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This paper gives a new prediction-correction method based on the dynamical system of differential-algebraic equations for the
smallest generalized eigenvalue problem. First, the smallest generalized eigenvalue problem is converted into an equivalent-
constrained optimization problem. Second, according to the Karush-Kuhn-Tucker conditions of this special equality-constrained
problem, a special continuous dynamical system of differential-algebraic equations is obtained. Third, based on the implicit
Euler method and an analogous trust-region technique, a prediction-correction method is constructed to follow this system
of differential-algebraic equations to compute its steady-state solution. Consequently, the smallest generalized eigenvalue of the
original problem is obtained. The local superlinear convergence property for this new algorithm is also established. Finally, in
comparison with other methods, some promising numerical experiments are presented.

1. Introduction

In this paper, we consider the smallest generalized eigen-
value problem, which is often encountered in engineering
applications such as automatic control, dynamical analysis
of structure, electronic structure calculations, and quantum
chemistry (see [1, 2] and references therein). For this old
and active problem, recently, Gao et al. gave an interesting
continuous projected method [3, 4]. This article follows this
line and gives a new prediction-correction method based
on the dynamical system of differential-algebraic equations
(DAEs) for this problem.

First, we convert the smallest eigenvalue problem into
an equivalent equality-constrained optimization problem.
Second, from the Karush-Kuhn-Tucker conditions of this
optimization problem, we obtain a variant of the Rayleigh
quotient gradient flow [5, 6], which is formulated by a system
of DAEs. Third, applying the implicit Euler method [7],
a projected technique [4, 8, 9], and a new time-stepping
strategy to that dynamical system of DAEs, we construct a
new prediction-correction method to compute a steady-state
solution of that special dynamical system. Consequently, we
obtain the smallest generalized eigenvalue of (𝐴, 𝐵). We also

establish the local superlinear convergence property for this
new method. Last, in comparison with other methods, some
promising numerical experiments are presented.Throughout
this article, ‖ ⋅ ‖ denotes the Euclidean vector norm and the
corresponding induced matrix norm.

2. Continuous Dynamical Model

The generalized eigenvalue problem (𝐴, 𝐵) is to find a scalar
𝜆 and nonzero vector 𝑥 ∈ R𝑛 to satisfy

𝐴𝑥 = 𝜆𝐵𝑥, (1)

where 𝐴 and 𝐵 are 𝑛 × 𝑛 real symmetric matrices and
𝐵 is positive definite. Problem (1) can be converted to an
equivalent equality-constrained optimization problem [4]:

min
𝑥∈R𝑛

𝑥
𝑇

𝐴𝑥,

s.t. 𝑥
𝑇

𝐵𝑥 = 1.

(2)

If 𝑥∗ is an optimal solution of problem (2), according to the
Karush-Kuhn-Tucker conditions [10, p. 328], then there exists
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a Lagrange multiplier 𝜆∗ such that the following conditions
are satisfied at (𝑥∗, 𝜆∗):

𝐴𝑥
∗

− 𝜆
∗

𝐵𝑥
∗

= 0,

(𝑥
∗

)
𝑇

𝐵𝑥
∗

= 1.

(3)

Therefore, the solution 𝑥∗ of problem (2) is a generalized
eigenvector of (𝐴, 𝐵).

Property 1 (Gao et al., 2008 [4]). If𝑥∗ is an optimal solution of
problem (2) and 𝜆∗ is the corresponding Lagrangemultiplier,
then they satisfy the second-order optimality condition

(𝐴 − 𝜆
∗

𝐵) ⪰ 0. (4)

Furthermore, a local minimizer of (2) is also its global
minimizer. If 𝑥∗ is a global minimizer of (2), then it
is an eigenvector associated with the smallest generalized
eigenvalue of (1).

From the first-order optimality conditions (3) of problem
(2), we construct the following negative gradient flow:

𝑑𝑥 (𝑡)

𝑑𝑡
= − (𝐴𝑥 − 𝜆𝐵𝑥) , (5)

on the generalized spherical surface,

𝑥
𝑇

𝐵𝑥 = 1. (6)

The system of DAEs (5)-(6) is a special dynamical system
which is derived from the equality-constrained optimization
problem (2). According to the definition of the differential
index of DAEs [11], we can verify that the index of DAEs (5)-
(6) is two. Therefore, the solution of DAEs (5)-(6) is not easy
to be obtained by the general software package such as bdf15s
[7, 11, 12]. Thus, we need to devise a special technique for its
steady-state solution.

Differentiating the algebraic constraint 𝑥𝑇𝐵𝑥 = 1 along
the trajectory (𝑥(𝑡), 𝜆(𝑡)) of (5) and (6), we obtain

𝑑 (𝑥
𝑇

𝐵𝑥)

𝑑𝑡
= (∇
𝑥
(𝑥
𝑇

𝐵𝑥))
𝑇𝑑𝑥

𝑑𝑡

= 2𝑥
𝑇

𝐵 (−𝐴𝑥 + 𝜆𝐵𝑥)

= 2 (−𝑥
𝑇

𝐵𝐴𝑥 + 𝜆𝑥
𝑇

𝐵
2

𝑥) = 0.

(7)

Consequently, we obtain

𝜆 =
𝑥𝑇𝐵𝐴𝑥

𝑥𝑇𝐵2𝑥
. (8)

Substituting (8) into (5), we also obtain the following gener-
alized gradient flow:

𝑑𝑥 (𝑡)

𝑑𝑡
= −(𝐴 − 𝐵

𝑥
𝑇𝐵𝐴𝑥

𝑥𝑇𝐵2𝑥
)𝑥, 𝑥(0)

𝑇

𝐵𝑥 (0) = 1. (9)

Conversely, if 𝑥(𝑡) is a solution of (9), then 𝑑(𝑥𝑇𝐵𝑥)/𝑑𝑡 = 0;
that is, 𝑥(𝑡) satisfies 𝑥𝑇𝐵𝑥 = 1, and consequently 𝑥(𝑡) also

satisfies (5)-(6). Therefore, the continuous dynamical system
of (5) and (6) is equivalent to the generalized gradient flow
(9).

Since the right-hand-side function of (9) is Lipschitz
continuous, it has a unique solution 𝑥(𝑡) for any initial point
𝑥(0) = 𝑥

0
. We can verify that the objective function 𝑓(𝑥) =

𝑥𝑇𝐴𝑥 is monotonically decreasing along the trajectory 𝑥(𝑡)

of (5)-(6). Actually, from (5)–(8), using the Cauchy-Schwartz
inequality |𝑦𝑇𝑧| ≤ ‖𝑦‖‖𝑧‖, we have

𝑑𝑓 (𝑥)

𝑑𝑡
= (∇
𝑥
𝑓 (𝑥))

𝑇𝑑𝑥

𝑑𝑡

= 2(−𝑥
𝑇

𝐴
2

𝑥 +
𝑥𝑇𝐴𝐵𝑥𝑥𝑇𝐵𝐴𝑥

𝑥𝑇𝐵2𝑥
)

≤
2

𝑥𝑇𝐵2𝑥
(−‖𝐴𝑥‖

2

‖𝐵𝑥‖
2

+ (𝐴𝑥)
𝑇

(𝐵𝑥) (𝐵𝑥)
𝑇

(𝐴𝑥))

≤ 0.

(10)

Furthermore, the solution 𝑥(𝑡) of (9) converges to an eigen-
vector 𝑥∗ associated with the smallest generalized eigenvalue
𝜆∗ of (𝐴, 𝐵), for almost all initial condition 𝑥(0) = 𝑥

0
,

where 𝑥
0
satisfies ‖𝑥

0
‖ = 1, except for a set of measure zero,

that is, the case of a multiple generalized eigenvalue 𝜆∗ [5].
Therefore, by following the trajectory 𝑥(𝑡) of (5)-(6), we can
compute a global minimum point 𝑥∗ of problem (2), and
consequently obtain the smallest generalized eigenvalue 𝜆∗

of (𝐴, 𝐵).

3. A Prediction-Correction Method

In this section, in order to obtain a steady-state solution of
DAEs (5)-(6), we construct a prediction-correction method
to follow its trajectory. According to the discussion of
Section 2, we know that a steady-state solution of DAEs (5)-
(6) is a generalized eigenvector associated with the smallest
generalized eigenvalue of (𝐴, 𝐵). Therefore, by following
the discrete trajectory of DAEs (5)-(6), we can compute
an approximate eigenvector associated with the smallest
generalized eigenvalue and consequently obtain the smallest
generalized eigenvalue.

Note that we mainly consider the steady state of the
system of DAEs (5)-(6) and do not care about an accurate
solution at its transient-state phase. In order to avoid consum-
ing unnecessary computing time, we adopt the first-order
implicit Euler method to follow its trajectory. The time steps
of the implicit Euler method are not restricted by the absolute
stability property for the linear test equation 𝑑𝑥/𝑑𝑡 = −𝜇𝑥,
where 𝜇 > 0 [7], and consequently the implicit Euler method
can take large steps at the steady-state phase so that the
iteration sequence {𝑥

𝑘
} converges rapidly to a stationary point

𝑥∗ of the system of DAEs (5)-(6).
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By applying one implicit Euler iteration to the system of
DAEs (5)-(6), we obtain the following iteration formula of the
form:

𝑥
𝑘+1

= 𝑥
𝑘
− Δ𝑡
𝑘
(𝐴 − 𝜆

𝑘+1
𝐵) 𝑥
𝑘+1

, (11)

𝑥
𝑇

𝑘+1
𝐵𝑥
𝑘+1

= 1, (12)

where Δ𝑡
𝑘
is the time step. Note that the system of (11)-(12)

is nonlinear, and generally, its solution cannot explicitly be
obtained. Therefore, we use the alternating projection idea
[13, 14] to handle it.

We replace 𝜆
𝑘+1

with 𝜆
𝑘
in (11) to obtain the predicted

point 𝑥𝑃
𝑘+1

as follows:

(𝐼 + Δ𝑡
𝑘
(𝐴 − 𝜆

𝑘
𝐵)) 𝑥
𝑃

𝑘+1
= 𝑥
𝑘
. (13)

Since the predicted point 𝑥𝑃
𝑘+1

moves away from the elliptic
spherical surface, we project this predicted point 𝑥𝑃

𝑘+1
onto

the unit elliptic spherical surface, so that the iterated point
𝑥
𝑘+1

satisfies the algebraic constraint (6); namely, we find the
shortest distance between 𝑥𝑃

𝑘+1
and the unit elliptic spherical

surface.We achieve this aimby solving the following equality-
constrained problem:

min
𝑥∈N𝑛

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑃

𝑘+1

󵄩󵄩󵄩󵄩󵄩
,

s.t. 𝑥
𝑇

𝐵𝑥 = 1.

(14)

Since the optimal solution of the previously problem is
not apparently obtained, we turn to achieve its suboptimal
solution. Since matrix 𝐵 is positive, it can be decomposed as
𝐵 = 𝐿

𝑇𝐿. Let 𝑦 = 𝐿𝑥. Then, problem (14) is equivalent to the
following problem:

min
𝑦∈N𝑛

󵄩󵄩󵄩󵄩󵄩
𝐿
−1

(𝑦 − 𝐿𝑥
𝑃

𝑘+1
)
󵄩󵄩󵄩󵄩󵄩
,

s.t. 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1.

(15)

Since ‖𝐿−1(𝑦 − 𝐿𝑥𝑃
𝑘+1

)‖ ≤ ‖𝐿−1‖‖𝑦 − 𝐿𝑥𝑃
𝑘+1

‖, we obtain the
suboptimal solution by solving the following problem:

min
𝑦∈N𝑛

󵄩󵄩󵄩󵄩󵄩
(𝑦 − 𝐿𝑥

𝑃

𝑘+1
)
󵄩󵄩󵄩󵄩󵄩
,

s.t. 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1.

(16)

From the shortest distance between a point and a unit
spherical surface being the intersection point of the straight
line through the center of that circle and the point and that
unit spherical surface, we obtain the previousminimumpoint
as𝑦
𝑘+1

= 𝐿𝑥𝑇
𝑘+1

/‖𝐿𝑥𝑃
𝑘+1

‖.Then, the suboptimal solution point
of problem (14) is obtained as

𝑥
𝑘+1

= 𝐿
−1

𝑦
𝑘+1

=
𝑥𝑃
𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝐿𝑥𝑃
𝑘+1

󵄩󵄩󵄩󵄩󵄩

. (17)

Now, we use the correction point 𝑥
𝑘+1

to update 𝜆
𝑘+1

, so
that the steady-state equation 𝐴𝑥 − 𝜆𝐵𝑥 = 0 is satisfied as

possible. Namely, we find theminimumpoint of the following
problem:

min
𝜆∈N𝑛

󵄩󵄩󵄩󵄩𝐴𝑥𝑘+1 − 𝜆𝐵𝑥
𝑘+1

󵄩󵄩󵄩󵄩 . (18)

Since matrix 𝐵 is positive, it can be decomposed as 𝐵 = 𝐿𝑇𝐿.
Let 𝑧
𝑘+1

= 𝐿𝑥
𝑘+1

. Then, the previous minimum problem is
equivalent to the following problem:

min
𝜆∈N𝑛

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑇

(𝐿
−𝑇

𝐴𝑥
𝑘+1

− 𝜆𝐿𝑥
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩
. (19)

Using the property ‖𝐿𝑇(𝐿−𝑇𝐴𝑥
𝑘+1

− 𝜆𝐿𝑥
𝑘+1

)‖ ≤

‖𝐿𝑇‖‖(𝐿−𝑇𝐴𝑥
𝑘+1

− 𝜆𝐿𝑥
𝑘+1

)‖, we obtain the suboptimal
solution of problem (18) by solving the following problem:

min 󵄩󵄩󵄩󵄩󵄩𝐿
−𝑇

𝐴𝑥
𝑘+1

− 𝜆𝐿𝑥
𝑘+1

󵄩󵄩󵄩󵄩󵄩
. (20)

It is not difficult to obtain the minimum solution of the
previous problem as

𝜆
𝑘+1

=
𝑥𝑇
𝑘+1

𝐴𝑥
𝑘+1

𝑥𝑇
𝑘+1

𝐵𝑥
𝑘+1

, (21)

which is the suboptimal solution of problem (18).
Another issue is how to choose the time step Δ𝑡

𝑘
at every

iteration. We adopt an analogous trust-region technique to
adaptively adjust the time step Δ𝑡

𝑘
. Our intuition is that

the time step Δ𝑡
𝑘
can be enlarged when the predicted point

𝑥𝑃
𝑘+1

is also near the elliptic spherical surface 𝑥𝑇𝐵𝑥 = 1;
otherwise, the time step Δ𝑡

𝑘
is reduced. In order to measure

the distance between 𝑥𝑃
𝑘+1

and the unit elliptic spherical
surface, we construct the following approximate model:

𝜌
𝑘
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − ((𝑥

𝑃

𝑘+1
)
𝑇

𝐵𝑥
𝑃

𝑘+1
)
1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (22)

Then,

Δ𝑡
𝑘+1

=

{{

{{

{

𝛾
1
Δ𝑡
𝑘
, if 𝜌

𝑘
< 𝜂
1
,

Δ𝑡
𝑘
, if 𝜂

1
≤ 𝜌
𝑘
𝜂
2
,

𝛾
2
Δ𝑡
𝑘
, if 𝜌

𝑘
≥ 𝜂
2
,

(23)

where constants 𝜂
1
, 𝜂
2
, 𝛾
1
, and 𝛾

2
satisfy

0 < 𝜂
1
< 𝜂
2
< 1, 0 < 𝛾

2
< 1 < 𝛾

1
. (24)

According to the previous discussion, we give the follow-
ing discrete dynamical method for the smallest generalized
eigenvalue of (𝐴, 𝐵).

Algorithm 1. Prediction-correction method for the smallest
generalized eigenvalue.

Step 1. Initialize the parameters. Specify a tolerated error TOL
and an initial point 𝑥

0
to satisfy

𝑥
𝑇

0
𝐵𝑥
0
= 1. (25)

Compute 𝜆
0
= 𝑥𝑇
0
𝐴𝑥
0
/𝑥𝑇
0
𝐵𝑥
0
and the residual 𝑟

0
= ‖𝐴𝑥

0
−

𝜆
0
𝐵𝑥
0
‖.

Step 2. Repeat for 𝑘 = 0, 1, 2, . . . until 𝑟
𝑘
= ‖𝐴𝑥

𝑘
− 𝜆
𝑘
𝐵𝑥
𝑘
‖ ≤

TOL:
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(a) solve (13) to obtain the predicted point 𝑥𝑃
𝑘+1

;

(b) evaluate (17) to obtain the corrected point 𝑥
𝑘+1

;

(c) compute (21) to update the Lagrange multiplier 𝜆
𝑘+1

;

(d) compute the residual

𝑟
𝑘+1

=
󵄩󵄩󵄩󵄩𝐴𝑥𝑘+1 − 𝜆

𝑘+1
𝐵𝑥
𝑘+1

󵄩󵄩󵄩󵄩 ; (26)

(e) update the time step Δ𝑡
𝑘+1

according to the time-
stepping scheme (22)-(23);

(f) accept the trial vector. If 𝜌
𝑘
< 𝜂
2
, let 𝑥

𝑘
= 𝑥
𝑘+1

, 𝜆
𝑘
=

𝜆
𝑘+1

and 𝑟
𝑘
= 𝑟
𝑘+1

;

(g) try again starting at (a) with 𝑘 ← 𝑘 + 1.

4. Local Convergence Analysis

The sequence (𝑥
𝑘
, 𝜆
𝑘
) generated by Algorithm 1 follows the

continuous trajectory (5)-(6). Adopting the similar estima-
tion technique in [15, 16], we obtain that the local truncation
error of 𝑥

𝑘
is 𝑂(Δ𝑡

𝑘
). According to the standard analysis of

numerical ordinary differential equations [7, 11], we know
that 𝑥

𝑘
is close to 𝑥(𝑡

𝑘
)when Δ𝑡

𝑘
is small enough in the finite

time interval [0, 𝑇]. Therefore, we only need to estimate the
local convergence rate of 𝑥

𝑘
in the steady-state phase.

For the convenience of analysis, we decompose matrix 𝐵
as 𝐵 = 𝐿

𝑇

𝐿 and denote 𝐶 = 𝐿
−𝑇

𝐴𝐿
−1. Then, the smallest

generalized eigenvalue 𝜆∗ of (𝐴, 𝐵) and associated with the
eigenvector 𝑥∗ is equivalent to the smallest eigenvalue of
symmetricmatrix𝐶 and associated with the eigenvector𝑦∗ =
𝐿𝑥∗, respectively. Therefore, we only need to consider the
convergence property of (𝑦

𝑘
, 𝜆
𝑘
), where 𝑦

𝑘
= 𝐿𝑥

𝑘
. 𝑥
𝑘
is

generated by Algorithm 1.
We denote the error angle between 𝑦

𝑘
and 𝑦∗ by 𝜙

𝑘
=

∠(𝑦
𝑘
, 𝑦∗). Then, the current iteration 𝑦

𝑘
can be decomposed

as

𝑦
𝑘
= 𝑦
∗ cos𝜙

𝑘
+ 𝑢
𝑘
sin𝜙
𝑘
, (27)

where 𝑢𝑇
𝑘
𝑦∗ = 0 and ‖𝑢

𝑘
‖ = ‖𝑦∗‖ = 1. From (27), we obtain

𝜆min − 𝜆
𝑘
= 𝜆min − 𝑦

𝑇

𝑘
𝐶𝑦
𝑘

= 𝜆min − (𝑦
∗ cos𝜙

𝑘
+ 𝑢
𝑘
sin𝜙
𝑘
)
𝑇

× 𝐶 (𝑦
∗ cos𝜙

𝑘
+ 𝑢
𝑘
sin𝜙
𝑘
)

= 𝜆min − 𝜆mincos
2

𝜙
𝑘
− (𝑢
𝑇

𝑘
𝐶𝑢
𝑘
) sin2𝜙

𝑘

= (𝜆min − (𝑢
𝑇

𝑘
𝐶𝑢
𝑘
)) sin2𝜙

𝑘
.

(28)

According to the previous discussion, we give the follow-
ing local convergence property for Algorithm 1.

Theorem 2. Assume that the sequence (𝑥
𝑘
, 𝜆
𝑘
) is generated by

Algorithm 1.Then, the sequence of error angles 𝜙
𝑘
tends to zero

superlinearly.

Proof. From (21) and 𝐶𝑦
∗ = 𝜆∗𝑦∗, we have

𝜆
𝑘
− 𝜆
∗

= 𝑦
𝑇

𝑘
(𝐶 − 𝜆

∗

𝐼) 𝑦
𝑘

= (𝑦
𝑘
− 𝑦
∗

)
𝑇

(𝐶 − 𝜆
∗

𝐼) (𝑦
𝑘
− 𝑦
∗

) .

(29)

It gives

󵄨󵄨󵄨󵄨𝜆𝑘 − 𝜆
∗󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝜆max − 𝜆
∗󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩

2

. (30)

Thus, we choose a small enough positive 𝜀
1
> 0, such as 𝜀

1
=

3/4|𝜆∗ − 𝜇
2
|, and a large enough 𝑘 to satisfy

󵄨󵄨󵄨󵄨𝜆𝑘 − 𝜇
2

󵄨󵄨󵄨󵄨 > 𝜀
1
,

󵄨󵄨󵄨󵄨𝜆max − 𝜆
∗󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩

2

<
1

2
𝜀
1
. (31)

Then, combining inequality (30), we have

󵄨󵄨󵄨󵄨𝜆𝑘 − 𝜆
∗󵄨󵄨󵄨󵄨 ≤

1

2
𝜀
1
. (32)

Consequently, we obtain

𝑞
𝑘
(Δ𝑡
𝑘
) :=

1/Δ𝑡
𝑘
+
󵄨󵄨󵄨󵄨𝜆
∗ − 𝜆
𝑘

󵄨󵄨󵄨󵄨

1/Δ𝑡
𝑘
+
󵄨󵄨󵄨󵄨𝜇2 − 𝜆

𝑘

󵄨󵄨󵄨󵄨

≤
1/Δ𝑡
𝑘
+ 1/2𝜀

1

1/Δ𝑡
𝑘
+ 𝜀
1

≤
1/Δ𝑡min + 1/2𝜀

1

1/Δ𝑡min + 𝜀
1

< 1.

(33)

We can verify that there exists a positive constant 𝜀
𝑡
such

that all the time steps Δ𝑡
𝑘
are bounded below by Δ𝑡min; that

is, Δ𝑡
𝑘
≥ Δ𝑡min. Actually, from (13), we know that ‖𝑥𝑃

𝑘+1
‖ will

be close to ‖𝑥
𝑘
‖, when Δ𝑡

𝑘
is small enough. Consequently, for

small enough Δ𝑡
𝑘
, we have

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑃

𝑘+1
𝐵𝑥
𝑘+1

− 1
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑃

𝑘+1
𝐵𝑥
𝑘+1

− 𝑥
𝑘
𝐵𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑥
𝑃

𝑘+1
− 𝑥
𝑘
)
𝑇

𝐵 (𝑥
𝑃

𝑘+1
− 𝑥
𝑘
)
󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜂
1
.

(34)

According to the time-stepping strategy (23), Δ𝑡
𝑘+1

will be
enlarged. Therefore, Δ𝑡

𝑘
are bounded below by a positive

number Δ𝑡min.
On the other hand, from (13) and (27), we obtain

𝑦
𝑃

𝑘+1
= (𝐼 + Δ𝑡

𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

𝑦
𝑘

= (𝐼 + Δ𝑡
𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

× (𝑦
∗ cos𝜙

𝑘
+ 𝑢
𝑘
sin𝜙
𝑘
)

=
𝑦∗ cos𝜙

𝑘

(1 + Δ𝑡
𝑘
(𝜆min − 𝜆

𝑘
))

+ (𝐼 + Δ𝑡
𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

𝑢
𝑘
sin𝜙
𝑘

=
𝑦∗ cos𝜙

𝑘

(1 + Δ𝑡
𝑘
(𝜆min − 𝜆

𝑘
))

+ 𝑢
𝑘+1

sin𝜙
𝑘

󵄩󵄩󵄩󵄩󵄩
(𝐼 + Δ𝑡

𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

𝑢
𝑘

󵄩󵄩󵄩󵄩󵄩
,

(35)
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where 𝑢
𝑘+1

= (𝐼+Δ𝑡
𝑘
(𝐶−𝜆

𝑘
𝐼))
−1

𝑢
𝑘
/‖(𝐼+Δ𝑡

𝑘
(𝐶−𝜆

𝑘
𝐼))
−1

𝑢
𝑘
‖

and 𝑢𝑇
𝑘+1

𝑦∗ = 0. Noticing 𝑦
𝑘+1

= 𝑦𝑃
𝑘+1

/‖𝑦𝑃
𝑘+1

‖ and 𝑦
𝑘+1

=

𝑦∗ cos𝜙
𝑘+1

+ 𝑢
𝑘+1

sin𝜙
𝑘+1

, from (35), we obtain

tan𝜙
𝑘+1

= tan𝜙
𝑘

󵄩󵄩󵄩󵄩󵄩
(𝐼 + Δ𝑡

𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

𝑢
𝑘

󵄩󵄩󵄩󵄩󵄩

× (1 + Δ𝑡
𝑘
(𝜆min − 𝜆

𝑘
)) .

(36)

Since 𝑢
𝑘
is orthogonal to 𝑦∗ and ‖𝑢

𝑘
‖ = 1, 𝑢

𝑘
can be

decomposed as 𝑢
𝑘
= 𝛼
2
𝑧
2
+⋅ ⋅ ⋅+𝛼

𝑛
𝑧
𝑛
, where𝛼2

2
+𝛼2
3
+⋅ ⋅ ⋅+𝛼2

𝑛
=

1. Let 𝜇
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be the eigenvalues of 𝐶 = 𝐿−𝑇𝐴𝐿−1

in ascending order.Thus, from the spectral decomposition of
𝐶, for large enough 𝑘, we obtain

󵄩󵄩󵄩󵄩󵄩
(𝐼 + Δ𝑡

𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

𝑢
𝑘

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑖=2

(1 + Δ𝑡
𝑘
(𝜇
𝑖
− 𝜆
𝑘
))
−1

𝛼
𝑖
𝑧
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

𝑛

∑
𝑖=2

(1 + Δ𝑡
𝑘
(𝜇
𝑖
− 𝜆
𝑘
))
−2

𝛼
2

𝑖

≤

𝑛

∑
𝑖=2

(1 + Δ𝑡
𝑘
(𝜇
2
− 𝜆
𝑘
))
−2

𝛼
2

𝑖

= (1 + Δ𝑡
𝑘
(𝜇
2
− 𝜆
𝑘
))
−2

.

(37)

It gives

󵄩󵄩󵄩󵄩󵄩
(𝐼 + Δ𝑡

𝑘
(𝐶 − 𝜆

𝑘
𝐼))
−1

𝑢
𝑘

󵄩󵄩󵄩󵄩󵄩
≤

1

(1 + Δ𝑡
𝑘
(𝜇
2
− 𝜆
𝑘
))
. (38)

From (36) and (38), for large enough 𝑘, we have

󵄨󵄨󵄨󵄨tan𝜙𝑘+1
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨tan𝜙𝑘
󵄨󵄨󵄨󵄨
(1/Δ𝑡

𝑘
+
󵄨󵄨󵄨󵄨𝜆
∗ − 𝜆
𝑘

󵄨󵄨󵄨󵄨)

(1/Δ𝑡
𝑘
+ 𝜇
2
− 𝜆
𝑘
)
. (39)

Combining (33) and (39), we know that 𝜙
𝑘
converges

linearly to zero; namely, 𝑦
𝑘
converges linearly to 𝑦∗, when we

choose the initial 𝑘 such that (𝑦
𝑘
, 𝜆
𝑘
) is close enough (𝑦∗, 𝜆∗).

Since (𝑦
𝑘
, 𝜆
𝑘
) converges linearly to (𝑦∗, 𝜆∗), according to

the time-stepping strategy (23), we obtain that the time step
Δ𝑡
𝑘
will tend to infinity. Consequently, from inequality (39),

we know that 𝜙
𝑘
superlinearly converges to 0.

Remark 3. From (28) and inequality (39), we have
󵄨󵄨󵄨󵄨tan𝜙𝑘+1

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨tan𝜙𝑘

󵄨󵄨󵄨󵄨
(1/Δ𝑡

𝑘
+
󵄨󵄨󵄨󵄨𝜆min − 𝜆

𝑘

󵄨󵄨󵄨󵄨)

(1/Δ𝑡
𝑘
+ 𝜇
2
− 𝜆
𝑘
)

=
󵄨󵄨󵄨󵄨tan𝜙𝑘

󵄨󵄨󵄨󵄨

(1/Δ𝑡
𝑘
+
󵄨󵄨󵄨󵄨󵄨
(𝜆min − 𝑢𝑇

𝑘
𝐴𝑢
𝑘
) sin2𝜙

𝑘

󵄨󵄨󵄨󵄨󵄨
)

(1/Δ𝑡
𝑘
+ 𝜇
2
− 𝜆
𝑘
)

.

(40)

Consequently, the error angles 𝜙
𝑘
tend to zero cubically, if

we adopt a suitable time-stepping strategy such as 1/Δ𝑡
𝑘
≈

sin2𝜙
𝑘
for large enough 𝑘.

Remark 4. The convergence rate of the Rayleigh quotient
iteration is cubic; however, its iterate point sequence {𝑥

𝑘
}

is not guaranteed to converge to the smallest generalized
eigenvalue of (𝐴, 𝐵) [17].The convergence rate of Algorithm 1
is less than the convergence rate of the Rayleigh quotient
iteration, but the iterate point sequence {𝑥

𝑘
} of Algorithm 1

follows the trajectory of the special dynamical system of
DAEs (5)-(6), and consequently it converges to a stationary
point 𝑥∗ of the system of DAEs (5)-(6), that is, one of gener-
alized eigenvectors associated with the smallest generalized
eigenvalue 𝜆∗ of (𝐴, 𝐵).

5. Numerical Experiments

We give some numerical experiments for Algorithm 1 (which
is denoted by the PCM method), in comparison with the
recent continuous projected method by Gao et al. (which
is denoted by the GGL method [4]) the restarted Arnoldi
method (the EIGS method [18]), and the Jacobi-Davidson
method (JDQZ [19, 20]). For Algorithm 1, we pick 𝜂

1
= 0.25,

𝜂
2
= 0.75, 𝛾

1
= 2, and 𝛾

2
= 0.5 and compute an initial time-

step length Δ𝑡
0
as follows:

Δ𝑡
0
= min{0.01, 1

󵄩󵄩󵄩󵄩𝐴𝑥0 − 𝜆
0
𝐵𝑥
0

󵄩󵄩󵄩󵄩2
} . (41)

For the GGL method, we use the solver ODE45 [12] for
the continuous projected dynamical method and set RelTol =
10−6 and AbsTol = 10−9, which are suggested in [4]. All
of our tests were run in Matlab 2009a environment on a
Lenovo Thinkpad laptop X200 with 2.4GHz processor. The
comparedmethods for the test problems are terminatedwhen
the condition

󵄩󵄩󵄩󵄩𝐴𝑥𝑘 − 𝜆
𝑘
𝐵𝑥
𝑘

󵄩󵄩󵄩󵄩∞ ≤ 10
−6 (42)

is satisfied. The descriptions of test problems and the numer-
ical results are presented by the following.

Example 5 (see [4, 21]). This test problem has four general-
ized eigenvalues. The first three generalized eigenvalues are
0, 0, and 0, and the other is 2. The stiffness and mass matrices
are given as follows:

𝐴 =
[
[
[

[

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

]
]
]

]

,

𝐵 =
[
[
[

[

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

]
]
]

]

.

(43)

It is not difficult to verify that matrix𝐵 is positive definite.
We choose an initial point 𝑥

0
= [0.2, 0.6, −0.8, 0.6]

𝑇.
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Table 1: Comparison with different methods.

Examples PCM GGL EIGS JDQZ
𝜆
𝑘

Iter (CPU) 𝜆
𝑘

Iter (CPU) CPU CPU
Example 51.0𝑒−13 12 (0.021) 4.5𝑒−11 77 (0.178) FAIL FAIL
Example 6 0.01337 18 (0.004) 0.01344 3389 (0.36) 0.01 0.49
Example 7 0.4998 49 (2.556) 0.5 33 (6.643) 0.24 14.17
Example 81.1𝑒 − 5 28 (0.024) 0.0122 514 (169.3) 0.02 0.686

Example 6 (see [4, 21]). The stiffness and mass matrices are
given as follows:

𝐴 =

[
[
[
[
[

[

11𝑘
1
+ 𝑘
2

−𝑘
2

−𝑘
2

𝑘
2
+ 𝑘
3
d

d d d
d 𝑘
𝑛−1

+ 𝑘
𝑛

−𝑘
𝑛

−𝑘
𝑛

11𝑘
𝑛
+ 𝑘
𝑛+1

]
]
]
]
]

]

,

(44)

and 𝐵 = diag(𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
) with 𝑛 = 20, 𝑘

𝑖
= 4 + 𝑖, and

𝑚
𝑖
= 35 − 𝑖 for 𝑖 = 1, 2, . . . , 20.

Example 7 (see [22]). This test problem is from fluid flow
generalized eigenvalues (see the Bcsstruc1 set in [22]).

Consider the following

𝐾𝑥 = 𝜆𝑀𝑥. (45)

Here, the mass matrix𝑀 (bcsstm13.mtx) is a real symmetric
positive semidefinite matrix; and the stiffness matrix 𝐾

(bcsstk13.mtx) is a real positive definite matrix. Therefore, its
smallest generalized eigenvalue is zero. In order to test the
effect of algorithms, we apply a sift to𝑀 as follows:

𝐵 = 𝑀 + 2𝐾. (46)

Then, the smallest generalized eigenvalue of (𝐾, 𝐵) is 1/2.

Example 8. In order to test the performance of these two
methods for large-scale problems, we construct a large-sparse
matrix 𝐴 as follows:

(1) let 𝐴
1
= sparse(diag(ones(𝑛, 1)));

(2) let 𝐴
2
= sparse(diag(ones(𝑛 − 1, 1), 1));

(3) let 𝐴
3
= sparse(diag(ones(𝑛 − 1, 1), −1));

(4) let 𝐴 = 2𝐴
1
+ 𝐴
2
+ 𝐴
3
;

(5) let 𝐵 = 4𝐴
1
+ 𝐴
2
+ 𝐴
3
.

Here, sparse.m, diag.m, and ones.m are theMatlab functions,
and 𝑛 is the dimension of 𝐴. In our numerical experiments,
we set 𝑛 = 1000 for this test problem.

Numerical results for these four test problems are
reported in Table 1. Iter and CPU designate the number
of iterations and the computed time (given in seconds),
respectively. From the computed results for Examples 5 and
8 in Table 1, we see that the proposed method (the PCM
method)manages to find a smallerminimumeigenvalue than
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Figure 1: Numerical results of Example 5 with PCM and GGL
methods.
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Figure 2: Numerical results of Example 6 with PCM and GGL
methods.

the compared method (the GGL method). Furthermore, the
computed time of the PCM method is less than the GGL
method and the JDQZ method for these test problems. For
Example 5, the EIGS method fails since it gives the message:
“(𝐴-sigma∗𝐵) is singular. The shift is an eigenvalue. Try to
use some other shift please,” when we execute it.

In order to record the convergence history, we draw the
iteration trajectory of the smallest eigenvalue computed by
the PCM method and by the GGL method for every test
problem in Figures 1, 2, 3, and 4. From those figures, we find
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Figure 3: Numerical results of Example 7 with PCM and GGL
methods.
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Figure 4: Numerical results of Example 8 with PCM and GGL
methods.

that Algorithm 1 (the PCMmethod) achieves the steady state
of the dynamical system faster than the GGL method.

In order to test the sensitivity of Algorithm 1, we compute
the test problems with Algorithm 1 for different parameters
𝛾
1
, 𝛾
2
, 𝜂
1
, and 𝜂

2
. The robustness of Algorithm 1 is mainly

determined by the parameters 𝜂
1
and 𝜂
2
and the parameters

𝜂
1
and 𝜂
2
affect its efficiency. Thus, we fix parameters 𝛾

1
= 2

and 𝛾
2
= 1/2. We choose four groups of parameters 𝜂

1
and 𝜂
2

as following:

(I) 𝜂
1
= 0.25, 𝜂

2
= 0.75;

(II) 𝜂
1
= 0.1, 𝜂

2
= 0.9;

Table 2: Numerical results for different parameters of Algorithm 1.

Examples (I) (II) (III) (IV)
Iter (CPU) Iter (CPU) Iter (CPU) Iter (CPU)

Example 5 12 12 12 12
Example 6 19 19 19 17
Example 7 49 49 50 45
Example 8 26 31 22 22

(III) 𝜂
1
= 0.3, 𝜂

2
= 0.7;

(IV) 𝜂
1
= 0.4, 𝜂

2
= 0.8.

The numerical results are reported in Table 2. From Table 2,
we find that Algorithm 1 is not sensitive for different param-
eters 𝜂

1
around 0.25 and 𝜂

2
around 0.75. Thus, we set the

default parameters 𝜂
1
= 0.25 and 𝜂

2
= 0.75 in Algorithm 1.

6. Conclusions

This paper discusses the connection between the small-
est generalized eigenvalue problem and the continuous
dynamical system of DAEs. The trajectory of this special
dynamical system is followed by a new prediction-correction
method (Algorithm 1), which is derived from the implicit
Euler formula and an analogous trust-region technique.
Consequently, an equilibrium point 𝑥∗ of this continuous
dynamical system is obtained. This equilibrium point 𝑥∗ is
also a generalized eigenvector associated with the smallest
generalized eigenvalue.The local superlinear property for the
new prediction-correction method is presented. Numerical
experiments indicate that Algorithm 1 is promising for the
smallest generalized eigenvalue problem. Another interesting
issue is whether or not the second-order, pseudo-transient
method [23] obtains the superior numerical property for this
special dynamical system of DAEs (5)-(6). We would like to
consider this issue in our future works.
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