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Invex monotonicity and pseudoinvex monotonicity of fuzzy mappings are introduced in this paper, and relations are discussed
between invex monotonicity (pseudoinvex monotonicity) and invexity (pseudoinvexity) of fuzzy mappings. The existence of a
solution to the fuzzy variational-like inequality is discussed, and the existence theorem can be achieved. Furthermore, some
extended properties of the fuzzy variational-like inequality are researched. Finally, method of solution is discussed based on genetic
algorithm.

1. Introduction

In [1], Chang and Zadeh introduced the concept of fuzzy
mapping. Since then, fuzzy mapping has been extensively
studied by many authors. Nanda and Kar [2] proposed a
concept of convex fuzzy mapping in 1992 and proved that a
fuzzy mapping is convex if and only if its epigraph is a convex
set. In recent years, there have been increasing attempts to
weaken the convexity condition of fuzzy mapping, such as
Yan and Xu [3], Panigrahi et al. [4], and Wu and Xu [5, 6].
It is well known that in classical (non-fuzzy) convex analysis,
some properties are shared by different kinds of functions
that are more general than convex functions, which has
given rise to the study of generalized convexity and later to
that of generalized monotonicity. Just as convex functions
are characterized by a monotone gradient, different kinds
of generalized convex functions give rise to gradient maps
with certain generalized monotonicity properties which are
inherited from generalized convexity of the underlying func-
tions. At the same time, it is a useful method in research-
ing variational inequality by means of monotonicity and
generalized monotonicity of functions. For corresponding
research of monotonicity and generalized monotonicity of
functions, one can refer to [7–9]. Similarly, one can research
some properties of fuzzy mappings and fuzzy variational

inequality by studying their monotonicity. On the other
hand, it is worth noting that monotonicity has played a very
important role in the study of the existence and solution
methods of variational inequality problems. Similarly, one
can research fuzzy variational inequality by monotonicity
of fuzzy mappings. However, very few investigations have
appeared to study monotonicity of fuzzy mappings. Based on
the above, we give concepts of monotonicity and generalized
monotonicity of fuzzy mappings and discuss relations of
generalized monotonicity and generalized convexity.

Vector variational inequality was first introduced and
studied by Cottle et al. [10] in finite-dimensional Euclidean
spaces.This is a generalization of a scalar variational inequal-
ity to the vector case by virtue of multicriteria considering.
Since then, the theory with applications for vector variational
inequality and vector complementarity problems have been
studied and generalized by many authors (see, e.g., [11–21]
and the references therein). In particular, in [12], Guang-Ya
andXiao-Qi discussed the existence of a solution to the vector
variational inequality and the existence of the solution of the
vector complementary problem and obtained some valuable
results. It offers some ideal for research of the existence of a
solution of other variational inequality problems. However,
facing uncertainty is a constant challenge for optimiza-
tion and decision making. Treating uncertainty with fuzzy
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mathematics results in the study of fuzzy optimization and
decision making. Recently, Chang and Zhu [22] introduced
the concepts of the variational inequality problem for fuzzy
mappings which were later developed by Noor [23–25]. For
further research of variational inequalities of fuzzymappings,
one can refer to [26–30]. However, very few investigations
have appeared to study fuzzy variational inequalities and the
existence of a solution by means of fuzzy numbers. In [5],
Wu and Xu discussed the relationship between the fuzzy
prevariational inequality and the fuzzy vector optimization
problem based on nonconvex fuzzymappings. In [6],Wu and
Xu discussed the relationship between the fuzzy variational-
like inequality and the fuzzy vector optimization problem
based on generalized convex fuzzy mappings and gave an
application example of a fuzzy variational-like inequality:
the fuzzy variational-like inequality representation of a fuzzy
transportation equilibrium problem. On the other hand, the
role of generalizedmonotonicity of the operator in variational
inequality problems corresponds to the role of generalized
convexity of the objective function in mathematical pro-
gramming problems. Similarly, the role of monotonicity of
fuzzy mappings should also be very important for research
of fuzzy variational inequality problems, particularly research
of the existence of a solution of a fuzzy variational inequality.
Based on the above, we introduce the fuzzy variational-like
inequality, discuss some properties of the fuzzy variational-
like inequality, and study the existence of a solution of
the fuzzy variational-like inequality by virtue of generalized
monotonicity of fuzzy mappings. It is well known that we
can solve variational inequality by transforming a variational
inequality problem into an optimization problem, for exam-
ple, [18, 31–33]. Similarly, fuzzy variational inequality also
can be transformed into a fuzzy optimization problem. It
is difficult to solve a fuzzy optimization problem by means
of traditional optimization methods, but a special genetic
algorithm can be used to solve fuzzy optimization problems.
Therefore, in the sixth section, we discuss the solving of
the fuzzy variational-like inequality by virtue of genetic
algorithm.

In this paper, we study invex monotonicity and pseudo-
invex monotonicity of fuzzy mappings and discuss relations
between invex monotonicity (pseudo-invex monotonicity)
and invexity (pseudo-invexity) of fuzzy mappings. We dis-
cuss the existence of a solution to the fuzzy variational-
like inequality. Furthermore, some extended properties of
the fuzzy variational-like inequality are researched. Finally,
method of solution is discussed based on genetic algorithm.

This paper is organized as follows. Section 2 recalls
some definitions and results in reference to fuzzy numbers.
Section 3 introduces invex monotonicity and pseudo-invex
monotone of fuzzy mapping and discusses some properties.
Section 4 defines a class of fuzzy variational inequality:
fuzzy variational-like inequality, and discusses the solution
existence for the fuzzy variational-like inequality. Section 5
discusses extended qualities of the fuzzy variational-like
inequality. Section 6 discusses the method of solving for the
fuzzy variational-like inequality and gives a genetic algorithm
of a class of the fuzzy variational-like inequality.

2. Preliminaries

A fuzzy set of 𝑅𝑛 is a mapping 𝜇 : 𝑅𝑛 → [0, 1]. For each such
fuzzy set 𝜇, its 𝛼-cut set is denoted by [𝜇]𝛼 = {𝑥 ∈ 𝑅

𝑛

: 𝜇(𝑥) ≥

𝛼} for all 𝛼 ∈ (0, 1]. The support of 𝜇 is denoted by supp 𝜇;
that is, {𝑥 ∈ 𝑅

𝑛

| 𝜇(𝑥) > 0}. The closure of supp 𝜇 is defined
as [𝜇]0.

Definition 1 (seeWu and Xu [6]). A fuzzy number 𝜇 is a fuzzy
set with the following properties:

(1) 𝜇 is normal; that is, there exists 𝑥
0
∈ 𝑅
𝑛 such that

𝜇(𝑥
0
) = 1;

(2) 𝜇 is convex fuzzy set; that is, 𝜇(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min(𝜇(𝑥), 𝜇(𝑦)), 𝑥, 𝑦 ∈ 𝑅𝑛, 𝜆 ∈ [0, 1];
(3) [𝜇]0 is compact.

Let 𝐸 denote the family of fuzzy numbers; that is, 𝐸
denotes the family of compact and convex fuzzy set on 𝑅

1.
Obviously, [𝜇]𝛼 is a nonempty compact convex subset of 𝑅1
(denoted by [𝜇

∗
(𝛼), 𝜇
∗

(𝛼)]) for all 𝜇 ∈ 𝐸 and for all 𝛼 ∈ [0, 1].
A precise number 𝑎 is a special case of fuzzy number

encoded as

𝑎 (𝑡) = {
1, if 𝑡 = 𝑎,

0, if 𝑡 ̸= 𝑎.
(1)

However, a precise number will be denoted as usual,
in particular, number 0. The fuzzy numbers 𝜇, ] ∈ 𝐸 are
represented by (𝜇

∗
(𝛼), 𝜇
∗

(𝛼)) and (]
∗
(𝛼), ]∗(𝛼)), respectively.

For each real number 𝜆, the addition 𝜇 +̃ ] and scalar
multiplication 𝜆𝜇 are defined as follows:

(𝜇 +̃ ]) (𝑥) = sup
𝑦+𝑧=𝑥

min [𝜇 (𝑦) , ] (𝑧)] ,

(𝜆𝜇) (𝑥) =
{

{

{

𝜇 (𝜆
−1

𝑥) if 𝜆 ̸= 0,

for 𝜇, ] ∈ 𝐸, 𝜆 ∈ 𝑅.
0 if 𝜆 = 0,

(2)

It is well known that for all 𝜇, ] ∈ 𝐸 and 𝜆 ∈ 𝑅1

(𝜇 +̃ ])
∗
(𝛼) = 𝜇

∗
(𝛼) + ]

∗
(𝛼) ,

(𝜇 +̃ ])∗ (𝛼) = 𝜇
∗

(𝛼) + ]∗ (𝛼) ,

(𝜆𝜇)
∗
(𝛼) = {

𝜆𝜇
∗
(𝛼) if 𝜆 ≥ 0,

𝜆𝜇
∗

(𝛼) if 𝜆 < 0,

(𝜆𝜇)
∗

(𝛼) =
{

{

{

𝜆𝜇
∗

(𝛼) if 𝜆 ≥ 0,

for given 𝛼 ∈ [0, 1] .

𝜆𝜇
∗
(𝛼) if 𝜆 < 0,

(3)

For 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑅
𝑛, 𝑥 ≤ 𝑦

if and only if 𝑥
𝑖
≤ 𝑦
𝑖
(𝑖 = 1, 2, . . . , 𝑛), and 𝑥 < 𝑦 if and only if

𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦.

Definition 2. For 𝜇, ] ∈ 𝐸, 𝜇 ⪯ ], if and only if for every
𝛼 ∈ [0, 1], 𝜇

∗
(𝛼) ≤ ]

∗
(𝛼) and 𝜇∗(𝛼) ≤ ]∗(𝛼).
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If 𝜇 ⪯ ], ] ⪯ 𝜇, then 𝜇 = ].

𝜇 ≺ ] if and only if 𝜇 ⪯ ] and ∃𝛼
0
∈ [0, 1], such that

𝜇
∗
(𝛼
0
) < ]
∗
(𝛼
0
) or ]
∗
(𝛼
0
) < 𝜇
∗
(𝛼
0
).

For 𝜇, ] ∈ 𝐸, if either 𝜇 ⪯ ] or ] ⪯ 𝜇, then 𝜇 and ] are
comparable; otherwise, they are noncomparable.

If 𝜇, ] ∈ 𝐸, there exists 𝜔 ∈ 𝐸 such that 𝜇 = ] +̃ 𝜔, then
we say the Hukuhara difference of 𝜇 and ] exists, call 𝜔 the
H-difference of 𝜇 and ], and denote 𝜇 −̃ ] = 𝜔.

It is obvious that if the H-difference 𝜇 −̃ ] exists, then
(𝜇 −̃ ])

∗
(𝛼) = 𝜇

∗
(𝛼) − ]

∗
(𝛼), (𝜇 −̃ ])∗(𝛼) = 𝜇

∗

(𝛼) − ]∗(𝛼).

Definition 3. A mapping 𝐹 : 𝐾(⊂ 𝑅
𝑛

) → 𝐸 is said to be
a fuzzy mapping. Denote [𝐹(𝑥)](𝛼) = [𝐹(𝑥)

∗
(𝛼), 𝐹(𝑥)

∗

(𝛼)],
for all 𝛼 ∈ [0, 1].

Definition 4 (see Buckley and Feuring [34]). Let 𝐹 be a fuzzy
mapping from the set of real numbers 𝑅 to the set of all fuzzy
numbers, and let [𝐹(𝑥)](𝛼) = [𝐹

∗
(𝑥)(𝛼), 𝐹

∗

(𝑥)(𝛼)]. Assume
that the partial derivatives of 𝐹

∗
(𝑥)(𝛼), 𝐹∗(𝑥)(𝛼)with respect

to 𝑥 ∈ 𝑅 for each 𝛼 ∈ [0, 1] exist and are denoted by 𝐹󸀠
∗
(𝑥, 𝛼),

𝐹
∗󸀠

(𝑥, 𝛼), respectively. Let Γ(𝑥, 𝛼) = [𝐹
󸀠

∗
(𝑥, 𝛼), 𝐹

∗󸀠

(𝑥, 𝛼)] for
𝑥 ∈ 𝑅,𝛼 ∈ [0, 1]. IfΓ(𝑥, 𝛼)defines the𝛼-cut of a fuzzy number
for each 𝑥 ∈ 𝑅, then 𝐹(𝑥) is said to be differentiable and is
written as (𝑑𝐹/𝑑𝑥)[𝛼] = [𝐹

󸀠

∗
(𝑥, 𝛼), 𝐹

∗󸀠

(𝑥, 𝛼)], for all 𝑥 ∈ 𝑅,
𝛼 ∈ [0, 1].

Definition 5 (see Panigrahi et al. [4]). Let 𝐹 : 𝐾(⊂ 𝑅
𝑛

) →

𝐸 be a fuzzy mapping, where 𝐾 ⊂ 𝑅
𝑛 is an open set. Let

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐾. Let 𝐷

𝑥𝑖
, (𝑖 = 1, 2, . . . , 𝑛) stand for

the “partial differentiation” with respect to the 𝑖th variable 𝑥
𝑖
.

Assume that, for all 𝛼 ∈ [0, 1], 𝐹
∗
(𝑥)(𝛼), 𝐹∗(𝑥)(𝛼) have con-

tinuous partial derivatives so that 𝐷
𝑥𝑖
𝐹
∗
(𝑥, 𝛼), 𝐷

𝑥𝑖
𝐹
∗

(𝑥, 𝛼)

are continuous. Define

𝐷
𝑥𝑖
𝐹 (𝑥, 𝛼) = [𝐷

𝑥𝑖
𝐹
∗
(𝑥, 𝛼) , 𝐷

𝑥𝑖
𝐹
∗

(𝑥, 𝛼)] ,

for 𝑖 = 1, 2, . . . , 𝑛, 𝛼 ∈ [0, 1] .

(4)

If each 𝑖 = 1, 2, . . . , 𝑛, 𝐷
𝑥𝑖
𝐹(𝑥, 𝛼) defines the 𝛼-cut of a

fuzzy number, then 𝐹 is called differentiable at 𝑥, and it can
be represented as

∇̃𝐹 (𝑥) = (𝐷
𝑥1
𝐹 (𝑥, 𝛼) , 𝐷

𝑥2
𝐹 (𝑥, 𝛼) , . . . , 𝐷

𝑥𝑛
𝐹 (𝑥, 𝛼)) . (5)

∇̃𝐹(𝑥) is said to be the gradient of the fuzzy mapping 𝐹 at 𝑥.
𝑈 is said to be an 𝑛-dimensional fuzzy vector if and only

if the components of 𝑈 are composed by 𝑛 fuzzy numbers,
denoted by𝑈 = (𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
)
𝑇.The set of all 𝑛-dimensional

fuzzy vectors is denoted by (𝐸)𝑛.
A 𝜆 level vector of fuzzy vector 𝑈 = (𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
)
𝑇 is

defined as

[𝑈]
𝜆
= [[𝜇
1
]
𝜆
, [𝜇
2
]
𝜆
, . . . , [𝜇

𝑛
]
𝜆
]
𝑇

,

[𝑈]
∗𝜆

= [[𝜇
1
]
∗𝜆
, [𝜇
2
]
∗𝜆
, . . . , [𝜇

𝑛
]
∗𝜆
]
𝑇

,

[𝑈]
∗

𝜆
= [[𝜇
1
]
∗

𝜆
, [𝜇
2
]
∗

𝜆
, . . . , [𝜇

𝑛
]
∗

𝜆
]
𝑇

.

(6)

The addition and the scalar multiplication of fuzzy vectors
𝑈 = (𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
)
𝑇 and 𝑉 = (]

1
, ]
2
, . . . , ]

𝑛
)
𝑇 are defined

as

𝑈 +̃𝑉 = (𝜇
1
+̃ ]
1
, 𝜇
2
+̃ ]
2
, . . . , 𝜇

𝑛
+̃ ]
𝑛
)
𝑇

,

𝑘𝑈 = (𝑘𝜇
1
; 𝑘𝜇
2
; . . . ; 𝑘𝜇

𝑛
)
𝑇

, 𝑘 ∈ 𝑅,

𝑘𝜇
𝑖
= {(𝑘𝜇

𝑖∗
, 𝑘𝜇
∗

𝑖
, 𝛼) : 𝛼 ∈ [0, 1]} ,

for 𝑘 > 0.

(7)

3. The Fuzzy Invex Monotone Mapping

In this section, we put forward some definitions of invex
monotonicity of fuzzy mappings and discuss the relationship
between invexity and invex monotonicity of fuzzy mappings.

Definition 6. A differentiable comparable fuzzy mapping 𝐹 :

𝐾 → 𝐸 is said to be
(a) fuzzy invex with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛, if and
only if

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾; (8)

(b) fuzzy incave with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛, if and

only if

𝐹 (𝑥) ⪯ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾; (9)

(c) fuzzy strictly invex with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛,

if and only if

𝐹 (𝑥) ≻ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾; (10)

(d) fuzzy strictly incave with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛,

if and only if

𝐹 (𝑥) ≺ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾; (11)

(e) fuzzy pseudo-invex with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛,

if and only if

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) ⪰ 0 󳨐⇒ 𝐹 (𝑥) ⪰ 𝐹 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐾;

(12)

(f) fuzzy strictly pseudo-invex with respect to 𝜂 : 𝐾 ×

𝐾 → 𝑅
𝑛, if and only if

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) ⪰ 0 󳨐⇒ 𝐹 (𝑥) ≻ 𝐹 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐾.

(13)

Example 7 (see Wu and Xu [6]). Let 𝐹 : 𝐾(⊂ 𝑅
1

) → 𝐸

represent the reproduction rate of some germ:

𝐹 (𝑥) (𝑡) =

{{{{

{{{{

{

𝑡

𝑥2
𝑡 ∈ [0, 𝑥

2

] ,

1 −
𝑡 − 𝑥
2

𝑥2
𝑡 ∈ (𝑥

2

, 2𝑥
2

] ,

0 𝑡 ∉ [0, 2𝑥
2

] .

(14)



4 Abstract and Applied Analysis

So, [𝐹(𝑥)]𝛼 = [𝛼𝑥
2

, (2 − 𝛼)𝑥
2

], 𝛼 ∈ [0, 1]. Then there is
𝜂(𝑥, 𝑦) = 𝑥−𝑦, such that𝐹(𝑥) is a fuzzy invexmapping, where
𝐾 = (0,∞),𝑥, 𝑦 ∈ 𝐾,𝑥 represents the predicted quantity, and
𝑡 represents the actual reproduction quantity.

Example 8. Consider the fuzzy mapping [𝐹(𝑥)]𝛼 = [𝛼𝑥
2

, (2−

𝛼)𝑥
2

], 𝛼 ∈ [0, 1]. Then, there is an 𝜂(𝑥, 𝑦) = 𝑥
5

− 𝑦
5 such

that 𝐹(𝑥) is a fuzzy pseudoinvexmapping, where𝐾 = (0,∞),
𝑥, 𝑦 ∈ 𝐾.

Remark 9. For an invex fuzzy mapping, there must exist 𝜂 :

𝐾 × 𝐾 → 𝑅
𝑛, such that

𝐹 (𝑥) ⪰ 𝜂(𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾, (15)

holds.

Proof. Since 𝐹 is a comparable fuzzy mapping, then for all
𝑥, 𝑦 ∈ 𝑅

𝑛, there is

𝐹 (𝑥) ⪰ 𝐹 (𝑦) (16)

or

𝐹 (𝑥) ⪯ 𝐹 (𝑦) . (17)

Without loss of generality, suppose that

𝐹 (𝑥) ⪰ 𝐹 (𝑦) . (18)

Thus, for all 𝛼 ∈ [0, 1],

𝐹
∗
(𝑥) (𝛼) ≥ 𝐹

∗
(𝑦) (𝛼) ,

𝐹
∗

(𝑥) (𝛼) ≥ 𝐹
∗

(𝑦) (𝛼) .

(19)

If ∇𝐹(𝑦) = 0, for any 𝜂(𝑥, 𝑦) : 𝐾 × 𝐾 → 𝑅
𝑛, the result

holds.
If ∇𝐹(𝑦) ̸= 0, for given 𝛼 ∈ [0, 1].
(1) When 𝐹∗(𝑥)(𝛼) − 𝐹∗(𝑦)(𝛼) ≥ 𝐹

∗
(𝑥)(𝛼) − 𝐹

∗
(𝑦)(𝛼).

(i) If ∇𝐹
∗
(𝑦)(𝛼) > 0, then take

𝜂 (𝑥, 𝑦) =
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× ∇𝐹
∗

(𝑦) (𝛼) .

(20)

Thus,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

=
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× [∇𝐹
∗

(𝑦) (𝛼)]
𝑇

∇𝐹
∗

(𝑦) (𝛼)

= 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

≤ 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) ;

(21)

that is,

𝐹
∗

(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼) + 𝐹
∗

(𝑦) (𝛼) . (22)

From ∇𝐹
∗

(𝑦)(𝛼) ≥ ∇𝐹
∗
(𝑦)(𝛼) > 0, there is

[∇𝐹
∗

(𝑦) (𝛼)]
𝑇

(∇𝐹
∗

(𝑦) (𝛼) − ∇𝐹
∗
(𝑦) (𝛼)) ≥ 0; (23)

so,

[∇𝐹
∗

(𝑦) (𝛼)]
𝑇

∇𝐹
∗

(𝑦) (𝛼)

≥ [∇𝐹
∗

(𝑦) (𝛼)]
𝑇

∇𝐹
∗
(𝑦) (𝛼) .

(24)

Hence,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

=
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× [∇𝐹
∗

(𝑦) (𝛼)]
𝑇

∇𝐹
∗
(𝑦) (𝛼)

≤
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× [∇𝐹
∗

(𝑦) (𝛼)]
𝑇

∇𝐹
∗

(𝑦) (𝛼)

= 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(25)

That is,

𝐹
∗
(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)

𝑇

∇𝐹
∗
(𝑦) (𝛼) + 𝐹

∗
(𝑦) (𝛼) . (26)

From (22) and (26), it follows that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (27)

(ii) If ∇𝐹
∗
(𝑦)(𝛼) < 0, then take

𝜂 (𝑥, 𝑦) =
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× ∇𝐹
∗
(𝑦) (𝛼) .

(28)

Thus,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

=
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(29)

From ∇𝐹
∗
(𝑦)(𝛼) < 0 and ∇𝐹∗(𝑦)(𝛼) ≥ ∇𝐹

∗
(𝑦)(𝛼), there is

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

(∇𝐹
∗

(𝑦) (𝛼) − ∇𝐹
∗
(𝑦) (𝛼)) ≤ 0; (30)

so,

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤ [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼) .

(31)
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Hence,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

=
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

≤ 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) .

(32)

That is,

𝐹
∗

(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼) + 𝐹
∗

(𝑦) (𝛼) . (33)

From (29) and (33), it follows that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (34)

(iii) If ∇𝐹
∗
(𝑦)(𝛼) is indefinite, there is a vector 𝐶 ∈ 𝑅

𝑛,
such that

∇𝐹
∗
(𝑦) (𝛼) + 𝐶 ≤ 0,

𝐶
𝑇

∇𝐹
∗
(𝑦) (𝛼) ≤ 0

(35)

holds.
Take

𝜂 (𝑥, 𝑦) =
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× (∇𝐹
∗
(𝑦) (𝛼) + 𝐶) .

(36)

Thus,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

=
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

+
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× 𝐶
𝑇

∇𝐹
∗
(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(37)

That is,

𝐹
∗
(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)

𝑇

∇𝐹
∗
(𝑦) (𝛼) + 𝐹

∗
(𝑦) (𝛼) . (38)

From ∇𝐹
∗
(𝑦)(𝛼) + 𝐶 ≤ 0 and ∇𝐹∗(𝑦)(𝛼) ≥ ∇𝐹

∗
(𝑦)(𝛼), there

is

[∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

(∇𝐹
∗

(𝑦) (𝛼) − ∇𝐹
∗
(𝑦) (𝛼)) ≤ 0; (39)

so,

[∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤ [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗
(𝑦) (𝛼) .

(40)

Hence,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

=
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

+
𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× 𝐶
𝑇

∇𝐹
∗
(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼)

≤ 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) .

(41)

That is,

𝐹
∗

(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼) + 𝐹
∗

(𝑦) (𝛼) . (42)

From (38) and (42), it follows that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (43)

(2) When 𝐹∗(𝑥)(𝛼) − 𝐹∗(𝑦)(𝛼) ≤ 𝐹
∗
(𝑥)(𝛼) − 𝐹

∗
(𝑦)(𝛼).

(i) If ∇𝐹
∗
(𝑦)(𝛼) > 0, then take

𝜂 (𝑥, 𝑦) =
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× ∇𝐹
∗

(𝑦) (𝛼) .

(44)

Thus,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

= 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) .

(45)
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On the other hand,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

=
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× [∇𝐹
∗

(𝑦) (𝛼)]
𝑇

𝐹
∗
(𝑦) (𝛼)

≤
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹∗ (𝑦) (𝛼)]
𝑇

∇𝐹∗ (𝑦) (𝛼)

× [∇𝐹
∗

(𝑦) (𝛼)]
𝑇

𝐹
∗

(𝑦) (𝛼)

= 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(46)

That is,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼) ≤ 𝐹

∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) . (47)

From (45) and (47), it follows that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (48)

(ii) If ∇𝐹
∗
(𝑦)(𝛼) < 0, then take

𝜂 (𝑥, 𝑦) =
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× ∇𝐹
∗
(𝑦) (𝛼) .

(49)

Thus,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

=
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(50)

That is,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(51)

On the other hand,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

=
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼)]

𝑇

𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) ;

(52)

that is,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤ 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) .

(53)

From (51) and (53), it follows that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (54)

(iii) If ∇𝐹
∗
(𝑦)(𝛼) is indefinite, there is a vector 𝐶 ∈ 𝑅

𝑛,
such that

∇𝐹
∗
(𝑦) (𝛼) + 𝐶 ≤ 0,

𝐶
𝑇

∇𝐹
∗
(𝑦) (𝛼) ≤ 0

(55)

holds.
Take

𝜂 (𝑥, 𝑦) =
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× (∇𝐹
∗
(𝑦) (𝛼) + 𝐶) .

(56)

Thus,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

=
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

= 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

+
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× 𝐶
𝑇

∇𝐹
∗
(𝑦) (𝛼)

≤ 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(57)
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That is,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼)

≤ 𝐹
∗
(𝑥) (𝛼) − 𝐹

∗
(𝑦) (𝛼) .

(58)

On the other hand,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

=
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤
𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼)

[∇𝐹
∗
(𝑦) (𝛼)]

𝑇

∇𝐹
∗
(𝑦) (𝛼)

× [∇𝐹
∗
(𝑦) (𝛼) + 𝐶]

𝑇

𝐹
∗
(𝑦) (𝛼)

< 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) ;

(59)

that is,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼)

≤ 𝐹
∗

(𝑥) (𝛼) − 𝐹
∗

(𝑦) (𝛼) .

(60)

From (58) and (60), it follows that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐾.

(61)

This completes the proof.

Definition 10. A comparable fuzzy mapping 𝐹 : 𝐾 → (𝐸)
𝑛 is

said to be

(a) fuzzy invexmonotone on𝐾, if ∃𝜂 : 𝐾×𝐾 → 𝑅
𝑛 such

that for any 𝑥, 𝑦 ∈ 𝐾,

𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑦) ⪰ 𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑥) ; (62)

(b) fuzzy pseudo-invex monotone on𝐾, if ∃𝜂 : 𝐾×𝐾 →

𝑅
𝑛 such that for any 𝑥, 𝑦 ∈ 𝐾,

𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑦) ⪰ 0 󳨐⇒ 𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑥) ⪰ 0; (63)

(c) fuzzy strictly invex monotone on𝐾, if ∃𝜂 : 𝐾 × 𝐾 →

𝑅
𝑛 such that for any 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦,

𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑦) ≻ 𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑥) ; (64)

(d) fuzzy strictly pseudo-invex monotone if and only if
∃𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 such that for any 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦,

𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑦) ⪰ 0 󳨐⇒ 𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑥) ≻ 0. (65)

Definition 11. The function 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛 is said to be a

skew function if

𝜂 (𝑥, 𝑦) = −𝜂 (𝑦, 𝑥) , ∀𝑥, 𝑦 ∈ 𝐾. (66)

Definition 12. Let𝑦 ∈ 𝐾,𝐾 is said to be invex at𝑦with respect
to 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 if, for each 𝑥 ∈ 𝐾, 𝜆 ∈ [0, 1],

𝑦 + 𝜆𝜂 (𝑥, 𝑦) ∈ 𝐾. (67)

𝐾 is said to be an invex set with respect to 𝜂 if 𝐾 is invex at
each 𝑦 ∈ 𝐾.

Theorem 13. If a differentiable fuzzy mapping 𝐹 : 𝐾 → 𝐸 is
invex on 𝐾 with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 and 𝜂 is a skew
function. Then, ∇𝐹 : 𝐾 → (𝐸)

𝑛 is fuzzy invex monotone with
respect to the same 𝜂.

Proof. Let 𝐹 be invex on 𝐾, then there exists 𝜂(𝑥, 𝑦) ∈ 𝑅
𝑛,

such that

𝐹 (𝑥) ⪰ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) +̃ 𝐹 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐾.

(68)

That is, there are

𝐹
∗
(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)

𝑇

∇𝐹
∗
(𝑦) (𝛼) + 𝐹

∗
(𝑦) (𝛼) ,

𝐹
∗

(𝑥) (𝛼) ≥ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼) + 𝐹
∗

(𝑦) (𝛼) ,

(69)

for all 𝛼 ∈ [0, 1].
By changing 𝑥 for 𝑦,

𝐹 (𝑦) ⪰ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑥) +̃ 𝐹 (𝑥) . (70)

That is, there are

𝐹
∗
(𝑦) (𝛼) ≥ 𝜂 (𝑦, 𝑥)

𝑇

∇𝐹
∗
(𝑥) (𝛼) + 𝐹

∗
(𝑥) (𝛼) ,

𝐹
∗

(𝑦) (𝛼) ≥ 𝜂(𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑥) (𝛼) + 𝐹
∗

(𝑥) (𝛼) ,

(71)

for all 𝛼 ∈ [0, 1].
From (69) and (71), it follows that

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑦) (𝛼) + 𝜂 (𝑦, 𝑥)

𝑇

∇𝐹
∗
(𝑥) (𝛼) ≤ 0,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼) + 𝜂(𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑥) (𝛼) ≤ 0.

(72)

As 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0, then

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑦) (𝛼) ≥ 𝜂 (𝑦, 𝑥)

𝑇

∇𝐹
∗
(𝑥) (𝛼) ,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑦) (𝛼) ≥ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑥) (𝛼) .

(73)

Therefore, from (73), there is

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑦) ⪰ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑥) . (74)
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Corollary 14. If a differentiable fuzzy mapping 𝐹 : 𝐾 → 𝐸

is invex on 𝐾 with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛 and 𝜂 is a

skew function. Then, ∇𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy pseudo-invex

monotone with respect to the same 𝜂.

Proof. FromTheorem 13, it follows that

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑦) ⪰ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑥) , ∀𝑥, 𝑦 ∈ 𝐾. (75)

Thus,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑦) (𝛼) ≥ 𝜂 (𝑦, 𝑥)

𝑇

∇𝐹
∗
(𝑥) (𝛼) ,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑦) (𝛼) ≥ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑥) (𝛼) ,

(76)

for all 𝛼 ∈ [0, 1].
If 𝜂(𝑦, 𝑥)𝑇∇𝐹(𝑥) ⪰ 0,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑥) (𝛼) ≥ 0,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑥) (𝛼) ≥ 0,

(77)

for all 𝛼 ∈ [0, 1].
Thus, from (76) and (77),

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑦) (𝛼) ≥ 0,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑦) (𝛼) ≥ 0

(78)

holds. Therefore, 𝜂(𝑦, 𝑥)𝑇∇𝐹(𝑦) ⪰ 0.

Theorem 15. If a differentiable fuzzy mapping 𝐹 : 𝐾 → 𝐸 is
strictly invex on 𝐾 with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 and 𝜂 is
a skew function. Then, ∇𝐹 : 𝐾 → (𝐸)

𝑛 is fuzzy strictly invex
monotone on 𝐾 with respect to the same 𝜂.

Proof. Assume that 𝐹 is strictly invex on 𝐾, then there exists
𝜂(𝑥, 𝑦) ∈ 𝑅

𝑛, such that, for any 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦,

𝐹 (𝑥) ≻ 𝜂 (𝑥, 𝑦) ∇𝐹 (𝑦) +̃ 𝐹 (𝑦) . (79)

Thus, there exists some 𝛼
0
∈ [0, 1], such that

𝐹
∗
(𝑥) (𝛼

0
) > 𝜂 (𝑥, 𝑦)

𝑇

∇𝐹
∗
(𝑦) (𝛼

0
) + 𝐹
∗
(𝑦) (𝛼

0
) , (80)

or

𝐹
∗

(𝑥) (𝛼
0
) > 𝜂 (𝑥, 𝑦)

𝑇

∇𝐹
∗

(𝑦) (𝛼
0
) + 𝐹
∗

(𝑦) (𝛼
0
) . (81)

For 𝛼
0
∈ [0, 1], without loss of generality, suppose that

𝐹
∗
(𝑥) (𝛼

0
) > 𝜂 (𝑥, 𝑦)

𝑇

∇𝐹
∗
(𝑦) (𝛼

0
) + 𝐹
∗
(𝑦) (𝛼

0
) . (82)

By changing 𝑥 for 𝑦,

𝐹
∗
(𝑦) (𝛼

0
) > 𝜂 (𝑦, 𝑥)

𝑇

∇𝐹
∗
(𝑥) (𝛼

0
) + 𝐹
∗
(𝑥) (𝛼

0
) . (83)

By (82), (83) and since 𝜂 is a skew function, we have

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑦) (𝛼

0
) > 𝜂 (𝑦, 𝑥)

𝑇

∇𝐹
∗
(𝑥) (𝛼

0
) . (84)

On the other hand, for other 𝛼 ∈ [0, 1],

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑦) ⪰ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑥) . (85)

Therefore,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑦) ≻ 𝜂 (𝑦, 𝑥)
𝑇

∇𝐹 (𝑥) . (86)

Theorem 16. If a differentiable fuzzy mapping 𝐹 : 𝐾 → 𝐸

is strictly pseudo-invex on 𝐾 with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛

and 𝜂 is a skew function.Then,∇𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy strictly

pseudo-invex monotone on𝐾 with respect to the same 𝜂.

Proof. Let𝐹 be a fuzzy strictly pseudo-invex, then there exists
𝜂(𝑥, 𝑦) ∈ 𝑅

𝑛, such that for any 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦,

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) ⪰ 0 󳨐⇒ 𝐹 (𝑥) ≻ 𝐹 (𝑦) . (87)

We need to show that there exists 𝜂(𝑥, 𝑦) ∈ 𝑅𝑛, such that

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑦) ⪰ 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

∇𝐹 (𝑥) ≻ 0,

(88)

for all 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦.
By contradiction, suppose that 𝜂(𝑥, 𝑦)𝑇∇𝐹(𝑥) ⪯ 0, then there
exists some 𝛼

0
∈ [0, 1], such that

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑥) (𝛼

0
) ≤ 0, (89)

or

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑥) (𝛼
0
) ≤ 0. (90)

Without loss of generality, assume that

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗
(𝑥) (𝛼

0
) ≤ 0. (91)

As 𝜂(𝑥, 𝑦) + 𝜂(𝑦, 𝑥) = 0, then

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑥) (𝛼

0
) ≥ 0. (92)

Since 𝐹 is strictly pseudo-invex on 𝐾, then for 𝛼
0
∈ [0, 1],

there is

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑥) (𝛼

0
) ≥ 0

󳨐⇒ 𝐹
∗
(𝑥) (𝛼

0
) ≤ 𝐹
∗
(𝑦) (𝛼

0
) ,

(93)

which is a contradiction.

Theorem 17. Let 𝐹 : 𝐾 → (𝐸)
𝑛 be a fuzzy strictly pseudo

monotone mapping on 𝐾 with respect to 𝜂 : 𝐾 × 𝐾 → 𝑅
𝑛;

then, 𝐹 is a fuzzy pseudo monotone with respect to 𝜂 on 𝐾.

Proof. As 𝐹 is a strictly pseudo monotone with respect to 𝜂
on𝐾, then for any 𝛼 ∈ [0, 1],

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗
(𝑥) (𝛼) ≥ 0

󳨐⇒ 𝐹
∗
(𝑥) (𝛼) ≤ 𝐹

∗
(𝑦) (𝛼) ,

𝜂 (𝑦, 𝑥)
𝑇

∇𝐹
∗

(𝑥) (𝛼) ≥ 0

󳨐⇒ 𝐹
∗
(𝑥) (𝛼) ≤ 𝐹

∗

(𝑦) (𝛼) .

(94)
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𝐹
∗
(𝑥)(𝛼), 𝐹∗(𝑥)(𝛼) is strictly pseudo monotone with respect

to 𝜂 on𝐾. Thus, 𝐹
∗
(𝑥)(𝛼), 𝐹∗(𝑥)(𝛼) also is pseudo monotone

with respect to 𝜂 on 𝐾; that is, 𝐹 is pseudo monotone with
respect to 𝜂 on𝐾.

Theorem 18. Let 𝐹 : 𝐾 → 𝐸 be a differentiable mapping, and
suppose that

(i) 𝜂 satisfies the following conditions:

(a) 𝜂(𝑦, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = −𝑡𝜂(𝑥, 𝑦),
(b) 𝜂(𝑥, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = (1 − 𝑡)𝜂(𝑥, 𝑦);

(ii) 𝐾 is an invex set with respect to 𝜂;
(iii) for each 𝑥 ̸= 𝑦, some 𝛼

0
∈ [0, 1],

(a) 𝐹
∗
(𝑦)(𝛼
0
) > 𝐹
∗
(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹

∗
(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0,

or

(b) 𝐹∗(𝑦)(𝛼
0
) > 𝐹
∗

(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹∗(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0;

(iv) ∇𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy pseudo-invex monotone with

respect to 𝜂 on 𝐾.

Then, 𝐹 is a fuzzy pseudo-invex mapping 𝜂 on 𝐾.

Proof. Set 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦, and 𝜂(𝑥, 𝑦)
𝑇

∇𝐹(𝑦) ⪰ 0 holds.
Thus, we need to show that 𝐹(𝑥) ⪰ 𝐹(𝑦); that is, 𝐹

∗
(𝑥)(𝛼) ≥

𝐹
∗
(𝑦)(𝛼) and 𝐹∗(𝑥)(𝛼) ≥ 𝐹

∗

(𝑦)(𝛼), for all 𝛼 ∈ [0, 1].
Assume the contrary, that is, 𝐹(𝑥)𝐹(𝑦). Thus, there exists

some 𝛼
0
∈ [0, 1], such that

𝐹
∗
(𝑥) (𝛼

0
) < 𝐹
∗
(𝑦) (𝛼

0
) (95)

or

𝐹
∗

(𝑥) (𝛼
0
) < 𝐹
∗

(𝑦) (𝛼
0
) . (96)

Without loss of generality, suppose that

𝐹
∗

(𝑥) (𝛼
0
) < 𝐹
∗

(𝑦) (𝛼
0
) . (97)

By hypothesis (iii),

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦 + 𝜆̃𝜂 (𝑥, 𝑦)) (𝛼
0
) < 0, (98)

for some 𝜆̃ ∈ (0, 1).
It follows from (98) and (i) that

𝜂 (𝑦 + 𝜆̃𝜂 (𝑥, 𝑦) , 𝑦)
𝑇

× ∇𝐹
∗

(𝑦 + 𝜆̃𝜂 (𝑥, 𝑦)) (𝛼
0
) < 0,

(99)

for some 𝜆̃ ∈ (0, 1).
Since ∇𝐹 is a pseudo-invex monotone with respect to 𝜂,

thus

𝜂 (𝑦 + 𝜆̃𝜂 (𝑥, 𝑦) , 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼
0
) < 0. (100)

From 𝜂(𝑦 + 𝜆̃𝜂(𝑥, 𝑦), 𝑦) = 𝜆̃𝜂(𝑥, 𝑦) and 𝜆̃ ∈ (0, 1), (100)
becomes

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼
0
) < 0. (101)

This contradicts 𝜂(𝑥, 𝑦)𝑇∇𝐹∗(𝑦)(𝛼) ⪰ 0.

Theorem 19. Let 𝐹 : 𝐾 → 𝐸 be a differentiable mapping, and
suppose that

(i) 𝜂 satisfies the following conditions:

(a) 𝜂(𝑦, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = −𝑡𝜂(𝑥, 𝑦),
(b) 𝜂(𝑥, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = (1 − 𝑡)𝜂(𝑥, 𝑦);
(a) 𝜂(𝑦, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = −𝑡𝜂(𝑥, 𝑦),
(b) 𝜂(𝑥, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = (1 − 𝑡)𝜂(𝑥, 𝑦);

(ii) 𝐾 is an invex set with respect to 𝜂;
(iii) for each 𝑥 ̸= 𝑦, some 𝛼

0
∈ [0, 1],

(a) 𝐹
∗
(𝑦)(𝛼
0
) > 𝐹
∗
(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹

∗
(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0,

or

(b) 𝐹∗(𝑦)(𝛼
0
) > 𝐹
∗

(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹∗(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0;

(iv) ∇𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy strictly pseudo-invex

monotone with respect to 𝜂 on 𝑘.

Then, 𝐹 is a fuzzy strictly pseudoinvex mapping 𝜂 on 𝑘.

Proof. Let 𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦, such that 𝜂(𝑥, 𝑦)𝑇∇𝐹(𝑦) ⪰ 0.Thus,
we need to show that 𝐹(𝑥) ≻ 𝐹(𝑦).

By contradiction, suppose that 𝐹(𝑥) ≻̃ 𝐹(𝑦); then, there
exists some 𝛼

0
∈ [0, 1], such that

𝐹
∗
(𝑥) (𝛼

0
) ≤ 𝐹
∗
(𝑦) (𝛼

0
) (102)

or

𝐹
∗

(𝑥) (𝛼
0
) ≤ 𝐹
∗

(𝑦) (𝛼
0
) . (103)

Without loss of generality, suppose that

𝐹
∗

(𝑥) (𝛼
0
) ≤ 𝐹
∗

(𝑦) (𝛼
0
) . (104)

By hypothesis (iii),

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦 + 𝜆̃𝜂 (𝑥, 𝑦)) (𝛼
0
) ≤ 0, (105)

for some 𝜆̃ ∈ (0, 1).
It follows from (i) and above inequity (105) that

𝜂 (𝑦, 𝑦 + 𝜆̃𝜂 (𝑥, 𝑦))
𝑇

× ∇𝐹
∗

(𝑦 + 𝜆̃𝜂 (𝑥, 𝑦)) (𝛼
0
) ≥ 0.

(106)



10 Abstract and Applied Analysis

Since ∇𝐹 is a strictly pseudo-invex monotone with respect to
𝜂, thus

𝜂 (𝑦, 𝑦 + 𝜆̃𝜂 (𝑥, 𝑦))
𝑇

∇𝐹
∗

(𝑦) (𝛼
0
) > 0. (107)

From 𝜂(𝑦, 𝑦 + 𝜆̃𝜂(𝑥, 𝑦)) = −𝜆̃𝜂(𝑥, 𝑦) and 𝜆̃ ∈ (0, 1), it follows
that

𝜂 (𝑥, 𝑦)
𝑇

∇𝐹
∗

(𝑦) (𝛼
0
) < 0. (108)

This contradicts 𝜂(𝑥, 𝑦)𝑇∇𝐹∗(𝑦)(𝛼) ≥ 0.

4. The Existence of a Solution to the Fuzzy
Variational-Like Inequality

Let𝐾 ⊂ 𝑅
𝑛, 𝜂(𝑥, 𝑥∗) : 𝐾×𝐾 → 𝑅

𝑛, 𝐹 : 𝐾 → (𝐸)
𝑛, the fuzzy

variational-like inequality problem be: find 𝑥∗ ∈ 𝐾, 𝐹(𝑥∗) ∈
(𝐸)
𝑛 (denoted by 𝐹(𝑥

∗

) = (𝐹
1
(𝑥
∗

), 𝐹
2
(𝑥
∗

), . . . , 𝐹
𝑛
(𝑥
∗

))
𝑛),

such that

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹 (𝑥
∗

) ≺ 0, ∀𝑥 ∈ 𝐾. (FVLI)

Definition 20. Let𝐾 be an invex set with respect to 𝜂(𝑥, 𝑥∗) :
𝐾 × 𝐾 → 𝑅

𝑛. A fuzzy mapping 𝐹 : 𝐾 → (𝐸)
𝑛 is called

𝜂-hemicontinuous, if for 𝑥, 𝑦 ∈ 𝐾, for all 𝛼 ∈ [0, 1], the
mappings 𝑡 → 𝐹

∗

(𝑦 + 𝑡𝜂(𝑥, 𝑦))(𝛼) and 𝑡 → 𝐹
∗
(𝑦 +

𝑡𝜂(𝑥, 𝑦))(𝛼) are continuous at 0+, with 𝑡 ∈ [0, 1].

Lemma21. Let𝐾 be a nonempty convex set in𝑅𝑛, and suppose
that

(i) 𝐹 : 𝐾 → (𝐸)
𝑛 is a fuzzy pseudo-invex monotone with

respect to 𝜂 and 𝜂-hemicontinuous on 𝐾;
(ii) 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 satisfies

(a) 𝜂(𝑦, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = −𝜆𝜂(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐾,
𝜆 ∈ [0, 1],

(b) 𝜂(𝑥, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = (1 − 𝜆)𝜂(𝑥, 𝑦), for all 𝑥, 𝑦 ∈
𝐾, 𝜆 ∈ [0, 1];

(iii) for any fixed 𝑦 ∈ 𝐾, 𝑥 → 𝜂(𝑥, 𝑦) is linear; that is, for
𝑥
(𝑖)

∈ 𝐾, 𝑖 = 1, 2, . . . , 𝑛, 𝑡
𝑖
∈ [0, 1], ∑𝑛

𝑖=1
𝑡
𝑖
= 1, with

𝜂(∑
𝑛

𝑖=1
𝑡
𝑖
𝑥
(𝑖)

, 𝑦) = ∑
𝑛

𝑖=1
𝑡
𝑖
𝜂(𝑥
(𝑖)

, 𝑦).

Then, for 𝑦 ∈ 𝐾, 𝜂(𝑥, 𝑦)𝑇𝐹(𝑦) ≺ 0, for all 𝑥 ∈ 𝐾 if and only if
𝜂(𝑥, 𝑦)

𝑇

𝐹(𝑥) ≺ 0, for all 𝑥 ∈ 𝐾.

Proof. ⇒ By contradiction, suppose that there exists a 𝑥 ∈

𝐾, such that 𝜂(𝑥, 𝑦)𝑇𝐹(𝑥) ≺ 0. Thus, there exists some 𝛼
0
∈

[0, 1],

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗
(𝑥) (𝛼

0
) < 0, (109)

or

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0. (110)

Without loss of generality, assume that

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0. (111)

Since 𝐹 : 𝐾 → (𝐸)
𝑛 is a fuzzy pseudo-invex monotone with

respect to 𝜂, thus

𝜂 (𝑥, 𝑦)
𝑇

𝐹 (𝑦) ⪰ 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

𝐹 (𝑥) ⪰ 0.

(112)

That is, there are

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑦) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑥) (𝛼) ≥ 0,

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗
(𝑦) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗
(𝑥) (𝛼) ≥ 0,

(113)

for all 𝛼 ∈ [0, 1].
Therefore,

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑦) (𝛼) < 0,

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗
(𝑥) (𝛼) < 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗
(𝑦) (𝛼) < 0.

(114)

In particular, for 𝛼
0
∈ [0, 1],

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0

󳨐⇒ 𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑦) (𝛼
0
) < 0.

(115)

This contradicts 𝜂(𝑥, 𝑦)𝑇𝐹(𝑦) ≺ 0.
⇐ By contradiction, suppose that there exists a 𝑥 ∈ 𝐾,

such that 𝜂(𝑥, 𝑦)𝑇𝐹(𝑦) ≺ 0. Thus, there exists some 𝛼
0
∈

[0, 1],

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗
(𝑦) (𝛼

0
) < 0, (116)

or

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑦) (𝛼
0
) < 0. (117)

Without loss of generality, assume that

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑦) (𝛼
0
) < 0. (118)

Since𝐾 is an invex set and by condition (a), we knowthat

𝑦 + 𝑡 (𝑥 − 𝑦) ∈ 𝐾, 𝑡 ∈ [0, 1] , 𝜂 (𝑦, 𝑦) = 0. (119)

When 𝜂 satisfies (iii), there is

𝜂 (𝑦 + 𝑡 (𝑥 − 𝑦) , 𝑦)

= 𝑡𝜂 (𝑥, 𝑦) + (1 − 𝑡) 𝜂 (𝑦, 𝑦)

= 𝑡𝜂 (𝑥, 𝑦) , 𝑡 ∈ [0, 1] .

(120)
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Since 𝐹 is 𝜂-hemicontinuous on𝐾, it follows that

𝑡 󳨀→ 0
+

,

𝐹
∗

(𝑦 + 𝑡 (𝑥 − 𝑦)) (𝛼
0
) 󳨀→ 𝐹

∗

(𝑦) (𝛼
0
) .

(121)

Therefore,

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑦) (𝛼
0
) < 0

󳨐⇒ 𝜂 (𝑦 + 𝑡 (𝑥 − 𝑦) , 𝑦)
𝑇

× 𝐹
∗

(𝑦 + 𝑡 (𝑥 − 𝑦)) (𝛼
0
) < 0.

(122)

Let 𝑥 = 𝑦 + 𝑡(𝑥 − 𝑦), then

𝜂 (𝑥, 𝑦)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0. (123)

This contradicts 𝜂(𝑥, 𝑦)𝑇𝐹(𝑥) ≺ 0, for all 𝑥 ∈ 𝐾.
By the hypothesis of the pseudo-invex monotonicity of 𝐹

and the linearity of 𝜂, the existence theorem can be obtained.

Theorem 22. Let 𝐾 be a nonempty convex set in 𝑅𝑛, suppose
that

(i) 𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy pseudo-invex monotone with

respect to 𝜂 and 𝜂-hemicontinuous on 𝐾;
(ii) 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 satisfies

(a) 𝜂(𝑦, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = −𝜆𝜂(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐾,
𝜆 ∈ [0, 1],

(b) 𝜂(𝑥, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = (1 − 𝜆)𝜂(𝑥, 𝑦), for all 𝑥, 𝑦 ∈
𝐾, 𝜆 ∈ [0, 1];

(iii) for any fixed 𝑦 ∈ 𝐾, 𝑥 → 𝜂(𝑥, 𝑦) is linear; that is, for
𝑥
(𝑖)

∈ 𝐾, 𝑖 = 1, 2, . . . , 𝑛, 𝑡
𝑖
∈ [0, 1], 𝑖 = 1, 2, . . . , 𝑛, for

∑
𝑛

𝑖=1
𝑡
𝑖
= 1, with 𝜂(∑𝑛

𝑖=1
𝑡
𝑖
𝑥
(𝑖)

, 𝑦) = ∑
𝑛

𝑖=1
𝑡
𝑖
𝜂(𝑥
(𝑖)

, 𝑦).

Then, there exists 𝑥∗ ∈ 𝐾, such that 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥∗) ≺ 0, for all
𝑥 ∈ 𝐾.

Proof. Let

𝑌 (𝑦) = {𝑥 ∈ 𝐾 | 𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑥) ≺ 0} ,

∀𝑦 ∈ 𝐾.

(124)

That is, for all 𝛼 ∈ [0, 1], there are

𝑌
∗

(𝑦) (𝛼) = {𝑥 ∈ 𝐾 | 𝜂 (𝑦, 𝑥)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0} ,

∀𝑦 ∈ 𝐾,

𝑌
∗
(𝑦) (𝛼) = {𝑥 ∈ 𝐾 | 𝜂 (𝑦, 𝑥)

𝑇

𝐹
∗
(𝑥) (𝛼) < 0} ,

∀𝑦 ∈ 𝐾.

(125)

Let 𝑥(𝑖) ∈ 𝐾, 𝑖 = 1, 2, . . . , 𝑛, 𝑡
𝑖
∈ [0, 1], ∑𝑛

𝑖=1
𝑡
𝑖
= 1. Suppose

that

𝑥 =

𝑛

∑

𝑖=1

𝑡
𝑖
𝑥
(𝑖)

∈⋃𝑌
∗

(𝑥
(𝑖)

) (𝛼) . (126)

Then, there exists some 𝛼
0
∈ [0, 1], such that

𝜂 (𝑥
(𝑖)

, 𝑥)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0,

𝑖 = 1, 2, . . . , 𝑛.

(127)

Therefore,

𝑛

∑

𝑖=1

𝑡
𝑖
𝜂 (𝑥
(𝑖)

, 𝑥)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0. (128)

From (iii), for fixed 𝑥 ∈ 𝐾,

𝜂(

𝑛

∑

𝑖=1

𝑡
𝑖
𝑥
(𝑖)

, 𝑥)

𝑇

𝐹
∗

(𝑥) (𝛼) < 0. (129)

That is,

𝜂 (𝑥, 𝑥)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0. (130)

From 𝜂(𝑥, 𝑥) = 0, it follows that 0 < 0, which is absurd. So
𝑥 = ∑

𝑛

𝑖=1
𝑡
𝑖
𝑥
(𝑖)

∈ ⋃𝑌
∗

(𝑥
(𝑖)

)(𝛼).
Similarly, 𝑥 = ∑

𝑛

𝑖=1
𝑡
𝑖
𝑥
(𝑖)

∈ ⋃𝑌
∗
(𝑥
(𝑖)

)(𝛼) can be proofed.
Thus,

conv ({𝑥(1), 𝑥(2), . . . , 𝑥(𝑛)}) ⊂ ⋃𝑌
∗

(𝑥
(𝑖)

) (𝛼) ,

conv ({𝑥(1), 𝑥(2), . . . , 𝑥(𝑛)}) ⊂ ⋃𝑌
∗
(𝑥
(𝑖)

) (𝛼)

(131)

can be obtained. Therefore, 𝑌∗(𝑦)(𝛼), 𝑌
∗
(𝑦)(𝛼) are KKM

mappings.
Let

𝑌 (𝑦) = {𝑥 ∈ 𝐾 | 𝜂 (𝑦, 𝑥)
𝑇

𝐹 (𝑦) ≺ 0} , ∀𝑦 ∈ 𝐾. (132)

That is, for all 𝛼 ∈ [0, 1],

𝑌
∗

(𝑦) = {𝑥 ∈ 𝐾 | 𝜂 (𝑦, 𝑥)
𝑇

𝐹
∗

(𝑦) (𝛼) < 0} , ∀𝑦 ∈ 𝐾,

𝑌
∗
(𝑦) = {𝑥 ∈ 𝐾 | 𝜂 (𝑦, 𝑥)

𝑇

𝐹
∗
(𝑦) (𝛼) < 0} , ∀𝑦 ∈ 𝐾.

(133)

Let 𝑥 ∈ 𝑌(𝑦); that is, 𝜂(𝑦, 𝑥)𝑇𝐹(𝑥) ≺ 0. By Lemma 21,
𝜂(𝑦, 𝑥)

𝑇

𝐹(𝑦) ≺ 0 holds, that is, 𝑥 ∈ 𝑌(𝑦). Thus,

𝑌
∗

(𝑦) (𝛼) ⊂ 𝑌
∗

(𝑦) (𝛼) ,

𝑌
∗
(𝑦) (𝛼) ⊂ 𝑌

∗
(𝑦) (𝛼) .

(134)

As 𝑌∗(𝑦)(𝛼), 𝑌
∗
(𝑦)(𝛼) are KKM mappings, thus 𝑌∗(𝑦)(𝛼),

𝑌
∗
(𝑦)(𝛼) are also KKMmappings. By Lemma 21, we have

⋂

𝑦∈𝐾

𝑌
∗

(𝑦) (𝛼) = ⋂

𝑦∈𝐾

𝑌
∗

(𝑦) (𝛼) ,

⋂

𝑦∈𝐾

𝑌
∗
(𝑦) (𝛼) = ⋂

𝑦∈𝐾

𝑌
∗
(𝑦) (𝛼) .

(135)
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As 𝑌
∗
(𝑦)(𝛼), 𝑌∗(𝑦)(𝛼) are closed for every 𝑦 ∈ 𝐾 and 𝐾 is

a bounded set, then 𝑌
∗
(𝑦)(𝛼), 𝑌∗(𝑦)(𝛼) are bounded; hence,

𝑌
∗
(𝑦)(𝛼), 𝑌∗(𝑦)(𝛼) are compact. Therefore,

⋂

𝑦∈𝐾

𝑌
∗

(𝑦) (𝛼) = ⋂

𝑦∈𝐾

𝑌
∗

(𝑦) (𝛼) ̸= 0,

⋂

𝑦∈𝐾

𝑌
∗
(𝑦) (𝛼) = ⋂

𝑦∈𝐾

𝑌
∗
(𝑦) (𝛼) ̸= 0.

(136)

Hence, there exists 𝑥∗ ∈ 𝐾, such that

𝜂 (𝑦, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼) < 0, ∀𝑦 ∈ 𝐾,

𝜂 (𝑦, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥
∗

) (𝛼) < 0, ∀𝑦 ∈ 𝐾.

(137)

That is,

𝜂 (𝑦, 𝑥
∗

)
𝑇

𝐹 (𝑥
∗

) ≺ 0, ∀𝑦 ∈ 𝐾. (138)

The pseudo-invex monotonicity of 𝐹 assures us of the
existence of a solution to (FVLI), but not the uniqueness
of such a solution. To achieve this, we assume the strictly
pseudo-invex monotonicity of 𝐹.

Theorem 23. Let 𝐾 be a nonempty convex set in 𝑅
𝑛, and

suppose that

(i) 𝐹 : 𝐾 → (𝐸)
𝑛 is strictly fuzzy pseudo-invex monotone

with respect to 𝜂 and 𝜂-hemicontinuous on 𝐾;
(ii) 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 is a skew function and satisfies

(a) 𝜂(𝑦, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = −𝜆𝜂(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐾,
𝜆 ∈ [0, 1],

(b) 𝜂(𝑥, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = (1 − 𝜆)𝜂(𝑥, 𝑦), for all 𝑥, 𝑦 ∈
𝐾, 𝜆 ∈ [0, 1];

(iii) for any fixed 𝑦 ∈ 𝐾, 𝑥 → 𝜂(𝑥, 𝑦) is linear; that is, for
𝑥
(𝑖)

∈ 𝐾, 𝑖 = 1, 2, . . . , 𝑛, 𝑡
𝑖
∈ [0, 1], ∑𝑛

𝑖=1
𝑡
𝑖
= 1, with

𝜂(∑
𝑛

𝑖=1
𝑡
𝑖
𝑥
(𝑖)

, 𝑦) = ∑
𝑛

𝑖=1
𝑡
𝑖
𝜂(𝑥
(𝑖)

, 𝑦).

Then, there exists unique 𝑥∗ ∈ 𝐾, such that 𝜂(𝑥,𝑥∗)𝑇𝐹(𝑥∗) ≺ 0,
for all 𝑥 ∈ 𝐾.

Proof. From Theorem 17, 𝐹 is a fuzzy pseudo-invex mono-
tone. Also from Theorem 22, there exists a solution for
problem (FVLI).

Suppose that (FVLI) has two distinct solutions 𝑥∗, 𝑥.
Then,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹 (𝑥
∗

) ≺ 0,

𝜂 (𝑥
∗

, 𝑥)
𝑇

𝐹 (𝑥) ≺ 0.

(139)

Since 𝐹 is a fuzzy strictly pseudo-invex monotone on𝐾, then

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹 (𝑥
∗

) ⪰ 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹 (𝑥) ≻ 0.

(140)

That is, there are

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼) > 0,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥
∗

) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥) (𝛼) > 0,

(141)

for all 𝛼 ∈ [0, 1].
Since 𝜂 is a skew function, there is 𝜂(𝑥, 𝑥∗)+𝜂(𝑥∗, 𝑥) = 0.

Thus

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥
∗

, 𝑥)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥
∗

) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥
∗

, 𝑥)
𝑇

𝐹
∗
(𝑥) (𝛼) < 0.

(142)

That is,

𝜂 (𝑥
∗

, 𝑥)
𝑇

𝐹 (𝑥) ≺ 0, (143)

which contradicts 𝜂(𝑥∗, 𝑥)𝑇𝐹(𝑥) ≺ 0.

5. Qualities of the Fuzzy
Variational-Like Inequality

A well-known fact in mathematical programming is that the
variational inequality problem has a close relationship with
the optimization problem. Similarly, the fuzzy variational
inequality problem also has a close relationshipwith the fuzzy
optimization problem.

Consider the unconstrained fuzzy vector optimization
problem:

min
𝑥∈𝐾

𝐹 (𝑥) , (FP)

where 𝐾 is a subset of n dimension Euclidean space 𝑅𝑛, 𝐹 :

𝐾 → 𝐸 is a fuzzy mapping.
A point 𝑥 ∈ 𝐾 is called a feasible point. If 𝑥∗ ∈ 𝐾 and no

𝑥 ∈ 𝐾, 𝐹(𝑥) ≺ 𝐹(𝑥
∗

), then 𝑥∗ is called an optimal solution,
a global optimal solution, or simply a solution to the problem
(FP). If 𝑥∗ ∈ 𝐾 and there exists an 𝛿-neighborhood 𝑁

𝛿
(𝑥
∗

)

around 𝑥∗, such that for no 𝑥( ̸= 𝑥
∗

) ∈ 𝐾 ∩ 𝑁
𝛿
(𝑥
∗

), 𝐹(𝑥) ≺

𝐹(𝑥
∗

), then 𝑥∗ is called a local optimal solution. Similarly, if
𝑥
∗

∈ 𝐾 and there exists an 𝛿-neighborhood 𝑁
𝛿
(𝑥
∗

) around
𝑥
∗, such that for no 𝑥 ∈ 𝐾 ∩ 𝑁

𝛿
(𝑥
∗

), 𝐹(𝑥) ⪯ 𝐹(𝑥
∗

), then 𝑥∗
is called a strict local optimal solution.

The following lemmas and theorems discuss the proper-
ties of fuzzy variational inequality.

Lemma 24 (see Wu and Xu [6]). Let 𝐹 : 𝐾 → 𝐸 be a
fuzzy differentiable pseudoinvex mapping. If (𝑥∗, ∇𝐹(𝑥∗)) is a
solution of (FVLI), then 𝑥∗ is a local optimal solution of (FP).
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Lemma 25 (see Wu and Xu [6]). Let 𝐹 : 𝐾 → 𝐸 be a fuzzy
differentiable strictly pseudoinvex mapping. If (𝑥∗, ∇𝐹(𝑥∗)) is
a solution of (FVLI), then 𝑥∗ is a strictly local optimal solution
of (FP).

Theorem 26. Let 𝐹 : 𝐾 → 𝐸 be a differentiable fuzzy
mapping, and suppose that

(i) 𝜂 satisfies the following conditions:

(a) 𝜂(𝑦, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = −𝑡𝜂(𝑥, 𝑦),
(b) 𝜂(𝑥, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = (1 − 𝑡)𝜂(𝑥, 𝑦);

(ii) 𝐾 is an invex set with respect to 𝜂;
(iii) for each 𝑥 ̸= 𝑦, some 𝛼

0
∈ [0, 1],

(a) 𝐹
∗
(𝑦)(𝛼
0
) > 𝐹
∗
(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹

∗
(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0,

or

(b) 𝐹∗(𝑦)(𝛼
0
) > 𝐹
∗

(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹∗(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0;

(iv) ∇𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy pseudo-invex monotone with

respect to 𝜂 on 𝑘.

If (𝑥∗, ∇𝐹(𝑥∗)) is a solution of (FVLI), then 𝑥
∗ is a local

optimal solution of (FP).

Proof. From Theorem 18, we know that 𝐹 is a fuzzy pseudo
invex. By Lemma 24, we can show it.

Theorem 27. Let 𝐹 : 𝐾 → 𝐸 be a differentiable fuzzy
mapping, and suppose that

(i) 𝜂 satisfies the following conditions:

(a) 𝜂(𝑦, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = −𝑡𝜂(𝑥, 𝑦),
(b) 𝜂(𝑥, 𝑦 + 𝑡𝜂(𝑥, 𝑦)) = (1 − 𝑡)𝜂(𝑥, 𝑦);

(ii) 𝐾 is an invex set with respect to 𝜂;
(iii) for each 𝑥 ̸= 𝑦, some 𝛼

0
∈ [0, 1],

(a) 𝐹
∗
(𝑦)(𝛼
0
) > 𝐹
∗
(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹

∗
(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0,

or

(b) 𝐹∗(𝑦)(𝛼
0
) > 𝐹
∗

(𝑥)(𝛼
0
) implies 𝜂(𝑥, 𝑦)𝑇∇𝐹∗(𝑦 +

𝜆̃𝜂(𝑥, 𝑦))(𝛼
0
) < 0;

(iv) ∇𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy strictly pseudo-invex

monotone with respect to 𝜂 on 𝑘.

If (𝑥∗, ∇𝐹(𝑥∗)) is a solution of (FVLI), then 𝑥∗ is a strictly local
optimal solution of (FP).

Proof. From Theorem 19, we know that 𝐹 is a fuzzy strictly
pseudo-invex. By Lemma 25, we can show it.

Theorem 28 gives the equivalent relationship of two fuzzy
variational-like inequalities.

Theorem 28. Let 𝐾 be an invex set with respect to 𝜂 : 𝐾 ×

𝐾 → 𝑅
𝑛. Suppose that

(i) 𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy pseudo-invex monotone with

respect to 𝜂 and 𝜂-hemicontinuous on 𝐾;
(ii) 𝜂 satisfies the following conditions:

(a) 𝜂(𝑦, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = −𝜆𝜂(𝑥, 𝑦),
(b) 𝜂(𝑥, 𝑦 + 𝜆𝜂(𝑥, 𝑦)) = (1 − 𝜆)𝜂(𝑥, 𝑦).

Then, 𝑥∗ ∈ 𝐾 satisfies 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥∗) ≺ 0, for all 𝑥 ∈ 𝐾 if and
only if it satisfies 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥) ≺ 0, for all 𝑥 ∈ 𝐾.

Proof. ⇒ By contradiction, suppose that there exists an 𝑥 ∈

𝐾, such that 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥) ≺ 0. Thus, there exists some 𝛼
0
∈

[0, 1],

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0, (144)

or

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥) (𝛼

0
) < 0. (145)

Without loss of generality, assume that

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0. (146)

Since 𝐹 : 𝐾 → (𝐸)
𝑛 is fuzzy pseudo-invex monotone with

respect to 𝜂, thus

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹 (𝑥
∗

) ⪰ 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹 (𝑥) ⪰ 0.

(147)

That is, for any 𝛼 ∈ [0, 1],

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼) ≥ 0,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥
∗

) (𝛼) ≥ 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥) (𝛼) ≥ 0.

(148)

Therefore,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼) < 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼) < 0,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥) (𝛼) < 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥
∗

) (𝛼) < 0.

(149)

In particularly, for 𝛼
0
∈ [0, 1], there is

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0

󳨐⇒ 𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼
0
) < 0.

(150)

This contradicts 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥∗) ≺ 0.
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⇐ By contradiction, suppose that there exists an 𝑥 ∈ 𝐾,
such that 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥∗) ≺ 0. Thus, there exists some 𝛼

0
∈

[0, 1],

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼
0
) < 0, (151)

or

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗
(𝑥
∗

) (𝛼
0
) < 0. (152)

Without loss of generality, assume that

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼
0
) < 0. (153)

Since 𝐾 is invex set with respect to 𝜂 and assumption (ii), it
follows that

𝑥
∗

+ 𝜆𝜂 (𝑥, 𝑥
∗

) ∈ 𝐾,

𝜂 (𝑥
∗

+ 𝜆𝜂 (𝑥, 𝑥
∗

) , 𝑥
∗

) = 𝜆𝜂 (𝑥, 𝑥
∗

) ,

𝜆 ∈ [0, 1] .

(154)

Again, since 𝐹 is 𝜂-hemicontinuous on𝐾, there is

𝜆 󳨀→ 0
+

,

𝐹
∗

(𝑥
∗

+ 𝜆𝜂 (𝑥, 𝑥
∗

)) (𝛼
0
) 󳨀→ 𝐹

∗

(𝑥
∗

) (𝛼
0
) .

(155)

Therefore,

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥
∗

) (𝛼
0
) < 0

󳨐⇒ 𝜂 (𝑥
∗

+ 𝜆𝜂 (𝑥, 𝑥
∗

))
𝑇

× 𝐹
∗

(𝑥
∗

+ 𝜆𝜂 (𝑥, 𝑥
∗

)) (𝛼
0
) < 0.

(156)

Set 𝑥 = 𝑥
∗

+ 𝜆𝜂(𝑥, 𝑥
∗

), then

𝜂 (𝑥, 𝑥
∗

)
𝑇

𝐹
∗

(𝑥) (𝛼
0
) < 0, 𝑥 ∈ 𝐾. (157)

This contradicts 𝜂(𝑥, 𝑥∗)𝑇𝐹(𝑥) ≺ 0, for all 𝑥 ∈ 𝐾.

6. Solution to the Fuzzy
Variational-Like Inequality

In order to solve the fuzzy variational-like inequality, it is
important find an equivalent fuzzy problem. Next, we discuss
the equivalent fuzzy generalized complementarity problemof
(FVLI), where 𝜂(𝑦, 𝑥) = 𝑦 − 𝑥.

Denote (FVLI): find 𝑥 ∈ 𝐾 ⊂ 𝑅
𝑛, 𝐹(𝑥) ∈ (𝐸)𝑛, such that

𝐹(𝑥)
𝑇

(𝑦 − 𝑥) ≺ 0, ∀𝑦 ∈ 𝐾, (FVLI)

where 𝐹 : 𝐾 → (𝐸)
𝑛.

It is well known that variational inequalities are equiva-
lent to the generalized complementary problemover a convex
cone [35]. Similarly, we consider solving the fuzzy variational-
like inequality in view of the following fuzzy generalized
complementarity problem.

Find 𝑥 ∈ 𝐾 ⊂ 𝑅
𝑛, 𝐹(𝑥) ∈ (𝐸)𝑛, such that

𝐹(𝑥)
𝑇

𝑥 = 0,

𝐹 (𝑥) ∈ 𝐾
∗

,

𝐾
∗

= {𝑧 ∈ (𝐸)
𝑛

| 𝑧
𝑇

𝑦≺ 0, ∀𝑦 ∈ 𝐾} .

(FCP)

The following theorem shows the equivalence between
the fuzzy variational-like inequality and the fuzzy generalized
complementarity problem.

Theorem 29. The fuzzy variational-like inequality (FVLI) is
equivalent to the fuzzy generalized complementarity problem
(FCP), when 𝐾 is a convex cone.

Proof. At first, we show (FCP)⊂(FVLI). Suppose that
(𝑥
∗

, 𝐹(𝑥
∗

)) is a solution of (FCP), then

𝐹(𝑥
∗

)
𝑇

𝑥
∗

= 0, (158)

𝐹(𝑥
∗

)
𝑇

𝑦≺ 0, ∀𝑦 ∈ 𝐾. (159)

Combining (158) and (159), we have

𝐹(𝑥
∗

)
𝑇

(𝑦 − 𝑥
∗

) ≺ 0, ∀𝑦 ∈ 𝐾. (160)

Therefore, (𝑥∗, 𝐹(𝑥∗)) is also a solution of (FVLI).
Next, we show (FVLI)⊂(FCP). Let (𝑥∗, 𝐹(𝑥∗)) be a solu-

tion of (FVLI) which the degree of membership 𝛼 ∈ [0, 1],
then

𝐹(𝑥
∗

)
𝑇

(𝑦 − 𝑥
∗

) ⪰ 𝜇
−1

𝐶𝑦

(𝛼) ⪰ −𝑝, ∀𝑦 ∈ 𝐾, (161)

where 𝑝 ⪰ 0 is the tolerance level which a decision maker
can tolerate in the accomplishment of the fuzzy variation-like
inequality 𝐹(𝑥)𝑇(𝑦 − 𝑥) ≺ 0. By contradiction, suppose that
𝐹(𝑥
∗

)
𝑇

𝑥
∗

̸= 0, then there exists some 𝛼
0
∈ [0, 1], 𝑞

1
⪰ 0, such

that

[𝐹(𝑥
∗

)
𝑇

𝑥
∗

]

∗

(𝛼
0
) > 𝑞

∗

1
(𝛼
0
) (162)

or

[𝐹(𝑥
∗

)
𝑇

𝑥
∗

]
∗

(𝛼
0
) > 𝑞
1∗
(𝛼
0
) . (163)

Or there exists some 𝛼
1
∈ [0, 1], 𝑞

2
≻ 0, such that

[𝐹(𝑥
∗

)
𝑇

𝑥
∗

]

∗

(𝛼
1
) < 𝑞

∗

2
(𝛼
1
) (164)

or

[𝐹(𝑥
∗

)
𝑇

𝑥
∗

]
∗

(𝛼
1
) > 𝑞
2∗
(𝛼
1
) . (165)

Without loss of generality, suppose that

[𝐹(𝑥
∗

)
𝑇

𝑥
∗

]

∗

(𝛼
0
) > 𝑞

∗

1
(𝛼
0
) ,

[𝐹(𝑥
∗

)
𝑇

𝑥
∗

]

∗

(𝛼
1
) < 𝑞

∗

2
(𝛼
1
) .

(166)
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Since 𝐾 is a convex cone, then when 𝑦 = 𝜆𝑥
∗ with 𝜆 > 1,

there is

𝐹(𝑥
∗

)
𝑇

𝑥
∗

⪰
−𝑝

𝜆 − 1
, 𝑝 ⪰ 0. (167)

When 𝑦 = 0,

𝐹(𝑥
∗

)
𝑇

𝑥
∗

⪯ 𝑝. (168)

If [𝐹(𝑥∗)𝑇𝑥∗]
∗

(𝛼
0
) > 𝑞
∗

1
(𝛼
0
), then

[
−𝑝

𝜆 − 1
]

∗

(𝛼
0
) > 𝑝

∗

1
(𝛼
0
) . (169)

This leads to a contradiction.
If [𝐹(𝑥∗)𝑇𝑥∗]

∗
(𝛼
1
) < 𝑞
2∗
(𝛼
1
), then

𝑝
∗

(𝛼
1
) < 𝑞
2∗
(𝛼
1
) . (170)

This also leads to a contradiction. Therefore, 𝐹(𝑥∗)𝑇𝑥∗ = 0.
Furthermore, from (161), it follows that

𝐹(𝑥
∗

)
𝑇

(𝑦 − 𝑥
∗

) ⪰ −𝑝

󳨐⇒ 𝐹(𝑥
∗

)
𝑇

𝑦 ⪰ −𝑝, ∀𝑦 ∈ 𝐾.

(171)

Therefore,

𝐹(𝑥
∗

)
𝑇

𝑦≺ 0. (172)

This shows that (𝑥∗, 𝐹(𝑥∗)) is a solution of (FCP).

To solve (FVLI) with 𝐾 = {𝑥 ∈ 𝑅
𝑛

| 𝐷𝑥 ⪰ 𝑜, 𝐷 ∈

𝑅
𝑚×𝑛

, and 𝐷 = [𝑑
𝑖
], for all 𝑖 = 1, 2, . . . , 𝑚} being a convex

cone, we consider the problem (FCP) with 𝑑
𝑖
𝑥 ⪰ 0, for all

𝑖 = 1, 2, . . . , 𝑚.
That is,

𝑑
𝑖
𝑥 ⪰ 0, 𝐹(𝑥)

𝑇

𝑥 = 0,

𝐹 (𝑥) ∈ 𝐾
∗

, ∀𝑖 = 1, 2, . . . , 𝑚,

(173)

where𝐾∗ = {𝑧 ∈ (𝐸)
𝑛

| 𝑧
𝑇𝑦

≺ 0, for all 𝑦 ∈ 𝐾}.
Similarly [26], it can be shown that (173) can be rewritten

as follows: find 𝑥 ∈ 𝐾, 𝐹(𝑥) ∈ (𝐸)𝑛 such that

𝑑
𝑖
𝑥 ⪰ 0, 𝐹(𝑥)

𝑇

𝑥 = 0,

𝑑
󸀠

𝑖
𝐹 (𝑥) ⪰ 0, ∀𝑖 = 1, 2, . . . , 𝑚,

(174)

where 𝑑
󸀠

𝑖
is a normal to 𝑑

𝑖
. Of course, (174) can be also

rewritten as follows: find 𝑥 ∈ 𝐾, 𝐹(𝑥) ∈ (𝐸)𝑛 such that

𝑑
𝑖
𝑥 ⪰ 0, 𝐹(𝑥)

𝑇

𝑥 ⪰ 0,

−𝐹(𝑥)
𝑇

𝑥 ⪰ 0,

𝑑
󸀠

𝑖
𝐹 (𝑥) ⪰ 0, ∀𝑖 = 1, 2, . . . , 𝑚.

(175)

In (174), each fuzzy inequality can be represented by a fuzzy
set 𝑆
𝑗
with the corresponding membership function 𝜇

𝑠𝑗
(𝑥),

for 𝑗 = 1, 2, . . . , 2𝑚 + 2; that is

𝜇
𝑗
(𝑥) =

{{

{{

{

1, if 𝑑
𝑗
𝑥 ⪰ 0,

𝜇
𝑗
(𝑑
𝑗
𝑥) , if − 𝑡

𝑗
≺ 𝑑
𝑗
𝑥 ⪯ 0, ∀𝑗 = 1, 2, . . . , 𝑚,

0, if 𝑑
𝑗
𝑥 ⪯ −𝑡

𝑗
,

𝜇
𝑠𝑚+1

(𝑥) =

{{

{{

{

1, if 𝐹(𝑥)𝑇𝑥 ⪰ 0,

𝜇
𝑚+1

(𝐹(𝑥)
𝑇

𝑥) , if − 𝑡
𝑚+1

≺ 𝐹(𝑥)
𝑇

𝑥 ⪯ 0,

0, if 𝐹(𝑥)𝑇𝑥 ⪯ −𝑡
𝑚+1

,

𝜇
𝑠𝑚+2

(𝑥) =

{{

{{

{

1, if − 𝐹(𝑥)
𝑇

𝑥 ⪰ 0,

𝜇
𝑚+2

(−𝐹(𝑥)
𝑇

𝑥) , if − 𝑡
𝑚+1

≺ −𝐹(𝑥)
𝑇

𝑥 ⪯ 0,

0, if − 𝐹(𝑥)
𝑇

𝑥 ⪯ −𝑡
𝑚+2

,

𝜇
𝑗
(𝑥) =

{{{{

{{{{

{

1, if 𝑑󸀠
𝑗−𝑚−2

𝑥 ⪰ 0,

𝜇
𝑗
(𝑑
󸀠

𝑗−𝑚−2
𝑥) , if − 𝑡

𝑗
≺ 𝑑
󸀠

𝑗−𝑚−2
⪯ 0,

∀𝑗 = 𝑚 + 3,𝑚 + 4, . . . , 2𝑚 + 2,

0, if 𝑑󸀠
𝑗−𝑚−2

𝑥 ⪯ −𝑡
𝑗
,

(176)

where 𝑡
𝑗
⪰ 0, for all 𝑗 = 1, 2, . . . , 𝑚 are the tolerance level

of 𝑑
𝑗
𝑥 ⪰ 0, 𝑗 = 1, 2, . . . , 𝑚. 𝑡

𝑗
⪰ 0, for all 𝑗 = 𝑚 + 1,𝑚 +

2, . . . , 2𝑚 + 2 other fuzzy inequalities in which 𝑡
𝑗
are fuzzy

numbers.
To find a solution to problem (175), we define a fuzzy

decision 𝐷 of (175) as the fuzzy set resulting from the
intersection of fuzzy set 𝑠

𝑗
, 𝑗 = 1, 2, . . . , 2𝑚 + 2. By choosing

the commonly used “minimum operator” for the fuzzy set
intersections, we can define the membership function for 𝐷
as

𝜇
𝑗
= min
𝑗

{𝜇
𝑠𝑗
(𝑥)} . (177)

Therefore, a solution to problem (175) can be taken as the
solution with the highest membership in the fuzzy decision
set𝐷 and obtained by solving the following problem:

max
𝑥

𝜇
𝑗
= max
𝑥

min
𝑗=1,2,...,2𝑚+2

{𝜇
𝑠𝑗
(𝑥)} . (178)

Problem (178) is an unconstrained optimization, but its
objective function is not continuous and derivable. It cannot
be solved by traditional optimization methods, but it may
be solved by genetic algorithms [36, 37]. Next, we discuss a
special genetic algorithm with mutation along the weighted
gradient direction developed by Wang and Tang [37–39].

For individual 𝑥, let 𝜇min(𝑥) = min{𝜇
𝑠1
(𝑥), 𝜇
𝑠2
(𝑥),

. . . , 𝜇
𝑠2𝑚+2

(𝑥)}. If 𝜇min(𝑥) ≤ 𝜇
𝑠𝑗
(𝑥) < 1, then move along the

gradient direction of 𝜇
𝑠𝑗
(𝑥), and the value of 𝜇

𝑠𝑗
(𝑥) may be

improved.The smaller 𝜇
𝑠𝑗
(𝑥) is, the greater the improvement

in 𝜇
𝑠𝑗
(𝑥) that may be achieved. Based on the above idea,

construct the direction as follows:

𝐺 (𝑥) =

2𝑚+2

∑

𝑗=1

𝑤
𝑗
∇𝜇
𝑠𝑗
(𝑥) , (179)

where 0 < 𝜇
𝑠𝑗
(𝑥) ≤ 1.
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𝐺(𝑥) is called the weighted gradient direction of 𝜇
𝐷̃
, and

𝑤
𝑗
is the gradient direction weight defined as follows:

𝑤
𝑗
=

{{

{{

{

0, if 𝜇
𝑠𝑗
(𝑥) = 1,

1

𝜇
𝑠𝑗
− 𝜇min + 𝜖

, if 𝜇min ≤ 𝜇
𝑠𝑗
< 1,

(180)

where 𝜖 is a sufficiently small positive number and 1/𝜖 is the
largest weight.

The child 𝑥𝑘+1
𝑗

generated from 𝑥
𝑘

𝑖
by mutation along the

weighted gradient direction𝐺(𝑥) can be described as follows:

𝑥
𝑘+1

𝑗
= 𝑥
𝑘

𝑖
+ 𝛽
𝑘

𝐺(𝑥
𝑘

𝑖
) , (181)

where 𝛽𝑘 is a random step length of the Erlang distribution
generated by a random number generator with declining
means. The degree of membership is calculated as follows:

𝜇
𝑠𝑗
(𝑥
(𝑗)

) = {
𝜇min (𝑥

(𝑗)

) , if 𝜇min > 𝛼
0
,

𝜖𝜇min (𝑥
(𝑗)

) , else,
(182)

where 𝛼
0
is the acceptable satisfaction degree preferred by the

decision maker and 𝜖 ∈ 𝑈(0, 1).
For individual 𝑗 (𝑗 = 1, 2, . . . , pop-size), calculate its

fitness function 𝐹(𝑗) and selected probability 𝑃(𝑗) by

𝐹 (𝑗) = 𝜇
𝑠𝑗
(𝑥
(𝑗)

) + 𝜖,

𝑃 (𝑗) =
𝐹 (𝑗)

∑
pop-size
𝑗=1

𝐹 (𝑗)

,

(183)

where 𝜖 is a small positive number. It is used to guarantee
a nonzero denominator. The procedure can be written as
follows.

Step 1. Transforming (FVLI) into problem (175).

Step 2. Initialize.

(i) Input an acceptable satisfaction degree 𝛼
0
and the

largest max-gen and pop-size.
(ii) Input the criteria set: 𝐶

𝐼
= 1, 2, . . . , 𝑛, 𝑛 + 1, . . . , 𝑛 +

2𝑚 + 2, 𝑛 + 2𝑚 + 3, where 𝑗 = 1, 2, . . . , 𝑛 stand for the
variables, 𝑗 = 𝑛+1, . . . , 𝑛+2𝑚+2 stand for inequality
constraints to (175), and 𝑗 = 𝑛 + 2𝑚 + 3 stands for
the sum of weighted satisfaction degree, respectively.
Give the initial values and the upper and the lower
values of criteria 𝑟, 𝑟

𝑖
∈ 𝐶
𝐼
.

(iii) Input the types of membership function that
describes the fuzzy constraints.

(iv) Input the weights 𝑤
𝑗
.

Step 3. Randomly produce the initial population and calcu-
late their membership degrees by 𝑥

𝑖
(𝑗) = 𝜉𝑥

up
𝑖
, where 𝜉 ∈

𝑈(0, 1), 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , pop-size and 𝑥up
𝑖

is the
upper boundof the 𝑖th element of variable𝑥.Themembership
function 𝜇

𝑆𝑗
(𝑥
(𝑗)

) is calculated with (182).

Step 4. Set iteration index 𝑘 = 1.

Step 5. Calculate the fitness function 𝐹(𝑗) and selection
probabilities 𝑃(𝑗) by means of (183).

Step 6. Produce new individual 𝑥(𝑗) with the parent 𝑥(𝑖) as
𝑥
(𝑗)𝑘

= 𝑥
(𝑖)(𝑘−1)

+ 𝛽
𝑘

𝐺(𝑥
(𝑖)(𝑘−1)

). 𝐺(𝑥) is defined by (179).

Step 7. For individual 𝑗, calculate the membership function
𝜇
𝑆𝑗
(𝑥
(𝑗)

) with (182), and update optimal degree of member-
ship 𝜇max and the upper and the lower values of criteria 𝑟.

Step 8. Set 𝑘 + 1 = 𝑘; if 𝑘 ≤ max-gen, go to Step 5; otherwise,
go to Step 9.

Step 9. Output the optimal membership degree 𝜇max and
the upper and the lower values of criteria preferred by the
decision maker, then stop.

7. Conclusion

In this paper, we have introduced the concepts of invex
monotonicity and pseudoinvex monotonicity of fuzzy map-
ping and discussed the relationship between invex mono-
tonicity(pseudoinvex monotonicity) and invexity (pseudoin-
vexity) of fuzzy mapping. We have put forward the fuzzy
variational-like inequality and also discussed extended qual-
ities of it. Finally, we discussed the existence of a theorem
for a solution and solving method to the fuzzy variational-
like inequality. We got some useful results and gave a method
of solving the fuzzy variational-like inequality of a genetic
algorithm.
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