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We provide a supplementation of the results on the canonical forms for scalar fourth-order ordinary differential equations (ODEs)
which admit four-dimensional Lie algebras obtained recently. Together with these new canonical forms, a complete list of scalar
fourth-order ODEs that admit four-dimensional Lie algebras is available.

1. Introduction

The integrability of scalar ordinary differential equations
(ODEs) by use of the Lie symmetry method depends on
their symmetrical Lie algebra if the Lie algebra is solv-
able and of sufficient dimension. There exists two different
approaches to the integrability of differential equations using
Lie point symmetries. One is the direct method in which
Lie point symmetries are utilized to perform integrability by
successive reduction of order of the equation using ideals
of the algebra. The other approach is the canonical form
method if the equations are classified into different types
according to the canonical forms of the corresponding Lie
algebra.

Lie [1] classified scalar second-order ODEs into four
types on the basis of their admitted two-dimensional Lie
algebras and also performed integration of the representative
equations corresponding to the canonical forms of the two-
dimensional symmetry algebra. Therefore, scalar second-
order ODEs can be integrated by using canonical variables
which map the symmetry generators to Lie’s canonical forms.
Also here one can use successive reduction of order by using
ideals of the symmetry algebra (see, e.g., Olver [2]). The
Noether equivalence approach for Lagrangians correspond-
ing to scalar second-order ODEs is discussed in Kara et al.

[3].

The canonical forms for scalar third-order ODEs that
admit three symmetries were obtained by Mahomed and
Leach [4]. Then Ibragimov and Nucci [5] provided the inte-
grability of these canonical forms.

In their paper, Cerquetelli et al. [6] constructed realiza-
tions in the plane of four-dimensional Lie algebras listed by
Patera and Winternitz [7]. Moreover, the classification of sub-
algebras of all real Lie algebras of dimension <4 was discussed
in [7]. The construction of Cerquetelli et al. [6] was based
on the three-dimensional subalgebras provided in [7]. They
invoked the realizations of three-dimensional Lie algebras
in the plane derived earlier by Mahomed and Leach [8] for
this purpose. They then determined the fourth-order ODEs
admitting the realizations of the obtained four-dimensional
algebras as their Lie symmetry algebra. Finally, they provided
the route to the integration of the classified fourth-order
ODEs. However, the derived realizations of four-dimensional
Lie algebras need supplementation in the light of recent work
by Popovych et al. [9]. Recently, these authors constructed a
complete set of inequivalent realizations of real Lie algebras of
dimension not greater than four in vector fields in the space of
an arbitrary (finite) numbers of variables. We use the results
of [9] to complete the classification of fourth-order ODEs in
terms of their four-dimensional algebras presented in [6].

Apart from scalar fourth-order ODEs arising in the
symmetry reductions of partial differential equations such as



the linear wave equation in an inhomogeneous medium (see
[10]), they occur prominently as model equations in the form
of the static Euler-Bernoulli beam (see, e.g., [11]) and Emden-
Fowler equations. Such equations have been investigated for
symmetry properties in [12, 13].

Firstly, we provide a comparison of the results of [9] and
that of [6] related to the realizations of four-dimensional Lie
algebras as vector fields in the plane. Then we list the new
canonical forms of scalar fourth-order ODEs which possess
four-dimensional algebras.

2. Comparison of the Results of [6, 9]

We show here that the results on realizations of four-
dimensional algebras in the plane given in [6] are a special
case of the corresponding set of realizations given in [9]. We
make a comparison of the lists of realizations given in [6]
and [9]. It should be remarked that in general a result of
classification of realizations may contain errors of two types,
namely,

(i) missing of some inequivalent cases and

(ii) mutually equivalent cases.

In the following comparison, some first type of errors
exist in [6]. Five cases are missing. There are some other
cases which can be combined in a compact form and also
some arbitrary parameters and functions need modification
according to the results of [9] related to realizations in the
plane. Below we keep the notations of both: on the left hand
side the notations of [6] and on right hand side that of [9].
However, for the final results and further utilization, we keep
the notations of [9].

2.1. Four-Dimensional Algebras. We use the nomenclature of
Patera and Winternitz [7] in the naming of the algebras such
as4A . Thus we do not provide a table of the abstract algebras
of dimension four as this is easily available.

Here the Nu refers to the realizations given in the work
[6] and R to that of [9].

(1) Nu(4A,) ~ (4A)) (e, = ey,6, = e3,63 = €,€4 = €y).
Nu(4A,) ~ RAA,11) (F = y,% = x).

(ii) Nu(A,®2A,) ~ (A, ®2A,) (e, = ey, e, = —e), €5 =
es,e4 = e4). No realization exists in (1 + 1)-dimension.

(iii) Nu(2A,) ~ (2A,,) (e, = eye, = —e,e5 = ey
€, = —€3). _
Nu(2A,) ~ R(2A,,,5) (t = x, x =
R(2A,,,7) is missing in [6].

(iv) Nu(A;, ® A) ~ (A;, ® A}). No realization exists in
(1 + 1)-dimension.

(v) Nu(A;, @ Ay, f(x)=
Nu(A;, @ A, f(x) = 0)
X = —x).

y) whereas

~ (A, @A) )
R(A;, @ AL9) (t =y,

(vi) Nu(A;;® A)) ~ (A;3®A)). No realization exists in
(1 + 1)-dimension.
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(vii) Nu(A;, @ A, f(x)=0)~ (A5, ®A, a=-1).
Nu(A;, @ A, f(x) =0) ~ R(A5, ® A,9,a = -1)
(t=y,x=x).

(viii) Nu(A35€BA1, 0 < lal <1, f(x) =

A lal < 1,a+0,+1).
Nu(Aj; @ Ay, 0 < lal <1, f(x) = 0) ~ R(AS, ®
AL9) (t=y,x= xlf").

(ix) Nu(A;g@ Ay, f(x) = (A EBAI, b=0).
Nu(A;s@ Ay, f(x) = 0) ~ R(A3.5 ®A,8 b=0)
t=yx=x"-1").

(x) Nu(AS,8A,, b>0, f(x)=0)~ (A3569A1, b > 0).
Nu(AS, ® Aj,b > 0, f(x) = 0) ~ R(AS @ A,,8,
b>0)(t=yx=x).

(xi) Nu(A;g@ A}, f(x)=1) ~(SI2,R)® A)) (e, = ¢,
€, =€ €3 =—€3, €4 =€)

Nu(A;g ® Aj, b > 0,f(x) = 1) ~ R(SI2,R) &
AL,9) (t = y,x = x) whereas R(SI(2, R) ® A;,8))
is missing in [6].

(xii) Nu(Aso ® A;) ~ (So(3) ® A,). No realization exists
in (1 + 1)-dimension.

(xiil) Nu(Ay;, f(x)= 0) ~(Agy). )

Nu(A,,, f(x)=0)~R(A,;,8) (t=y,x=x).

(xiv) Nu(A“,quO, 1) ~ (A“,b;eo, 1),(e, = e, €, = —e,,
€3 =—€;3 € = 34) ~
Nu(AY,) ~ R(A5,.8) (F=e"yx=e

(xv) Nu(Afu) (A42, = 1). No realization exists in (1 +
1)-dimension.

0) ~ (A5, @

(b*l)X)

(xvi) Nu(A,;, f(x) =0) ~ (A,3). B
Nu(A,;, f(x)= 0) R(A,5,8) (t =y, X = x).
(xvii) Nu(A, 4 f(x) = 0) ~ (Ayq).

Nu(A 4y, f(x) =0)~R(A,,7) (t=y,X=x).

(xviii) Nu(A45, -1 <a<b<l ab+0) ~ (A45,—
a<b<c-1 abc+0) (e, = e,, €, = e3, e3—e1,

e, =ey).
Nu(A%%, ~1<a<b<l, ab#0) ~ R(A%, 7, -1 <

a<b<c=1, abc+0, b>0ifa=-1)(t =x° 1y+
x*In(1/]x]),x = In |x]).

-1

(xix) (A%, -1 <a < La#0) ~ (Aje* ,-1<a<1,
a#0), (€, = e5, &, = e,,8 = e,¢, = e,). No
realization exists in (1 + 1)-dimension.

(xx) Nu(A}L, -1 <a<1, a#0) ~ (A}, -1<a<1,
a+0), (e, = e, € =e; € = €,¢€ = ¢e;). No

realization exists in (1 + 1)-dimension.

A

(xxi) Nu(Ails) (Ais’ a=b=c=1)(e;=¢e, ¢ =¢;,
€3 =€, € =¢,). ~
Nu(A}Y) ~ R(A%%,10, a=b=c=1)( =y

X =X).
(xxii) Nu(A Z, a+0, b > 0) ~ (A46> a>0), (e =e,
€, =€, €3=—€), €;=e,).

Nu(A%%, a#0, b > 0) ~ R(AS

y(1+x o 1/2 (a-b)tan™ * % = tan 'x).

46,6 a>0) (@t =
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TaBLE 1
Lie algebra N Realizations (generators)
44, 11 0,, x0,, k(x)9,, h(x)o,
24,, 5 0,, t0,, 0., X0,
' 7 0,, to, +xd,, x0,, —x0,
A, @A, 9 0., x0, t0,-0,, €0,
A’;A @Al, lal <1, a+0, 1 9 ap xap fat +(1- a)xax’ |X|1/(l—a)at
AZ;S ®A, b>0 8 at’ xat) - X)tat -1+ xZ)ax’ N xze—barctanxat
* 2
Sl(2, R) ® 141 8 at, ta, + Xax, t a; + 2txax, xax
9 0,, t0,, t°0,, 0,
A4 8 0, x0, (1/2)x%0,, -0,
A5, b#0 8 0,, x0,, (1/(1-b))xIn|x|9,, bto, +(b—-1)x0,, b#1
Ays 8 0,, x0,, —xIn|x|9,, t0,+ x0,
Ay 7 0, x0,, (1/2) xzat, 10,—0,
(a-b)x (a-1)x . _
AP 1 <a<b<c=1, abc#0 7 0, € 0, e 0, ftaﬁax, b>0ifa=-1
: 10 0;, x0,, ¢(x)0,, t0,, ¢ (x)#0, a=b=c=1
Afg, a>0 6 0, e“ " cosxo,, —e“P*sinxd, atd,+0,
Ay 5 0, x0,, -0, (2t—(1/2)x%)9,+x0,
At bl <1 5 0, 0y, x0,, (1+b)to,+x0,
’ *7 0,, x0,, —0,, (1+b)to, +bxo,, b+ 1
A 6 0, 0y, 1t0,+x0,, x0,—10,
4.10 2
7 0, x0,, t0,, —tx0,—(1+x")0,

(xxiii) Nu(A,,) ~ (Ay;). )
I_\]u(A4’7) ~R(A,; 5) (t=y+ (x*/)( - 2log |x]),

X = Xx).
(xxiv) Nu(Ag) ~ (A% bl <1, b=-1).
Nu(Aug) ~ R(A%,, 1Bl < 1,5, b = 1) (t = y,

X = x).

(xxv) Nu(A%g, 0< b < 1) ~ (A%, bl <1, b# £1,0).
Nu(A{’w) ~ R(AZB, 5) (f = y, x = x) whereas R

(Ab .7, b# + 1, 0) is missing in [6].

(xxvi) Nu(Aig) ~ (Ai.s’ b=1).

Nu(Al,) ~ R(Ag 5) (= y,% = x).

(xxvii) Nu(A),) ~ (A%, b=0).
Nu(A?w) ~ R(A%, 5) (t = y,X = x) whereas R
(AZ.S, 7, b = 0) is missing in [6].

(xxviii) Nu(A, ) ~ (A%y a = 0). No realization exists in
(1 + 1)-dimension.

(xxix) Nu(A%,,, a > 0) ~ (A%y a > 0). No realization
exists in (1 + 1)-dimension.

(xxx) Nu(Ay,) ~ (Ag0)- B
Nu(A,15) ~ R(A 0, 7) (t = y,X = x) whereas
R(A, o> 6) is missing in [6].

Remarks for Table 1

(i) 4A,: 1, x, h(x) and k(x) form a linearly independent
set.

Remarks for Tables 1 and 2. In both tables we have

(i) h, k, and ¢ are arbitrary functions with specified
conditions mentioned in the corresponding realiza-
tions.

(ii) a, b, and ¢ are parameters and arbitrary constants,
whose range and values are mentioned in each of the
realizations.

(iii) *: these are the cases of realizations which are missing
in [6].
Remarks for Table 2

(i) =:these are the canonical forms of fourth-order ODEs
which are missing in [6]. Only these are given here
with their corresponding algebras and realizations.
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TABLE 2
Lie algebra N Realizations and equations
d,, to, + x0,, x0,, —x0
2A *7 t> LO; x > x
21 w 108X 158 &%Kk . /xX  3x%
X=——-"—75 1t — (* - 72)
x X x XX X
SIZ,R)® A, ‘g 0,, 10, + X0, t26,2+ 2tx0,, X0,
2% 1 (X P
X=—-——+ 73 — — XX f 73/2
x o x7\ 2 ((%2/2) — x%)
A bl <1 - 0,, x0,, —0,, (1+b)td, +bxd, »b# £1
I - 10%% 155 & 3%\ & \(/e-n
P N O T (7)
v xz x4 XS x3
A ‘6 0,,0,, t0, + x0,, x0, —t0,
4.10

5(".2

105 15.2..3 .3 1+9.C2 X
_ XXX X X n X zf ( ) 3%

T+ (1+82)? (1+22)

3. Concluding Remarks

In this contribution we have supplemented the work [6] for
the canonical forms of scalar fourth-order ODEs and have
obtained four new forms as listed in Table 2. The integrability
of these equations has the same route as the others which are
discussed at length in [6].
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