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In a shortest path improvement problem under unit Hamming distance (denoted by SPIUH), an edge weighted graph with a set
of source-terminal pairs is given; we need to modify the lengths of edges by a minimum cost under unit Hamming distance such
that the modified distances of the shortest paths are upper bounded by given values. The SPIUH problem on arborescent network
is formulated as a 0-1 integer programming model. Some strongly polynomial time algorithms are designed for the problems on
some special arborescent networks. Firstly, two greedy algorithms are proposed for problems on chain networks and special star-
tree networks, respectively. Secondly, a strongly polynomial time algorithm is presented for the problem with a single source and
constrained paths. Finally, a heuristic algorithm and its computational experiments are given for the SPIUH problem on general
graphs.

1. Introduction

Due to theoretical and practical importance, the inverse
shortest path problems and the shortest path improvement
problems have been extensively studied in recent years. In
such problems, an edge weighted graph with a set of source-
terminal pairs is given; we need to modify the lengths
of edges by a minimum cost under a given norm. In an
inverse shortest path problem, the aim is to make a set
of given paths become the shortest source-terminal paths,
while in a shortest path improvement problem the aim is
to make the modified distances of the shortest paths upper
bounded by given values. Burton and Toint [1] solved the
inverse shortest path problem under 𝑙

2
normby the nonlinear

programming technique. Zhang et al. [2] proposed a column
generation method for the inverse shortest path problem
under 𝑙

1
norm. Zhang and Lin [3] showed that the shortest

path improvement problem under 𝑙
1
norm is NP-complete

and proposed polynomial time algorithms for the case of
trees and the case of single source-terminal. Guan and Zhang
[4, 5] studied network improvement problems for a tree-path
system or a multicut by upgrading nodes in a directed tree.

For detail of inverse optimization problems, the readers may
refer to the survey paper by Heuberger [6].

Since the inverse optimization problems underHamming
distance were first studied by He et al. [7], it has been
investigated by many researchers (see, e.g., Zhang et al. [8–
10], Duin and Volgenant [11], Guan and Zhang [12], Liu and
Yao [13], and Jiang et al. [14]). Zhang et al. [8] showed that
the shortest path improvement problem under Hamming
distance (denoted by SPIH) is strongly NP-hard on general
graphs and is still NP-hard even if the network is a chain
network. So it is meaningful to design polynomial time
algorithms for some special cases of the problems and to
propose approximation and/or heuristic algorithms for the
SPIH and the shortest path improvement problem under unit
Hamming distance (denoted by SPIUH) on general graphs.
That is the objective of this paper.

Let𝐺 = (𝑉, 𝐸) be a connected undirected network, where
𝑉 is the vertex set, 𝐸 = {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
} is the edge set. Let

𝑤
𝑖
≥ 0 be the length of edge 𝑒

𝑖
and 𝑙
𝑖
the lower bound on the

modified length of 𝑒
𝑖
, where 𝑖 = 1, 2, . . . , 𝑚. Let {(𝑠

𝑘
, 𝑡
𝑘
), 𝑘 =

1, 2, . . . , 𝑟} be the set of source-terminal pairs of vertices.
Denote by 𝑑

𝑤
(𝑢, V) the shortest distance connecting 𝑢 to V



2 Journal of Applied Mathematics

under the length vector 𝑤. Let 𝑑
𝑘
be the upper bound of the

shortest distance connecting the source-terminal pair (𝑠
𝑘
, 𝑡
𝑘
).

The SPIUH problem is to find a new edge length vector 𝑤∗
satisfying 𝑙 ≤ 𝑤

∗
≤ 𝑤 such that the modified shortest

distance 𝑑
𝑤
∗(𝑠
𝑘
, 𝑡
𝑘
) is upper bounded by 𝑑

𝑘
, and the total

edge modification cost is minimized under unit Hamming
distance, which can be formulated as a mathematical model
shown below:

min
𝑚

∑

𝑖=1

𝐻(𝑤
∗

𝑖
, 𝑤
𝑖
)

s.t. 𝑑
𝑤
∗ (𝑠
𝑘
, 𝑡
𝑘
) ≤ 𝑑
𝑘
, 𝑘 = 1, 2, . . . , 𝑟,

𝑙
𝑖
≤ 𝑤
∗

𝑖
≤ 𝑤
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

(1)

where the Hamming distance𝐻(𝑤∗
𝑖
, 𝑤
𝑖
) is defined as

𝐻(𝑤
∗

𝑖
, 𝑤
𝑖
) = {

1, if 𝑤∗
𝑖
̸= 𝑤
𝑖
,

0, if 𝑤∗
𝑖
= 𝑤
𝑖
.

(2)

Zhang et al. show in [8] that SPIH problem can be
transformed into a 0-1 knapsack problem in the special case
when the given network is a chain network and 𝑟 = 1.

Lemma 1 (see [8]). The SPIH problem is NP-hard even if the
network is a chain network.

The shortest path improvement problems under Ham-
ming distance have practical background. For example, a
large earthquake happened in some towns.The relief supplies
need to be quickly handed out to the people in the stricken
area. However, many roads were badly damaged, and we have
to repair the roads as soon as possible. Consider the network
𝐺 = (𝑉, 𝐸) of towns, where V ∈ 𝑉 denotes a town, 𝑒 =

(𝑢, V) ∈ 𝐸 denotes a road connecting𝑢 to V. Let𝑤
𝑖
and 𝑙
𝑖
be the

travelling time through the road 𝑒
𝑖
before/after 𝑒

𝑖
is repaired.

Note that some points of the road 𝑒
𝑖
are damaged (rather than

every point of the road being destroyed), so the repair time for
the road 𝑒

𝑖
may be a fixed amount 𝑐

𝑖
instead of 𝑐

𝑖
(𝑤
𝑖
− 𝑙
𝑖
). We

need to transport the relief goods from some supplier town
𝑠
𝑘
to some stricken town 𝑡

𝑘
within the stipulated time. Our

objective is to design a repair scheme satisfying the above
transportation requirement such that the total repair time of
repaired roads is minimized, which is just the shortest path
improvement problem under Hamming distance.

The rest of this paper is organized as follows. A 0-1 integer
programming model of the SPIUH problem on arborescent
networks is constructed in Section 2. Some polynomial time
algorithms are proposed for some special cases of the SPIUH
problem on arborescent networks in Section 3. A heuristic
algorithm and its computational experiment of the SPIUH
problem on general graphs are given in Section 4. Conclusion
and further research are given in Section 5.

For convenience, we denote by 𝑃
𝑘
a path from 𝑠

𝑘
to 𝑡
𝑘
and

by 𝑤(𝑃
𝑘
) = ∑

𝑒
𝑖
∈𝑃
𝑘

𝑤
𝑖
the length of 𝑃

𝑘
under 𝑤. In Sections 2

and 3, we use the following useful notations. For the unique
path 𝑃

𝑘
from 𝑠

𝑘
to 𝑡
𝑘
in 𝐺, if 𝑒

𝑖
, 𝑒
𝑗
∈ 𝑃
𝑘
and 𝑒
𝑖
appears before

𝑒
𝑗
in the path 𝑃

𝑘
, then we denote it by 𝑒

𝑗
<
𝑃
𝑘

𝑒
𝑖
.

2. The SPIUH Problems on
Arborescent Networks

In this section, we construct a 0-1 integer programming
model for the SPIUH problem on arborescent networks
(denoted by SPIUH-AN).

The SPIUH-AN problem can be reformulated by the
definition of 𝑃

𝑘
as follows:

min
𝑚

∑

𝑖=1

𝐻(𝑤
∗

𝑖
, 𝑤
𝑖
)

s.t. 𝑤
∗
(𝑃
𝑘
) ≤ 𝑑
𝑘
, 𝑘 = 1, 2, . . . , 𝑟,

𝑙
𝑖
≤ 𝑤
∗

𝑖
≤ 𝑤
𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(3)

We can check the feasibility of problem (3) based on the
following lemma.

Lemma 2. Problem (3) is feasible if and only if 𝑙(𝑃
𝑘
) ≤ 𝑑
𝑘
for

each 𝑘 = 1, 2, . . . , 𝑟.

Proof
Sufficiency. Suppose that 𝑙(𝑃

𝑘
) ≤ 𝑑

𝑘
for each 𝑘 = 1, 2, . . . , 𝑟.

Denote by Γ = ⋃
𝑟

𝑘=1
𝑃
𝑘
the union of given paths. Define a

vector 𝑤 : 𝐸 → 𝑅
𝑚 as follows:

𝑤
𝑗
= {

𝑙
𝑗
, if 𝑒

𝑗
∈ Γ,

𝑤
𝑗
, otherwise.

(4)

It is easy to see that 𝑙
𝑖
≤ 𝑤
𝑖
≤ 𝑤
𝑖
for each 𝑖 = 1, 2, . . . , 𝑚.

Furthermore, for each 𝑘 = 1, 2, . . . , 𝑟, we have

𝑤 (𝑃
𝑘
) = 𝑙 (𝑃

𝑘
) ≤ 𝑑
𝑘
, (5)

and thus 𝑤 is a feasible solution of problem (3).

Necessity. Suppose that𝑤 is a feasible solution of problem (3).
Note that 𝑃

𝑘
is the unique path from 𝑠

𝑘
to 𝑡
𝑘
and 𝑙 ≤ 𝑤; then

we have

𝑙 (𝑃
𝑘
) ≤ 𝑤 (𝑃

𝑘
) ≤ 𝑑
𝑘
, 𝑘 = 1, 2, . . . , 𝑟. (6)

Obviously, we have the following property on optimal
solutions of (3).

Lemma 3. If 𝑤∗ is an optimal solution of problem (3), then 𝑤
defined below is also an optimal solution of problem (3):

𝑤
𝑖
= {

𝑙
𝑖
, 𝑖𝑓 𝑤

∗

𝑖
̸= 𝑤
𝑖
,

𝑤
𝑖
, 𝑖𝑓 𝑤

∗

𝑖
= 𝑤
𝑖
.

(7)

By Lemma 3, the constraints𝑤∗(𝑃
𝑘
) ≤ 𝑑
𝑘
(𝑘 = 1, 2, . . . , 𝑟)

in problem (3) are equivalent to

∑

𝑒
𝑖
∈𝑃
𝑘

𝑤
𝑖
(1 − 𝐻 (𝑤

∗

𝑖
, 𝑤
𝑖
))

+ ∑

𝑒
𝑖
∈𝑃
𝑘

𝑙
𝑖
𝐻(𝑤
∗

𝑖
, 𝑤
𝑖
) ≤ 𝑑
𝑘

(𝑘 = 1, 2, . . . , 𝑟) ;

(8)
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that is,

∑

𝑒
𝑖
∈𝑃
𝑘

(𝑤
𝑖
− 𝑙
𝑖
) (1 − 𝐻 (𝑤

∗

𝑖
, 𝑤
𝑖
)) ≤ 𝑑

𝑘

− ∑

𝑒
𝑖
∈𝑃
𝑘

𝑙
𝑖
= 𝑑
𝑘
− 𝑙 (𝑃
𝑘
) (𝑘 = 1, 2, . . . , 𝑟) .

(9)

For each edge 𝑒
𝑖
, if we define a 0-1 variable 𝑥

𝑖
as follows:

𝑥
𝑖
= {

1, if the length of edge 𝑒
𝑖
is not reduced,

0, if the length of edge 𝑒
𝑖
is reduced,

(10)

and let 𝑤0
𝑖
= 𝑤
𝑖
− 𝑙
𝑖
, 𝑑0
𝑘
= 𝑑
𝑘
− 𝑙(𝑃
𝑘
), then problem (3) is

equivalent to solving the problem below:

min
𝑚

∑

𝑖=1

(1 − 𝑥
𝑖
)

s.t. ∑

𝑒
𝑖
∈𝑃
𝑘

𝑤
0

𝑖
𝑥
𝑖
≤ 𝑑
0

𝑘
, 𝑘 = 1, 2, . . . , 𝑟,

𝑥
𝑖
= 0, 1, 𝑖 = 1, 2, . . . , 𝑚.

(11)

As a conclusion, we have the following theorem.

Theorem 4. The SPIUH-AN problem is equivalent to solving
the 0-1 integer programming problem (11). An optimal solution
𝑤
∗ of the SPIUH-AN problem can be given by (12), and the

optimal objective value is∑𝑚
𝑖=1
(1 − 𝑥

∗

𝑖
), where 𝑥∗ is an optimal

solution of problem (11):

𝑤
∗

𝑖
= {

𝑙
𝑖
, 𝑖𝑓 𝑥

∗

𝑖
= 0,

𝑤
𝑖
, 𝑖𝑓 𝑥

∗

𝑖
= 1.

(12)

3. Some Special Cases of
the SPIUH-AN Problem

In this section, we consider some special cases of SPIUH
problem on arborescent networks. In Section 3.1, we design
greedy algorithms for the SPIUH problems on chain net-
works and special star-tree networks. In Section 3.2, we
present a strongly polynomial time algorithm for the SPIUH
problem with a single source and a special constraint on
paths.

3.1.The SPIUHProblem on Special Star-Tree Networks. In this
subsection, we first study the SPIUH problem on a chain
network, where 𝐺 is a chain network and (𝑠

1
, 𝑡
1
) is the only

source-terminal pair. We design a greedy algorithm for the
SPIUH problem on a chain network. The main idea is to
reduce the length of the edge with the current largest value
𝑤
0

𝑖
to 𝑙
𝑖
in each iteration.

Algorithm 5 (a greedy algorithm). Consider the following.

Input: A chain 𝐺 with a source-terminal pair (𝑠
1
, 𝑡
1
),

two edge length vectors 𝑙, 𝑤 and a value 𝑑
1
.

Step 1: If 𝑙(𝐸) > 𝑑
1
, then output that the instance is

infeasible, stop.

S1

S2

S3

V1 V2

V3

V4 V5

V6

V7

V8 V9

t1

t2

t3

Figure 1: An example of a star tree for the SPIUH-ST problem.

Step 2: Let𝑤0 = 𝑤− 𝑙. Rearrange the values of𝑤0 in a
non-increasing order, that is, 𝑤0

𝑗
1

≥ 𝑤
0

𝑗
2

≥ ⋅ ⋅ ⋅ ≥ 𝑤
0

𝑗
𝑚

.

Step 3: Let 𝑝 = 0, and𝑊 = 𝑤(𝑃
1
).

Step 4: While𝑊 > 𝑑
1
do

Put 𝑝 = 𝑝 + 1, and𝑊 = 𝑊 − 𝑤
0

𝑗
𝑝

.

Step 5: Output an optimal solution𝑤∗ defined below:

𝑤
∗

𝑗
𝑞

= {
𝑙
𝑗
𝑞

, if 1 ≤ 𝑞 ≤ 𝑝,
𝑤
𝑗
𝑞

, otherwise.
(13)

It is easy to see that the main computation is to sort the
values of 𝑤0, and hence the time complexity of Algorithm 5
is 𝑂(𝑚 log𝑚).

Next, we consider the SPIUH problem on a special star-
tree network 𝐺, where any two source-terminal paths of
𝐺 have no common edges. Such a problem is denoted by
SPIUH-ST. See Figure 1 for example; there are three source-
terminal paths (𝑠

1
, 𝑡
1
), (𝑠
2
, 𝑡
2
), and (𝑠

3
, 𝑡
3
).

Obviously, the set of source-terminal paths is the union
of edge-disjoint chains in the SPIUH-ST problem. Now we
extend the greedy algorithm for SPIUH problem on a chain
network to the SPIUH-ST problem.

Algorithm 6. Consider the following.

Input: A star-tree network 𝐺 with a set {(𝑠
𝑘
, 𝑡
𝑘
) | 𝑘 =

1, 2, . . . , 𝑟} of source-terminal pairs, two edge length
vectors 𝑙, 𝑤 and a set {𝑑

𝑘
| 𝑘 = 1, 2, . . . , 𝑟} of values.

Step 1: Let 𝑤0 = 𝑤 − 𝑙 and 𝑆 = 0. Rearrange the values
of 𝑤0 in a non-increasing order, that is, 𝑤0

𝑗
1

≥ 𝑤
0

𝑗
2

≥

⋅ ⋅ ⋅ ≥ 𝑤
0

𝑗
𝑚

.

Step 2: For 𝑘 = 1 to 𝑟 do

If 𝑙(𝑃
𝑘
) > 𝑑

𝑘
, then output that the instance is

infeasible, stop.
Else run Steps 3, 4, 5 in Algorithm 5 to solve the
problem on the chain network 𝑃

𝑘
. Denote the

optimal solution on 𝑃
𝑘
by {𝑤

𝑖
| 𝑒
𝑖
∈ 𝑃
𝑘
}, and let

𝑆 = 𝑆 ∪ {𝑒
𝑖
| 𝑒
𝑖
∈ 𝑃
𝑘
, 𝑤
𝑖
= 𝑙
𝑖
, and 𝑤0

𝑖
̸= 0}.
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Step 3: Output the optimal solution 𝑤
∗ and the

optimal objective value |𝑆| of the SPIUH-ST problem,
where

𝑤
∗

𝑖
= {

𝑙
𝑖
, if 𝑒

𝑖
∈ 𝑆,

𝑤
𝑖
, otherwise.

(14)

Now we analyze the time complexity of Algorithm 6. Sorting
the values of 𝑤0 in Step 1 can be done in 𝑂(𝑚 log𝑚)
operations. In Step 2, there are 𝑟 iterations and there are
𝑂(|𝑃
𝑘
|) operations in each iteration. Let 𝐷 = max

1≤𝑘≤𝑟
|𝑃
𝑘
|.

Then Algorithm 6 can be done in

𝑂 (𝑚 log𝑚 + 𝑟𝐷) = 𝑂 (𝑚 log𝑚 + 𝑟𝑚)

= 𝑂 (𝑚 (𝑟 + log𝑚))
(15)

operations. We sum up the above results in the following
theorem.

Theorem 7. The shortest path improvement problems on star-
tree networks under unit Hamming distance can be solved by
Algorithm 6 in𝑂(𝑚(𝑟 + log𝑚)) time, where 𝑟 is the number of
source-terminal pairs.

Remark 8. There is a special case of the SPIUH-ST problem
in which𝐺 is a star-tree network with a central vertex 𝑠

𝑐
such

that there are no common edges on the paths from 𝑠
𝑐
to all

leaves of the tree, and the central vertex 𝑠
𝑐
is the common

source of all the source-terminal pairs; that is, 𝑠
𝑘
= 𝑠
𝑐
for

each 𝑘 = 1, 2, . . . , 𝑟. Hence, we only need to call Algorithm 5
in 𝑟 times to solve the problem, and its time complexity is also
𝑂(𝑚(𝑟 + log𝑚)).

3.2. The SPIUH Problem with a Single Source and Constrained
Paths. In this subsection, we consider the SPIUH problem
with a single source and a special constraint on paths, where
𝑠
𝑘
= 𝑠 for each 𝑘 = 1, 2, . . . , 𝑟, and the path 𝑃

𝑘
satisfies the

following constraint:

if 𝑒
𝑖
<
𝑃
𝑘

𝑒
𝑞
and 󵄨󵄨󵄨󵄨𝑄𝑖

󵄨󵄨󵄨󵄨 <
󵄨󵄨󵄨󵄨󵄨
𝑄
𝑞

󵄨󵄨󵄨󵄨󵄨
,

then we have 𝑤0
𝑖
≤ 𝑤
0

𝑞
,

(16)

where 𝑄
𝑖
= {𝑡
𝑘
| 𝑒
𝑖
∈ 𝑃
𝑘
, 𝑘 = 1, 2, . . . , 𝑟} is the set of

terminals 𝑡
𝑘
of path 𝑃

𝑘
which passes through 𝑒

𝑖
. We call such

a network an arborescent network with a single source and a
special constraint on paths, which is denoted by SSCP. Such
a problem is denoted by SPIUH-SSCP. The SPIUH problem
with a single source and without the constraint condition (16)
is denoted by SPIUH-SS.

For example, given is a network 𝐺 = (𝑉, 𝐸) in Figure 2,
where 𝑉 = {𝑠, V

1
, V
2
, 𝑡
1
, 𝑡
2
, 𝑡
3
}, 𝐸 = {𝑒

𝑖
| 𝑖 = 1, 2, . . . , 5},

and 𝑐
𝑖
= 1 for each 𝑖 = 1, 2, . . . , 5. If 𝑤 = (2, 3, 2, 1, 2),

𝑙 = (0, 0, 0, 0, 0), and 𝑑 = (3, 3, 3) (see Figure 2(a)), then
it is an instance of SPIUH-SSCP problem. However, if 𝑤 =

(1, 1, 3, 3, 3), 𝑙 = (0, 0, 0, 0, 0), and 𝑑 = (3, 3, 3) (see Figure
2(b)), then we have 𝑒

3
<
𝑃
1

𝑒
1
and |𝑄

3
| = 1 < |𝑄

1
| = 3, but

𝑤
0

1
= 1 < 𝑤

0

3
= 3. Hence it is an instance of SPIUH-SS

problem, but not an instance of SPIUH-SSCP problem. Next
we give a polynomial time algorithm to solve the SPIUH-
SSCP problem.

Algorithm 9. Consider the following.

Input: An arborescent network 𝐺 with a single source
𝑠 and constrained paths 𝑃

𝑘
from 𝑠 to 𝑡

𝑘
(𝑘 =

1, 2, . . . , 𝑟), two edge length vectors 𝑙, 𝑤 and a set {𝑑
𝑘
|

𝑘 = 1, 2, . . . , 𝑟} of values.
Step 1: Let 𝑤0 = 𝑤 − 𝑙 and 𝑆 = 0.
Step 2: For 𝑘 = 1 to 𝑟 do

If 𝑙(𝑃
𝑘
) > 𝑑

𝑘
, then output that the instance is

infeasible, stop.
Else let 𝑑

𝑘
= 𝑑
𝑘
−𝑤
0
(𝑃
𝑘
∩𝑆) and let𝑤󸀠

𝑖
= 𝑙
𝑖
if 𝑒
𝑖
∈

𝑃
𝑘
∩𝑆 and𝑤󸀠

𝑖
= 𝑤
𝑖
if 𝑒
𝑖
∈ 𝑃
𝑘
\𝑆. Call Algorithm 5

to solve the problem on the chain network 𝑃
𝑘

with respect to the length vector 𝑤󸀠 and 𝑑
𝑘
. In

Step 2 of Algorithm 5, we let 𝑤0 = 𝑤󸀠 − 𝑙, then
for all 𝑒

𝑖
∈ 𝑃
𝑘
, rearrange the values 𝑤0

𝑖
= 𝑤
󸀠

𝑖
− 𝑙
𝑖

in a non-increasing order, and if there are two
values are equal (let’s say 𝑤0

𝑝
and 𝑤0

𝑞
), and 𝑒

𝑝

appears before 𝑒
𝑞
in the direct path 𝑃

𝑘
from 𝑠

to 𝑡
𝑘
, then 𝑤0

𝑝
will always appear before 𝑤0

𝑞
in

the non-increasing order. (This sorting method
is called stable sorting method).

Denote by 𝑤 the optimal solution to the problem on 𝑃
𝑘
.

Put 𝑆 = 𝑆 ∪ {𝑒
𝑗
| 𝑒
𝑗
∈ 𝑃
𝑘
, 𝑤
𝑗
= 𝑙
𝑗
, and 𝑤󸀠

𝑖
̸= 𝑙
𝑗
}.

Step 3: Output the optimal solution 𝑤∗ and optimal
objective value |𝑆| of the SPIUH-SSCP problem,
where

𝑤
∗

𝑗
= {

𝑙
𝑗
, if 𝑒

𝑗
∈ 𝑆,

𝑤
𝑗
, otherwise.

(17)

Lemma 10. If the SPIUH-SSCP problem is feasible, then there
is an optimal solution 𝛼 = (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑚
) of the SPIUH-SSCP

problem satisfying the following.

(1) If there exists path 𝑃
𝑘
, 𝑒
𝑖
∈ 𝑃
𝑘
and 𝑒
𝑞
∈ 𝑃
𝑘
, such that

𝑒
𝑖
<
𝑃
𝑘

𝑒
𝑞
, 0 < 𝑤0

𝑖
≤ 𝑤
0

𝑞
, and𝛼

𝑖
= 𝑙
𝑖
, thenwe have𝛼

𝑞
= 𝑙
𝑞
.

(2) If there exists path 𝑃
𝑘
, 𝑒
𝑖
∈ 𝑃
𝑘
, and 𝑒

𝑞
∈ 𝑃
𝑘
such that

𝑒
𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤0

𝑖
< 𝑤
0

𝑞
, and𝛼

𝑖
= 𝑙
𝑖
, thenwe have𝛼

𝑞
= 𝑙
𝑞
.

Proof. Suppose 𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑚
) is an optimal solution of

the SPIUH-SSCP problem. By Lemma 3, 𝛾 = (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑚
)

defined below is also an optimal solution of the SPIUH-SSCP
problem:

𝛾
𝑗
= {

𝑙
𝑗
, if 𝛽

𝑗
̸= 𝑤
𝑗
,

𝑤
𝑗
, if 𝛽

𝑗
= 𝑤
𝑗
.

(18)

(1) If there exists a path 𝑃
𝑘
, 𝑒
𝑖
∈ 𝑃
𝑘
and 𝑒
𝑞
∈ 𝑃
𝑘
, such that

𝑒
𝑖
<
𝑃
𝑘

𝑒
𝑞
, 0 < 𝑤

0

𝑖
≤ 𝑤
0

𝑞
, 𝛾
𝑖
= 𝑙
𝑖
, and 𝛾

𝑞
= 𝑤
𝑞
, because
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Figure 2: Examples of arborescent networks with a single source.

|𝑄
𝑞
| ≥ |𝑄

𝑖
| and reducing the weight of 𝑒

𝑞
first is better,

or at least not worse, than reducing that of 𝑒
𝑖
, then

we can get that 𝛼 is also an optimal solution of the
SPIUH-SSCP problem, where

𝛼
𝑗
=

{{

{{

{

𝑤
𝑖
, if 𝑗 = 𝑖,

𝑙
𝑞
, if 𝑗 = 𝑞,

𝛾
𝑗
, otherwise.

(19)

(2) If there exists a path 𝑃
𝑘
, 𝑒
𝑖
∈ 𝑃
𝑘
and 𝑒
𝑞
∈ 𝑃
𝑘
, such that

𝑒
𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤0

𝑖
< 𝑤
0

𝑞
, 𝛾
𝑖
= 𝑙
𝑖
, and 𝛾

𝑞
= 𝑤
𝑞
, because by

(16) we know that |𝑄
𝑖
| = |𝑄

𝑞
| and reducing the weight

of 𝑒
𝑞
first is better, or at least not worse, than reducing

that of 𝑒
𝑖
, then we can get that 𝛼 is also an optimal

solution of the SPIUH-SSCP problem, where

𝛼
𝑗
=

{{

{{

{

𝑤
𝑖
, if 𝑗 = 𝑖,

𝑙
𝑞
, if 𝑗 = 𝑞,

𝛾
𝑗
, otherwise.

(20)

Thus repeating the above operations, we can get an optimal
solution 𝛼 of the SPIUH-SSCP problem that satisfies the
property in Lemma 10.

Theorem 11. If the SPIUH-SSCP problem is feasible, then
Algorithm 9 outputs an optimal solution 𝑤∗ of the SPIUH-
SSCP problem in 𝑂(𝑚(𝑟 + log𝑚)) time.

Proof. If the SPIUH-SSCP problem is feasible, then it is not
difficult to show that the solution 𝑤∗ obtained by Algorithm
6 is a feasible solution of the SPIUH-SSCP problem.

Next we show that 𝑤∗ obtained by Algorithm 9 satisfies
properties (1) and (2) in Lemma 10. Note that we run Step 2
of Algorithm 5 for the path 𝑃

𝑘
by using stable sortingmethod

in the 𝑘th iteration of for-loop in Algorithm 9 for any 0 ≤ 𝑘 ≤
𝑟. When 𝑒

𝑖
is added to 𝑆 in the 𝑘th iteration of for-loop in

Algorithm 9, we consider the following two cases.

(1) If there is an 𝑒
𝑞
satisfying 𝑒

𝑖
<
𝑃
𝑘

𝑒
𝑞
and 0 < 𝑤

0

𝑖
≤ 𝑤
0

𝑞
,

then by the greedy property of Algorithm 9 (i.e., if
𝑒
𝑖
<
𝑃
𝑘

𝑒
𝑞
and 0 < 𝑤0

𝑖
≤ 𝑤
0

𝑞
, then 𝑒

𝑞
is added to 𝑆 before

𝑒
𝑖
is added to 𝑆), we have 𝑒

𝑞
∈ 𝑆. Hence, for any𝑤∗

𝑖
= 𝑙
𝑖

(i.e., 𝑒
𝑖
∈ 𝑆), if 𝑒

𝑖
<
𝑃
𝑘

𝑒
𝑞
, 0 < 𝑤

0

𝑖
≤ 𝑤
0

𝑞
, then we have

𝑤
∗

𝑞
= 𝑙
𝑞
(i.e., 𝑒

𝑞
∈ 𝑆).

(2) If there is an 𝑒
𝑞
∈ 𝑃
𝑘
such that 𝑒

𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤

0

𝑖
<

𝑤
0

𝑞
, then by the greedy property of Algorithm 9 (i.e.,

if 𝑒
𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤0

𝑖
< 𝑤
0

𝑞
, then 𝑒

𝑞
is added to 𝑆 before 𝑒

𝑖

is added to 𝑆), we have 𝑒
𝑞
∈ 𝑆. Hence, we have𝑤∗

𝑞
= 𝑙
𝑞
.

Hence, 𝑤∗ obtained by Algorithm 9 is a feasible solution
of the SPIUH-SSCP problem that satisfies properties (1) and
(2) in Lemma 10.

Suppose that𝛼 is the optimal solution of the SPIUH-SSCP
problemwhich satisfies the property (1) and (2) in Lemma 10.
Now we show that for each 𝑒

𝑞
∈ 𝐸, if 𝑤0

𝑞
> 0 and 𝑤∗

𝑞
= 𝑙
𝑞
,

then 𝛼
𝑞
= 𝑙
𝑞
. Suppose 𝑤∗

𝑞
= 𝑙
𝑞
(i.e., 𝑒

𝑞
∈ 𝑆); we consider the

following three cases.

Case 1. If there exist a path 𝑃
𝑘
and an edge 𝑒

𝑖
∈ 𝑃
𝑘
such that

𝑒
𝑖
<
𝑃
𝑘

𝑒
𝑞
, 0 < 𝑤0

𝑖
≤ 𝑤
0

𝑞
, and 𝛼

𝑖
= 𝑙
𝑖
, then because the optimal

solution 𝛼 of the SPIUH-SSCP problem satisfies property (1)
in Lemma 10, we can get that 𝛼

𝑞
= 𝑙
𝑞
.

Case 2. If there exist a path 𝑃
𝑘
and an edge 𝑒

𝑖
∈ 𝑃
𝑘
such that

𝑒
𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤0

𝑖
< 𝑤
0

𝑞
, and 𝛼

𝑖
= 𝑙
𝑖
, then because the optimal

solution 𝛼 of the SPIUH-SSCP problem satisfies property (2)
in Lemma 10, we can get that 𝛼

𝑞
= 𝑙
𝑞
.

Case 3. If for each 𝑃
𝑘
and for each 𝑒

𝑖
∈ 𝑃
𝑘
such that (1) 𝑒

𝑖
<
𝑃
𝑘

𝑒
𝑞
,

0 < 𝑤
0

𝑖
≤ 𝑤
0

𝑞
or (2) 𝑒

𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤

0

𝑖
< 𝑤
0

𝑞
, we have 𝛼

𝑖
= 𝑤
𝑖
.

Note that 𝑤∗
𝑞
= 𝑙
𝑞
(i.e., 𝑒

𝑞
∈ 𝑆); suppose 𝑒

𝑞
is added to 𝑆 in

the 𝑘th iteration of for-loop in Algorithm 9; let Ω = {𝑒
𝑖
| 𝑒
𝑖
∈

𝑃
𝑘
, 0 < 𝑤

0

𝑞
< 𝑤
0

𝑖
} ∪ {𝑒

𝑖
| 𝑒
𝑖
∈ 𝑃
𝑘
, 𝑒
𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 < 𝑤

0

𝑞
= 𝑤
0

𝑖
},

Θ = 𝑃
𝑘
\ Ω = {𝑒

𝑞
} ∪ Γ, where Γ = {𝑒

𝑖
| 𝑒
𝑞
<
𝑃
𝑘

𝑒
𝑖
, 0 ≤ 𝑤

0

𝑖
<

𝑤
0

𝑞
}∪{𝑒
𝑖
| 𝑒
𝑖
<
𝑃
𝑘

𝑒
𝑞
, 0 ≤ 𝑤

0

𝑖
≤ 𝑤
0

𝑞
}; then∑

𝑒
𝑖
∈Ω
𝑙
𝑖
+∑
𝑒
𝑖
∈Θ
𝑤
𝑖
> 𝑑
𝑘

(otherwise, 𝑒
𝑞
∉ 𝑆). Note that we have the assumption that

𝛼
𝑖
= 𝑤
𝑖
for each 𝑒

𝑖
∈ Γ, if 𝛼

𝑞
= 𝑤
𝑞
; then

𝛼 (𝑃
𝑘
) = ∑

𝑒
𝑖
∈Ω

𝛼
𝑖
+ ∑

𝑒
𝑖
∈Θ

𝛼
𝑖
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= ∑

𝑒
𝑖
∈Ω

𝛼
𝑖
+ 𝛼
𝑞
+ ∑

𝑒
𝑖
∈Γ

𝛼
𝑖

= ∑

𝑒
𝑖
∈Ω

𝛼
𝑖
+ 𝑤
𝑞
+ ∑

𝑒
𝑖
∈Γ

𝑤
𝑖

≥ ∑

𝑒
𝑖
∈Ω

𝑙
𝑖
+ ∑

𝑒
𝑖
∈Θ

𝑤
𝑖
> 𝑑
𝑘
.

(21)

This contradicts that 𝛼 is an optimal solution of the SPIUH-
SSCP problem, so 𝛼

𝑞
= 𝑙
𝑞
.

Hence, for each 𝑒
𝑞
∈ 𝐸, if 𝑤0

𝑞
> 0 and 𝑤∗

𝑞
= 𝑙
𝑞
, then

𝛼
𝑞
= 𝑙
𝑞
. That is, the objective value of 𝑤∗ is not greater than

the objective value of 𝛼. Note that 𝛼 is an optimal solution of
the SPIUH-SSCP problem, so𝑤∗ is an optimal solution of the
SPIUH-SSCP problem.

The time complexity analysis is similar to that of
Theorem 7.

Example 12. As shown in Figure 2(a), let 𝑤 = (2, 3, 2, 1, 2),
𝑙 = (0, 0, 0, 0, 0), and 𝑑 = (3, 3, 3). The optimal solution of
the SPIUH-SSCP problem generated by Algorithm 9 is 𝑤∗ =
(0, 0, 2, 1, 2), and the optimal objective value is 2.

Remark 13. Note that Algorithm 9 cannot always obtain an
optimal solution of the SPIUH-SS problem. For example, as
shown in Figure 2(b), let 𝑤 = (1, 1, 3, 3, 3), 𝑙 = (0, 0, 0, 0, 0),
and 𝑑 = (3, 3, 3). In this case, it is an instance of SPIUH-
SS problem, but not an instance of SPIUH-SSCP problem.
The solution generated by Algorithm 9 is 𝑤∗ = (1, 1, 0, 0, 0),
whose objective value is 3. But the optimal solution is 𝛼 =

(0, 0, 3, 3, 3), and the optimal objective value is 2.

So it is meaningful to design efficient algorithms for the
SPIUH-SS problem. We guess that the SPIUH-SS problem
has strongly polynomial time algorithms.

4. A Heuristic Algorithm for
the General SPIUH Problem

In this section, we design a heuristic algorithm to solve
the general SPIUH problem (1) and give computational
experiments to test effectiveness of the algorithm.

Lemma 14 (see [8]). The SPIUH problem is strongly NP-hard
even if 𝑙

𝑖
= 0 for each edge of the network.

Similar to Lemma 2, we can use the next lemma to check
the feasibility of SPIUH problem.

Lemma 15. The SPIUH problem (1) is feasible if and only if
𝑑
𝑙
(𝑠
𝑘
, 𝑡
𝑘
) ≤ 𝑑
𝑘
, for each 𝑘 = 1, 2, . . . , 𝑟.

We design a heuristic algorithm to solve the SPIUH
problem. The main idea is as follows.

Suppose the SPIUH problem is feasible. Initialize 𝑙󸀠 = 𝑙.
Define 𝐾 = {𝑘 | 1 ≤ 𝑘 ≤ 𝑟, 𝑑

𝑤
(𝑠
𝑘
, 𝑡
𝑘
) > 𝑑

𝑘
}. First compute

a shortest path 𝑃
𝑘
from 𝑠

𝑘
to 𝑡
𝑘
under 𝑙󸀠 for each 𝑘 ∈ 𝐾. Let

𝑋 = {𝑒
𝑖
| 𝑒
𝑖
∈ 𝑃
𝑘
, 𝑘 ∈ 𝐾} and 𝑋󸀠 = {𝑒

𝑖
| 𝑒
𝑖
∈ 𝑋,𝑤

𝑖
− 𝑙
󸀠

𝑖
> 0}.

Then find a specific edge 𝑒
𝑗
∈ 𝑋
󸀠, and update 𝑙󸀠

𝑖
= 𝑤
𝑗
and

𝑋
󸀠
= 𝑋
󸀠
−{𝑒
𝑗
}. Next we check if the SPIUHproblem is feasible

or not under the current weight 𝑙󸀠. If not, modify 𝑙󸀠
𝑗
to the

original value 𝑙
𝑗
. Repeat the above process until𝑋󸀠 = 0. Note

that there is an edge deleted from𝑋
󸀠 in each iteration and the

cardinality of the original set 𝑋󸀠 is at most 𝑚, and hence the
algorithm can be done in𝑚 iterations.

Algorithm 16. Consider the following.

Input:Anetwork𝐺with a set {(𝑠
𝑘
, 𝑡
𝑘
) | 𝑘 = 1, 2, . . . , 𝑟}

of source-terminal pairs, two edge length vectors 𝑙, 𝑤
and a set {𝑑

𝑘
| 𝑘 = 1, 2, . . . , 𝑟} of values.

Step 1: For each 𝑘 = 1, 2, . . . , 𝑟, compute 𝑑
𝑙
(𝑠
𝑘
, 𝑡
𝑘
)

and 𝑑
𝑤
(𝑠
𝑘
, 𝑡
𝑘
). If there exists a shortest path 𝑃

𝑘
from

𝑠
𝑘
to 𝑡
𝑘
under 𝑙 such that 𝑙(𝑃

𝑘
) > 𝑑

𝑘
, then output

that the SPIUHproblemhas no feasible solution, stop.
Otherwise, let 𝑙󸀠 = 𝑙 and 𝐾 = {𝑘 | 1 ≤ 𝑘 ≤

𝑟, 𝑑
𝑤
(𝑠
𝑘
, 𝑡
𝑘
) > 𝑑
𝑘
}. For each 𝑘 ∈ 𝐾, compute a shortest

path 𝑃
𝑘
from 𝑠

𝑘
to 𝑡
𝑘
under 𝑙󸀠.

Step 2: Let 𝑋 = {𝑒
𝑖
| 𝑒
𝑖
∈ 𝑃
𝑘
, for a 𝑘 ∈ 𝐾}. For each

edge 𝑒
𝑖
∈ 𝑋, let 𝑄

𝑖
= {𝑃
𝑘
| 𝑒
𝑖
∈ 𝑃
𝑘
, 𝑘 ∈ 𝐾}. Let

𝑋
󸀠
= {𝑒
𝑖
| 𝑒
𝑖
∈ 𝑋,𝑤

𝑖
− 𝑙
󸀠

𝑖
> 0}.

Step 3: While𝑋󸀠 ̸= 0, do

Find the edge 𝑒
𝑗
such that 𝑗 = argmin{(𝑤

𝑖
−

𝑙
󸀠

𝑖
)|𝑄
𝑖
| | 𝑒
𝑖
∈ 𝑋
󸀠
}, and let 𝑙󸀠

𝑖
= 𝑤
𝑗
and 𝑋󸀠 =

𝑋
󸀠
\ {𝑒
𝑗
}.

Compute a shortest path 𝑃
𝑘
from 𝑠

𝑘
to 𝑡
𝑘
under

𝑙
󸀠 in the set 𝑄

𝑗
of paths. Call the new path as

𝑃
󸀠

𝑘
, if 𝑙󸀠(𝑃󸀠

𝑘
) > 𝑑

𝑘
, then 𝑙󸀠

𝑖
= 𝑙
𝑗
(and ignore 𝑃󸀠

𝑘
);

otherwise, let 𝑃
𝑘
= 𝑃
󸀠

𝑘
(i.e., delete the previous

𝑃
𝑘
), 𝑋 = {𝑒

𝑖
| 𝑒
𝑖
∈ 𝑃
𝑘
, 𝑘 ∈ 𝐾} and 𝑄

𝑖
= {𝑃
𝑘
|

𝑒
𝑖
∈ 𝑃
𝑘
} for each edge 𝑒

𝑖
∈ 𝑋.

Step 4: Let 𝑆 = {𝑒
𝑖
| 𝑒
𝑖
∈ 𝑋, 𝑙

󸀠

𝑖
= 𝑙
𝑖
, 𝑤
𝑖
̸= 𝑙
𝑖
}, output an

approximation solution 𝑤∗ and its objective value |𝑆|
of the SPIUH problem, where

𝑤
∗

𝑖
= {

𝑙
𝑖
, if 𝑒

𝑖
∈ 𝑆,

𝑤
𝑖
, otherwise.

(22)

Now we analyze the time complexity of Algorithm 16. For
each 𝑘 = 1, 2, . . . , 𝑟, there are 𝑂(𝑛2) operations to compute
a shortest path 𝑃

𝑘
; and hence there are 𝑂(𝑟𝑛2) operations in

Step 1, where 𝑛 = |𝑉|. Step 2 requires 𝑂(𝑛𝑚) operations.
Step 3 requires 𝑂(𝑟2𝑛3) operations. Furthermore, there are at
most𝑚 iterations in Algorithm 16. Hence Algorithm 16 runs
in 𝑂(𝑟2𝑛3𝑚) operations in the worst case, and it is a strongly
polynomial time heuristic algorithm.

Next we first give an example to explain detailed com-
putation process of the heuristic Algorithm 16, and then we
present its computational experiments.
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Table 1: Iteration process of Algorithm 16.

IN 𝑃
𝑘

𝑙
󸀠
(𝑃
𝑘
) 𝑑

𝑘
𝑒
𝑗

LW IN 𝑃
𝑘

𝑙
󸀠
(𝑃
𝑘
) 𝑑

𝑘
𝑒
𝑗

LW

1
𝑠
1
𝑠
2
V
1
𝑠
3
𝑡
1

13 13
𝑠
2
V
1
V
3
𝑡
2

10 14 𝑒
1

Yes 6 𝑠
3
𝑡
1
𝑡
2
𝑡
3

12 11 𝑒
8

No
𝑠
3
V
1
V
2
𝑡
3

11 11

2
𝑠
1
V
2
V
1
𝑠
3
𝑡
1

13 13 𝑠
1
𝑡
3
𝑡
2
𝑡
1

13 13
𝑠
2
V
1
V
3
𝑡
2

10 14 𝑒
2

Yes 7 𝑠
2
𝑠
1
𝑡
3
𝑡
2

13 14 𝑒
12

Yes
𝑠
3
V
1
V
2
𝑡
3

11 11 𝑠
3
𝑡
1
𝑡
2
𝑡
3

11 11
3 𝑠

1
𝑡
3
𝑡
2
𝑡
1

14 13 𝑒
3

No 8 𝑠
1
𝑡
3
𝑡
2
𝑡
1

15 13 𝑒
10

No

4
𝑠
1
𝑡
3
𝑡
2
𝑡
1

13 13
𝑠
2
V
1
V
3
𝑡
2

11 14 𝑒
4

Yes 9 𝑠
1
𝑡
3
𝑡
2
𝑡
1

15 13 𝑒
14

No
𝑠
3
V
1
V
2
𝑡
3

11 11

5
𝑠
1
𝑡
3
𝑡
2
𝑡
1

13 13
𝑠
2
V
1
V
3
𝑡
2

11 14 𝑒
5

Yes
𝑠
3
V
1
V
2
𝑡
3

11 11
IN: the number of iterations; 𝑒𝑗: edge obtained in step 3; 𝑙󸀠(𝑃𝑘): the distance of the shortest path 𝑃𝑘 under 𝑙

󸀠; LW: can 𝑙󸀠
𝑗
be changed to 𝑤𝑖?

Table 2: Computational results of the Algorithm 16 and that of implicit enumeration algorithm.

NI 𝑛 𝑚 𝑟 VC VC1 TC TC1
100 25 35 5 7.5 5.2 0.29 1068.61
100 30 40 5 7.4 5.3 0.53 4687.8
100 35 45 5 7.2 5.7 0.78 8512.14
50 35 50 5 7.6 5.6 0.9 11360.04
50 40 50 10 8.7 — 1.29 —
50 45 70 10 10.2 — 2.6 —
50 100 130 15 18.4 — 49.4 —
50 100 150 15 18.1 — 283.4 —
50 150 200 15 39.9 — 296 —
50 200 250 30 52.4 — 789.8 —
NI: the number of instances; 𝑛: the number of nodes; 𝑚: the number of edges; 𝑟: the number of source-terminal pairs; VC: average approximation objective
value by using Algorithm 16; VC1: average objective value by using implicit enumeration algorithm; TC: average running time in CPU-seconds by using
Algorithm 16; TC1: average running time in CPU-seconds by using implicit enumeration algorithm.
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Figure 3: An example of the SPIUH problem.

Given is a network 𝐺 = (𝑉, 𝐸) shown in Figure 3,
where 𝑉 = {𝑠

1
, 𝑠
2
, 𝑠
3
, V
1
, V
2
, V
3
, 𝑡
1
, 𝑡
2
, 𝑡
3
}, 𝐸 = {𝑒

𝑖
| 𝑖 =

1, 2, . . . , 14}. Let 𝑤 = (4, 3, 6, 4, 5, 6, 5, 4, 8, 7, 6, 6, 4, 7), 𝑙 =
(3, 2, 5, 3, 4, 3, 4, 3, 6, 4, 5, 4, 3, 4), the set of source-terminal

pairs of vertices is {(𝑠
𝑘
, 𝑡
𝑘
), 𝑘 = 1, 2, 3}, and 𝑑 = (13, 14,

11).
When calling Algorithm 16 for the instance given by

Figure 3, we obtain an approximation solution 𝑤∗ = (4, 3,

5, 4, 5, 6, 5, 3, 8, 4, 6, 6, 4, 4), and its objective value is |𝑆| = 4,
where

𝑤
∗

𝑖
= {

𝑙
𝑖
, if 𝑒

𝑖
∈ 𝑆,

𝑤
𝑖
, otherwise.

(23)

See Table 1 for the details of iterations in running
Algorithm 16.

Note that when Algorithm 16 is applied to solve the
SPIUH-SSCP problem, similar to the proof of Theorem 11,
it is not difficult to show that Algorithm 16 can obtain an
optimal solution of the SPIUH-SSCP problem.

The heuristic Algorithm 16 is coded in Matlab 7.0 and
run on a PC Pentium D, 2.8GHz, under Windows XP.
We have tested the heuristic algorithm on ten classes of
network configurations which differ from the number 𝑛 of
nodes, varying from 30 to 100, and the number 𝑟 of source-
terminal pairs, being 5 or 15. There are 50 or 100 random



8 Journal of Applied Mathematics

instances generated for each class of network configuration.
In all instances of the configurations, the length range of
𝑤
𝑖
is 0–37 for each edge 𝑒

𝑖
, and the length range of lower

bound 𝑙
𝑖
is 0–15. In order to avoid solving a big number of

nonfeasible instances, we assume that 𝑑
𝑘
is between 𝑑

𝑙
(𝑠
𝑘
, 𝑡
𝑘
)

and 𝑑
𝑤
(𝑠
𝑘
, 𝑡
𝑘
) for each source-terminal pair (𝑠

𝑘
, 𝑡
𝑘
).

Computational results are shown in Table 2. It displays
the average approximation objective values and the average
CPU-time in seconds of Algorithm 16 and implicit enumer-
ation algorithm by using 50 or 100 instances in each class
of network configuration. Table 2 shows that the average
running time of Algorithm 16 is far less than that of implicit
enumeration algorithm, and if𝑚 ≥ 50 and optimal objective
value is greater than 5, then the running time of implicit
enumeration algorithm is unbearable.

5. Conclusion and Further Research

The shortest path improvement problems under unit Ham-
ming distance are studied. Firstly, the problemon arborescent
networks is formulated as a 0-1 integer programming model.
Secondly, two greedy algorithms are proposed for problems
on chain networks and special star-tree networks. Thirdly,
a strongly polynomial time algorithm is designed for the
problem on arborescent networks with a single source and a
special constraint on paths. Finally, a heuristic algorithm and
corresponding computational experiments are presented for
the SPIUH problem on general graphs.

For further research, it is meaningful to design exact
algorithms or approximate algorithms for the shortest path
improvement problems on arborescent networks with a
single source under unit Hamming distance and to propose
approximate or heuristic algorithms for the shortest path
improvement problems under general Hamming distance.
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