)𝑀
21

(𝑧) 𝑔
1
, 𝑔
1
)

− (𝑀
21

(𝑧) 𝑔
1
, 𝑔
2
) − (𝑀

12
(𝑧) 𝑔
2
, 𝑔
1
) ,

(54)

where 𝑔 ∈ H(3), 𝑓 = (𝑔
1
, 𝑔
2
) ∈ H(2), and taking 𝑔 = (𝑔

0
, 𝑔
1
,

𝑔
2
) ∈ H

𝑀(𝑧)
(1) realized analogously, we get

(𝑉 (𝑧) 𝑓, 𝑓) > (𝑓, 𝑓) +
󵄩󵄩󵄩󵄩𝑔2 − 𝑀

21
(𝑧) 𝑔
1

󵄩󵄩󵄩󵄩

2

≥ (𝑓, 𝑓) ,

that is, 𝑓 ∈ H
𝑉(𝑧)

(1)

(55)

and so

𝑛 (1, 𝑉 (𝑧)) ≥ 𝑛 (1,𝑀 (𝑧)) , 𝑧 < 𝜏ess (𝐻) . (56)

Observe that

𝑉 (𝑧) − 𝐼 = D
1/2

(𝑧) (𝑇 (𝑧) − 𝐼)D
1/2

(𝑧) , (57)

whereD1/2(𝑧) is acting in the Hilbert spaceH
0
⊕H
1
by the

equality

D
1/2

(𝑧) = diag {𝐼
0
,D
1/2

(𝑧)} . (58)

Employing (57), we show 𝑔 ∈ H
𝑉(𝑧)

(1), that is,
(𝑉(𝑧)𝑔, 𝑔) > (𝑔, 𝑔) if and only if (𝑇(𝑧)𝑓, 𝑓) > (𝑓, 𝑓), 𝑓 =

D−1/2(𝑧)𝑔 ∈ H
𝑇(𝑧)

(1).

Consequently, for any 𝑧 < 𝜏ess(𝐻), we have
𝑛 (1, 𝑉 (𝑧)) = 𝑛 (1, 𝑇 (𝑧)) , that is 𝑁(𝑧) = 𝑛 (1, 𝑇 (𝑧)) .

(59)

3.1. The Birman-Schwinger Principle at the Threshold. It
should be noted that the operator 𝑇(𝑧) can be defined as a
bounded operator even for the point 𝑧 = 𝐸min by

(𝑇
00

(𝐸min) 𝑓0)0 = (1 − 𝑢
0
− 𝐸min) 𝑓0,

(𝑇
01

(𝐸min) 𝑓1)0 = −∫
T3

𝑏 (𝑞
󸀠

) 𝑓
1
(𝑞
󸀠

) 𝑑𝑞
󸀠

√Δ (𝑞󸀠, 𝑧)

,

𝑇
10

(𝐸min) = 𝑇
∗

01
(𝐸min) ,

(𝑇
11

(𝐸min) 𝑓1)1 (𝑝)

= −
𝑏 (𝑝)

2√Δ (𝑝, 𝐸min)
∫
T3

𝑏 (𝑞
󸀠

) 𝑓
1
(𝑞
󸀠

) 𝑑𝑞
󸀠

√Δ (𝑞󸀠, 𝐸min) (𝐸 (𝑝, 𝑞󸀠) − 𝐸min)
.

(60)
Remark 14. The operator 𝑇(𝑧) converges strongly (but not
uniformly) as 𝑧 → 𝐸min − 0 to 𝑇(𝐸min). Here we do not give
the proof of this convergence. The convergence of the these
types of operators was shown in [11, 25].

The next lemma can be proved analogously as Lemma 13.

Lemma 15. For any 𝑧, 𝑧 ≤ 𝐸min, the inequality
𝑁(𝑧) ≤ 𝑛 (1, 𝑇 (𝐸min)) (61)

occurs.

4. The Sketch of the Proof of the Main Results

By Hypothesis 1, we get

𝐸 (𝑝, 𝑞) = 𝐸min +
1

2
((1 + 𝛾) (𝑊𝑝, 𝑝)

+2𝛾 (𝑊𝑝, 𝑞) + (1 + 𝛾) (𝑊𝑞, 𝑞))

+ 𝑂 (
󵄨󵄨󵄨󵄨𝑝

󵄨󵄨󵄨󵄨

4

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

4

)

(62)

as 𝑝, 𝑞 → 0 and (31) as

𝑚(𝑘) = 𝐸min +
1

2

1 + 2𝛾

1 + 𝛾
(𝑊𝑘, 𝑘) + 𝑂 (|𝑘|

4

) as 𝑘 󳨀→ 0.

(63)
Applying the asymptotics for 𝑚(𝑝) and using Lemma 6,

we have
Δ (𝑝, 𝑧)

=
4𝜋
2

𝑏
2

(0)

(1 + 𝛾)
3/2 det (𝑊)

1/2

[𝑛 (𝑊𝑝, 𝑝) + 2 (𝐸min − 𝑧)]
1/2

+ 𝑂 (
󵄨󵄨󵄨󵄨𝑝

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨) as 𝑝,
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨 󳨀→ 0,

(64)
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where

𝑛 =
1 + 2𝛾

1 + 𝛾
. (65)

4.1. The Infiniteness of the Discrete Spectrum of 𝐻. In this
subsectionwewill derive the asymptotics (39) for the number
of eigenvalues of𝐻.

We recall that in this subsection we closely follow
Sobolev’s method (see [8]) to derive the asymptotics for the
number of eigenvalues of the operator𝐻 (see Theorem 10).

Let 𝑇(𝛿; |𝑧 − 𝐸min|) be the operator inH(2) defined by

𝑇 (𝛿;
󵄨󵄨󵄨󵄨𝑧 − 𝐸min

󵄨󵄨󵄨󵄨) = (
0 0

0 𝑇
11

(𝛿;
󵄨󵄨󵄨󵄨𝑧 − 𝐸min

󵄨󵄨󵄨󵄨)
) , (66)

where the𝑇
11
(𝛿; |𝐸min−𝑧|) is the integral operator inH

1
with

the kernel

𝑇 (𝛿,
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨 ; 𝑝, 𝑞)

= −𝑑
0
((𝜒
𝛿
(𝑝) 𝜒
𝛿
(𝑞) (𝑛 (𝑊𝑝, 𝑝) + 2

󵄨󵄨󵄨󵄨𝐸min − 𝑧
󵄨󵄨󵄨󵄨)
−1/4

× (𝑛 (𝑊𝑞, 𝑞) + 2
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨)

−1/4

)

× ((1 + 𝛾) (𝑊𝑝, 𝑝) + 2𝛾 (𝑊𝑝, 𝑞)

+ (1 + 𝛾) (𝑊𝑞, 𝑞) + 2
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨)
−1

) ,

(67)

where𝜒
𝛿
(⋅) is the characteristic function of the region 𝑈̂

𝛿
(0) =

{𝑝 ∈ T3 : |𝑊1/2𝑝| < 𝛿} and

𝑑
0
=
det𝑊1/2

2𝜋2
(1 + 𝛾)

3/2

. (68)

Lemma 16. Let the conditions of Theorem 10 be fulfilled. The
operator 𝑇(𝑧)−𝑇(𝛿; |𝐸min −𝑧|) belongs to the Hilbert-Schmidt
class and is continuous in 𝑧 ≤ 𝐸min.

Proof. Applying asymptotics (62) and (64), one can estimate
the kernel of the operator 𝑇(𝑧) − 𝑇(𝛿; |𝐸min − 𝑧|), 𝑧 ≤ 𝐸min,
by the square-integrable function

𝐶(

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

1/2

(𝑝2 + 𝑞2)
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

1/2

+

󵄨󵄨󵄨󵄨𝐸min − 𝑧
󵄨󵄨󵄨󵄨

1/2

(𝑝
2

+ 𝑞
2

)
−1

(
󵄨󵄨󵄨󵄨𝑝

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨)
1/4

(
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨)
1/4

+ 1) .

(69)

Hence the operator 𝑇(𝑧) − 𝑇(𝛿; |𝐸min − 𝑧|) belongs to the
Hilbert-Schmidt class for all 𝑧 ≤ 𝐸min. In combination with
the continuity of the kernel of the operator in 𝑧 < 𝐸min, this
gives the continuity of𝑇(𝑧)−𝑇(𝛿; |𝐸min−𝑧|) in 𝑧 ≤ 𝐸min.

Let 𝑇̂
0
(𝛿; |𝐸min−𝑧|) be the restriction of the integral oper-

ator 𝑇(𝛿; |𝐸min − 𝑧|) to the subspace 𝐿
2

(𝑈̂
𝛿
(0)). One verifies

that the operator 𝑇̂
0
(𝛿; |𝐸min − 𝑧|) is unitarily equivalent to

the integral operator 𝑇
1
(𝑟) acting in 𝐿

2

(𝑈
𝑟
(0)), where 𝑟 =

|𝐸min − 𝑧|
−1/2 and 𝑈

𝑟
(0) = {𝑝 ∈ R3 : |𝑝| < 𝑟}, with the kernel

𝑇
1
(𝑟; 𝑝, 𝑞) = −𝑑

1

(𝑛𝑝
2

+ 2)
−1/4

(𝑛𝑞
2

+ 2)
−1/4

(1 + 𝛾) 𝑝2 + 2𝛾 (𝑝, 𝑞) + (1 + 𝛾) 𝑞2 + 2
,

(70)

where

𝑑
1
=

(1 + 𝛾)
3/2

2𝜋2
. (71)

The equivalence is given by the unitary dilation

𝐵 : 𝐿
2

(𝑈̂
𝛿
(0)) 󳨀→ 𝐿

2

(𝑈
𝑟
(0)) ,

(𝐵
𝑟
𝑓) (𝑝) = (

𝑟

𝛿
)

−3/2

𝑓(
𝛿

𝑟
𝑊
1/2

𝑝) .

(72)

Furthermore, we may replace

(𝑛𝑝
2

+ 2)
−1/4

, (𝑛𝑞
2

+ 2)
−1/4

,

(1 + 𝛾) 𝑝
2

+ 2𝛾 (𝑝, 𝑞) + (1 + 𝛾) 𝑞
2

+ 2

(73)

by

(𝑛𝑝
2

)
−1/4

(1 − 𝜒
1
(𝑝)) , (𝑛𝑞

2

)
−1/4

(1 − 𝜒
1
(𝑞)) ,

(1 + 𝛾) 𝑝
2

+ 2𝛾 (𝑝, 𝑞) + (1 + 𝛾) 𝑞
2

,

(74)

respectively, since the error will be a Hilbert-Schmidt opera-
tor continuous up to 𝑧 = 𝐸min.

We have denoted by 𝜒
1
(⋅) the characteristic function of

the ball 𝑈
1
(0). By the replacement, we obtain the integral

operator 𝑇
2
(𝑟) in 𝐿

2

(𝑈
𝑟
(0) \ 𝑈

1
(0)) with a kernel

𝑇
2
(𝑟; 𝑝, 𝑞) = −

𝑑
1

𝑛1/2

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

−1/2󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

−1/2

(1 + 𝛾) 𝑝2 + 2𝛾 (𝑝, 𝑞) + (1 + 𝛾) 𝑞2
.

(75)

By the dilation

𝑀 : 𝐿
2

(𝑈
𝑟
(0) \ 𝑈

1
(0)) 󳨀→ 𝐿

2

((0, r) ,S2) ,

r =
1

2

󵄨󵄨󵄨󵄨log
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨 ,

(76)

where S2 is the unit sphere in R3, (𝑀 𝑓)(𝑥, 𝑤) =

𝑒
3𝑥/2

𝑓(𝑒
𝑥

𝑤), 𝑥 ∈ (0, r), 𝑤 ∈ S2, one sees that the operator
𝑇
2
(𝑟) is unitarily equivalent to the integral operator Sr with

the kernel 𝑆
𝛾
(𝑥 − 𝑥

󸀠

; <𝜉, 𝜂>), 𝜉, 𝜂 ∈ S2, 𝑥, 𝑥󸀠 ∈ R+, where

𝑆
𝛾
(𝑥; 𝑡) = −(2𝜋)

−2
𝑢

cosh 𝑥 + 𝑠𝑡
,

𝑢 =
1 + 𝛾

√1 + 2𝛾
, 𝑠 =

𝛾

1 + 𝛾
, 𝑡 = ⟨𝜉, 𝜂⟩ .

(77)

For the completeness, we reproduce the following lemma,
which has been proved in [8].
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Lemma 17. Let 𝐴(𝑧) = 𝐴
0
(𝑧) + 𝐴

1
(𝑧), where 𝐴

0
(𝐴
1
) is

compact and continuous in 𝑧 < 0 (𝑧 ≤ 0). Assume that for
some function 𝑓(⋅), 𝑓(𝑧) → 0, 𝑧 → −0 the limit

lim
z→−0

𝑓 (𝑧) 𝑛 (𝜆, 𝐴
0
(𝑧)) = l (𝜆) (78)

exists and is continuous in 𝜆 > 0. Then the same limit exists for
𝐴(𝑧) and

lim
z→−0

𝑓 (𝑧) 𝑛 (𝜆, 𝐴 (𝑧)) = l (𝜆) . (79)

The following theorem is important for the proof of the
asymptotics (39).

Theorem 18. Let the conditions of the part (ii) of Theorem 10
be fulfilled. The following equalities

lim
|𝐸min−𝑧|→0

𝑛 (1, 𝑇
1
(
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨

−1/2

))

󵄨󵄨󵄨󵄨log
󵄨󵄨󵄨󵄨𝐸min − 𝑧

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

= lim
r→∞

1

2
r−1𝑛 (1, Sr)

= U
0
(𝛾) , U

0
(𝛾) > 0,

(80)

hold.

Proof. The coefficient U(𝛾) in the r.h.s of the asymptotics
(80) will be expressed by means of the self-adjoint integral
operator Ŝ

𝛾
(𝑦), 𝑦 ∈ R, in 𝐿

2

(S2), whose kernel depends on
the scalar product 𝑡 = ⟨𝜉, 𝜂⟩ of the arguments 𝜉, 𝜂 ∈ S2 and
has the form

𝑆
𝛾
(𝑡; 𝑦) = −(2𝜋)

−1

𝑢
sinh [𝑦 arccos 𝑡]

√1 − 𝑠2𝑡2 sinh (𝜋𝑦)

. (81)

For ] > 0, define

U (]; 𝛾) = (4𝜋)
−1

∫

∞

−∞

𝑛 (], Ŝ
𝛾
(𝑦)) 𝑑𝑦, ] > 0. (82)

The functionU(]; 𝛾) is very important for the proof of the
existence of the Efimov effect. DenoteU

0
(𝛾) = U(1; 𝛾).

Similarly to [8], we can derive that

U
0
(𝛾) =

1

4𝜋
∫

∞

−∞

𝑛 (1, Ŝ
𝛾
(𝑦)) 𝑑𝑦

=
1

4𝜋

∞

∑

𝑙=0

(2𝑙 + 1) ∫

∞

−∞

𝑛 (1, Ŝ(𝑙)
𝛾

(𝑦)) 𝑑𝑦,

(83)

where Ŝ(𝑙)
𝛾
(𝑦) is the multiplication operator by number

𝑆
(𝑙)

𝛾
(𝑦) = 2𝜋∫

1

−1

𝑃
𝑙
(𝑡) 𝑆
𝛾
(𝑡; 𝑦) 𝑑𝑡 (84)

inG
𝑙
the subspace of the harmonics of degree 𝑙 and 𝑃

𝑙
(𝑡) are

Legendre polynomials. It follows from (83) and Lemma 19
that
U
0
(𝛾)

≥
1

4𝜋
∫

+∞

−∞

𝑛 (1, Ŝ(1)
𝛾

(𝑦)) 𝑑𝑦 =
3

4𝜋
mes {𝑥 : 𝑆

(1)

𝛾
(𝑥) > 1} .

(85)

Lemma 19. The following assertions are true.

(a) 𝑆(0)
𝛾

(𝑦) < 0.

(b) sup
𝑦
𝑆
(1)

𝛾
(𝑦) > 1, 𝛾 > 𝛾

∗, and sup
𝑦
𝑆
(1)

𝛾
(𝑦) < 1, 𝛾 < 𝛾

∗.

(c) 𝑆(2)
𝛾

(𝑦) < 0, 𝛾 > 0, and for any 𝛾, 𝛾 < 𝛾
∗ there exists a

positive number 𝜀 = 𝜀
𝛾
such that sup

𝑦
𝑆
(1)

𝛾
(𝑦) < 1 − 𝜀

𝛾
,

𝑙 ≥ 3.

Proof. For the completeness of the proof of this lemma we
reproduce in Appendix A.

The positivity ofU
0
(𝛾) follows from the fact that mes {𝑥 :

𝑆
(1)

𝛾
(𝑥) > 1} > 0, if 𝛾 > 𝛾

∗, which is proved in Lemma 19.
We remark that for all 𝛾 > 𝛾

0
the number U

0
(𝛾) is finite

and

U
0
(𝛾) ≤

3

𝜋

log (𝜋 ((1 + 𝛾) /√1 + 2𝛾))

𝜋 − 2 arcsin (𝛾/ (1 + 𝛾))

× [

log (16 (1 + 𝛾) /𝜋
1/2

3
3/4

√1 + 2𝛾)

log ((1 + 𝛾) /𝛾 + √1 + 2𝛾/𝛾)
+ 1]

2

.

(86)

The difference of the operators Sr and 𝑇
1
(𝑟) is compact (up

to unitarily equivalence) and hence, taking into account that
r = |1/2| log |𝐸min − 𝑧| and Lemma 17, we obtain the limit
(80).

Proof of Part (ii) of Theorem 10. Theorem 18 together with
Lemmas 13, 16, and 17 complete the proof ofTheorem 10.

4.2. The Finiteness of the Discrete Spectrum of 𝐻.

Lemma 20. Let 𝛾 < 𝛾
∗ and the hypothesis of part (i) of

Theorem 10 be fulfilled. Then there exists a number 𝜖 = 𝜖
𝛾

depending on 𝛾, such that

sup𝜎ess (𝑇 (𝐸min)) < 1 − 𝜖
𝛾
. (87)

Proof. See Appendix B.

Remark 21. In the proof of Lemma 20, we can see that the
main part of the operator 𝑇(𝐸min) is unitarily equivalent to
the direct sum of multiplication operators in 𝐿

2

(R) by the
functions 𝑆(0)

𝛾
(⋅), 𝑙 = 0, 1, . . ., in Lemma 19. So 𝑇(𝐸min) is not

compact operator.

By virtue of Lemma 20 the operator 𝑇(𝐸min) cannot have
many eigenvalues larger than 1, and hence

𝑛 (1, 𝑇 (𝐸min)) < ∞. (88)

This inequality and Lemma 15 complete the proof of part
(i) of Theorem 10.
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Appendices

A. Proof of Lemma 19

Case (𝑙 = 0). By (83) we first calculate 𝑆(0)
𝛾

(𝑦) as

𝑆
(0)

𝛾
(𝑦) = −

𝑢

sinh (𝜋𝛾)
∫

1

−1

sinh [𝑦 (arccos (𝑠𝑡))]
√1 − 𝑠2𝑡2

𝑑𝑡. (A.1)

In [8] it is proven that for any 𝑦 ∈ R,

𝑢 sinh [𝑦 (arcsin 𝑠)]

𝑠𝑦 cosh (𝜋𝑦)

=
𝑢

sinh (𝜋𝛾)
∫

1

−1

sinh [𝑦 (arccos (𝑠𝑡))]
√1 − 𝑠2𝑡2

𝑑𝑡.

(A.2)

Since this number is positive by (A.1) we have 𝑆(0)
𝛾

(𝑦) < 0 for
all 𝑦 ∈ R.

Case (𝑙 = 1). For any 𝑦 ∈ R1, the 𝑆(1)
𝛾

(𝑦) can be written in the
form

𝑆
(1)

𝛾
(𝑦) =

𝑢

sinh (𝜋𝑦/2)
∫

1

0

𝑡 sinh [𝑦 (arcsin (𝑠𝑡))]

√1 − 𝑠2𝑡2
𝑑𝑡. (A.3)

Since the integrand in (A.3) is positive, we obtain that the
function 𝑆

(1)

𝛾
(𝑦) is also positive and even as 𝑦 ∈ R1. The

function sinh𝛽𝑦/ sinh𝛼𝑦 is strictly decreased on [0,∞) for
𝛼 > 𝛽 and hence the function 𝑆

(1)

𝛾
(𝑦) strictly decreases on

[0,∞).
Let 𝑏
1
(𝛾) = sup

𝑦
𝑆
(1)

𝛾
(𝑦). Then we have

𝑏
1
(𝛾) =

2(1 + 𝛾)
2

𝜋𝛾√1 + 2𝛾
−

2(1 + 𝛾)
2

𝜋𝛾2
arcsin

𝛾

1 + 𝛾
. (A.4)

Since 𝑆
(1)

𝛾
(𝑦) > 0 for all 𝑦 ∈ R1 and lim

𝑦→∞
𝑆
(1)

𝛾
(𝑦) = 0,

it follows from (A.3) and (A.4) that the range of the function
𝑆
(1)

𝛾
(𝑦) coincides with the set (0, 𝑏

1
(𝛾)].

The function 𝑏
1
(𝛾) defined on (0,∞) is continuous and

strictly increases.
Moreover,

lim
𝛾→0

𝑏
1
(𝛾) = 0, lim

𝛾→∞

𝑏
1
(𝛾) = ∞. (A.5)

Thus the equation 𝑏
1
(𝛾) = 1 has a unique simple solution 𝛾

0
>

0 and 𝑏
1
(𝛾) < 1 (𝑏

1
(𝛾) > 1, resp.) for 𝛾 < 𝛾

∗ (𝛾 > 𝛾
∗, resp.).

Case (𝑙 = 2). The function 𝑆
(2)

𝛾
(𝑦) is calculated by

𝑆
(2)

𝛾
(𝑦) = −

𝑢

2
∫

1

0

3𝑡
2

− 1

√1 − 𝑠2𝑡2

cosh [𝑦 (arcsin 𝑠𝑡)]

cosh (𝜋𝑦/2)
𝑑𝑡. (A.6)

It is easy to see that the inequalities

cosh [𝑦 (arcsin 𝑠𝑡)]

√1 − 𝑠2𝑡2

<

cosh [𝑦 (arcsin (1/√3) 𝑠)]

√1 − (1/3) 𝑠
2

, 𝑡 ∈ [0,
1

√3

) ,

cosh [𝑦 (arcsin 𝑠𝑡)]

√1 − 𝑠2𝑡2

>

cosh [𝑦 (arcsin (1/√3) 𝑠)]

√1 − (1/3) 𝑠
2

, 𝑡 ∈ (
1

√3

, 1] ,

(A.7)

hold.
Then using the inequalities (A.7), we obtain the following

inequality:

𝑆
(2)

𝛾
(𝑦)

< −
𝑢

2

cosh [𝑦 (arcsin (1/√3) 𝑠)]

√1 − (1/3) 𝑠
2 cosh (𝜋𝑦/2)

∫

1

0

(3𝑡
2

− 1) 𝑑𝑡 = 0.

(A.8)

From here it follows that for all 𝛾 > 0

sup𝜎 (𝑆
(2)

𝛾
(𝑦)) 𝑑𝑦 ≤ 0. (A.9)

Case (𝑙 ≥ 3). By Lemma 3.2 of [8], we get that
󵄨󵄨󵄨󵄨󵄨
𝑆
(𝑙)

𝛾
(𝑦)

󵄨󵄨󵄨󵄨󵄨
< 𝐹 (𝑙; 𝛾)

=
16

𝜋1/2[3 (2𝑙 + 1)]
3/4

1 + 𝛾

√1 + 2𝛾
(

𝛾

1 + 𝛾 + √1 + 2𝛾
)

𝑙

(A.10)

for all 𝑙 ≥ 0 and 𝛾 > 0.
Since the function 𝐹(𝑙; ⋅) is increasing and the 𝐹(⋅; 𝛾) is

decreasing, we have

sup
𝑦

󵄨󵄨󵄨󵄨󵄨
𝑆
(𝑙)

𝛾
(𝑦)

󵄨󵄨󵄨󵄨󵄨
< 𝐹 (𝑙; 𝛾

∗

) < 𝐹 (3; 𝛾
∗

) < 𝐹 (3; 16) < 1 (A.11)

for any 𝛾 ≤ 𝛾
∗ and 𝑙 ≥ 3.

Thus for any 𝛾 ≥ 0 and 𝑦 ∈ R1 we have 𝑆(𝑙)
𝛾
(𝑦) ≤ 0, 𝑙 = 0, 2

and for any 𝛾 < 𝛾
∗ (for any 𝛾 ≥ 0 and 𝑙 ≥ 3, resp.) we have

|𝑆
(1)

𝛾
(𝑦)| < 1 (resp. |𝑆(𝑙)

𝛾
(𝑦)| < 1).

These facts complete the proof of the lemma.

B. Proof of Lemma 20

Since the operator 𝑇(𝐸min) − 𝑇(𝛿; 0) is Hilbert-Schmidt (see
Lemma 16), Weyl’s Theorem implies that 𝜎ess(𝑇(𝐸min)) =

𝜎ess(𝑇(𝛿; 0)).
The space 𝐿2(𝑈̂

𝛿
(0)) of all functions𝑤(𝑝) having support

in 𝑈̂
𝛿
(0) = {𝑝 ∈ T3 : |𝑊1/2𝑝| < 𝛿} is an invariant subspace of

the operator 𝑇
𝛾
(𝛿; 0).
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Let 𝑇̂
𝛾
(𝛿; 0) be the restriction of the operator 𝑇

𝛾
(𝛿; 0) to

the invariant subspace 𝐿2(𝑈̂
𝛿
(0)).

The operator 𝑇̂
𝛾
(𝛿; 0) is unitary equivalent to the integral

operator S
𝛾
acting in 𝐿

2

(0, +∞) ⊗ 𝐿
2

(S2), with the kernel
𝑆
𝛾
(𝑥 − 𝑥

󸀠

; < 𝜉, 𝜂 >), 𝜉, 𝜂 ∈ S2, where

𝑆
𝛾
(𝑥; 𝑡) = −(2𝜋)

−2
𝑢

cosh 𝑥 + 𝑠𝑡
, 𝑢 =

1 + 𝛾

√1 + 2𝛾
,

𝑠 =
𝛾

1 + 𝛾
.

(B.1)

The equivalence is given by the unitary operator 𝑀 :

𝐿
2

(𝑈
𝛿
(0)) → 𝐿

2

((0,∞) ⊗ 𝐿
2

(S2)), where

(𝑀𝑓) (𝑥, 𝑤) = 𝛿
3/2

𝑒
−3𝑥/2

𝑓(𝛿𝑒
−𝑥

𝑊
1

2
𝑤) , 𝑤 ∈ S

2

. (B.2)

Therefore, the essential spectrum of 𝑇(0)
𝛾

(𝛿) and S
𝛾
coin-

cide.
Similarly to [8], we have

S
𝛾
=

∞

∑

𝑙=0

⊕ (S(𝑙)
𝛾

⊗P
𝑙
) , (B.3)

where P
𝑙
: 𝐿
2

((0,∞) ⊗ 𝐿
2

(S2)) → G
𝑙
is the orthogonal

projector onto G
𝑙
, the operator S(𝑙)

𝛾
is operator in 𝐿

2

(0,∞)

with the kernel

𝑆
(𝑙)

𝛾
(𝑥 − 𝑥

󸀠

) = 2𝜋∫

1

−1

𝑃
𝑙
(𝑡) 𝑆
𝛾
(𝑥 − 𝑥

󸀠

; 𝑡) 𝑑𝑡. (B.4)

Now, comparing the definition (81) and (B.1) and applying the
equality

sinh (𝑦𝜃)

sin 𝜃 sinh (𝜋𝑦)
=

1

2𝜋
∫

∞

−∞

𝑒
−𝑖𝑦𝑥

𝑑𝑥

cosh 𝑥 + cos 𝜃
, 0 < 𝜃 < 𝜋,

(B.5)

we see that

𝑆
𝛾
(𝑡; 𝑦) = ∫

∞

−∞

𝑒
−𝑖𝑦𝑥

𝑆
𝛾
(𝑥; 𝑡) 𝑑𝑥. (B.6)

By (B.1) and (B.4), this yields

𝑆
(𝑙)

𝛾
(𝑦) = ∫

∞

−∞

𝑒
−𝑖𝑦𝑥

𝑆
(𝑙)

𝛾
(𝑥) 𝑑𝑥. (B.7)

One can check that the functions in (84) and (B.7)
coincide.

Since the operator S(𝑙)
𝛾
is of convolution type, we conclude

that it is unitarily equivalent to the operators Ŝ(𝑙)
𝛾
of multipli-

cation by functions 𝑆(𝑙)
𝛾
(𝑦) in the space 𝐿2(R1). Therefore,

𝜎 (Ŝ(𝑙)
𝛾
) = 𝜎 (Ŝ(𝑙)

𝛾
) = Ran (𝑆

(𝑙)

𝛾
(𝑦)) . (B.8)

Recall that the number 𝛾
∗ is the unique solution of the

equation 𝑏
1
(𝛾) = 1.

As it was mentioned in Lemma 19, for any 𝛾 < 𝛾
∗ there

exists the number 𝜖
𝛾
> 0 such that for all 𝑙 ≥ 0

sup
𝑦

󵄨󵄨󵄨󵄨󵄨
𝑆
(𝑙)

𝛾
(𝑦)

󵄨󵄨󵄨󵄨󵄨
< 1 − 𝜖

𝛾
. (B.9)

The equality (B.3), (B.8), and (B.9) proved the inequality
in the lemma.
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