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Existence andmultiplicity results are established for quasilinear elliptic problemswith nonlinear boundary conditions in an exterior
domain.The proofs combine variational methods with a fibering map, due to the competition between the different growths of the
nonlinearity and nonlinear boundary term.

1. Introduction

Consider the following quasilinear elliptic problem:

− div (𝑎 (𝑥) |∇𝑢|𝑝−2∇𝑢) + 𝑏 (𝑥) |𝑢|

𝑝−2
𝑢 = ℎ (𝑥, 𝑢) , in Ω,

𝑎 (𝑥) |∇𝑢|

𝑝−2 𝜕𝑢

𝜕𝑛

+ 𝑔 (𝑥) |𝑢|

𝑝−2
𝑢 = 0, on Γ = 𝜕Ω,

(1)

whereΩ is a smooth exterior domain inR𝑁, 1 < 𝑝 < 𝑁, and
𝑛 is the unit vector of the outward normal on the boundary
Γ = 𝜕Ω.

Equations of the type (1) arise in many and diverse
contexts like differential geometry [1], nonlinear elasticity
[2], non-Newtonian fluid mechanics [3], glaciology [4], and
mathematical biology [5]. As a result, questions concerning
the solvability of problem (1) have received great attention; see
[6–10].

For ℎ(𝑥, 𝑢) = 𝑐(𝑥)|𝑢|

𝑞−2
𝑢 − 𝑑(𝑥)|𝑢|

𝑠−2
𝑢 − 𝑒(𝑥)|𝑢|

𝑡−2
𝑢

with 𝑞, 𝑠 ∈ (1, 𝑝

∗
), 𝑡 > 𝑝

∗, by using the fibering method,
Kandilakis and Lyberopoulos [6] studied the existence of
nonnegative solutions for problem (1) in unbounded domains
with a noncompact boundary. When ℎ(𝑥, 𝑢) = 𝑐(𝑥)|𝑢|

𝑞−2
𝑢 −

𝑑(𝑥)|𝑢|

𝑠−2
𝑢 with 𝑞, 𝑠 ∈ (1, 𝑝

∗
), Lyberopoulos [7] studied the

existence versus absence of nontrivial weak solutions for

problem (1). Similar consideration can be found inKandilakis
and Magiropoulos [8]. In [9], Filippucci et al. established
existence and nonexistence results for problem (1) via varia-
tionalmethods combinedwith the geometrical feature, where
ℎ(𝑥, 𝑢) = 𝜆𝑔(𝑥)|𝑢|

𝑟−2
𝑢 − |𝑢|

𝑞−2
𝑢. Recently, Chen et al. [10]

considered the existence and multiple of solutions for prob-
lem (1) by the variational principle and the mountain pass
lemma.

Motivated by these findings, we consider the following
quasilinear elliptic problem:

− div (𝑎 (𝑥) |∇𝑢|𝑝−2∇𝑢) + 𝑏 (𝑥) |𝑢|

𝑝−2
𝑢 = 𝑓 (𝑥) |𝑢|

𝑞−2
𝑢,

in Ω,

𝑎 (𝑥) |∇𝑢|

𝑝−2 𝜕𝑢

𝜕𝑛

+ 𝑔 (𝑥) |𝑢|

𝑟−2
𝑢 = 0, on Γ = 𝜕Ω,

(2)

where Ω is a smooth exterior domain in R𝑁 and 𝑛 is the
unit vector of the outward normal on the boundary Γ = 𝜕Ω.
Since 𝑟 ̸= 𝑝, problem (2) is essentially different from problem
(1). Using the Nehari manifold and fibering map, Wu [11]
considered problem (2) for 𝑝 = 2; Afrouzi and Rasouli [12]
considered problem (2) for 1 < 𝑝 < 𝑁.
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Throughout this paper, we make the following assump-
tions.

(𝐻1) 1 < 𝑝 < 𝑁, 1 < 𝑞 < 𝑝

∗, and 1 < 𝑟 < 𝑝∗, where
𝑝

∗
= 𝑁𝑝/(𝑁 − 𝑝) and 𝑝∗ = (𝑁 − 1)𝑝/(𝑁 − 𝑝).

(𝐻2) The function 𝑎(𝑥) ≥ 𝑎0 > 0 and 𝑎(𝑥) ∈ 𝐿

∞
(Ω).

(𝐻3) The function 𝑏(𝑥) ≥ 𝑏0 > 0 and 𝑏(𝑥) ∈ 𝐿

∞
(Ω).

(𝐻4) The function 𝑓(𝑥) satisfies Ω+

𝑓
:= {𝑥 ∈ Ω : 𝑓(𝑥) >

0} ̸= 0 and 𝑓(𝑥) ∈ 𝐿

𝛿
(Ω) with 𝑝/(𝑝 − 𝑞) ≥ 𝛿 > 𝑞0 =

𝑝

∗
/(𝑝

∗
− 𝑞).

(𝐻5) The function 𝑔(𝑥) ≥ 0, 𝑔(𝑥) ̸≡ 0 in Γ and 𝑔(𝑥) ∈

𝐿

𝜎
(Γ) with 𝑝/(𝑝 − 𝑟) ≥ 𝜎 > 𝑟0 = 𝑝∗/(𝑝∗ − 𝑟).

The purpose of this paper is to find existence and multi-
plicity of nonnegative solutions to problem (2). Our proofs
are based on the variational method. The main difficulty is
the lack of compactness of the Sobolev embeddings in un-
bounded domains. To overcome this difficulty, we impose
the integrality conditions (𝐻4)-(𝐻5) on 𝑓 and 𝑔 to establish
compact Sobolev embedding theorems (see Lemmas 3 and 4).

The rest of the paper is organized as follows. In Section 2,
we set up the variational framework of the problem and
give some preliminaries. Section 3 is devoted to the existence
results for problem (2). The multiplicity of nonnegative solu-
tions for problem (2) is considered in the last section.

2. Variational Framework and
Some Preliminaries

In this section, we set up the variational framework and give
some preliminaries.

Define the weighted Sobolev space 𝐸 as the completion of
𝐶

∞

0
(R𝑁

) under the norm

‖𝑢‖

𝑝

𝐸
= ∫

Ω

(|𝑎 (𝑥) ∇𝑢|

𝑝
+ 𝑏 (𝑥) |𝑢|

𝑝
) 𝑑𝑥, (3)

which is equivalent to the standard one under assumptions
(𝐻2)-(𝐻3). Moreover, denote by 𝐿

𝑞
(Ω; |𝑓|) and 𝐿

𝑟
(Γ; 𝑔) the

weighted Lebesgue spaces equipped with the norm:

‖𝑢‖

𝑞

𝐿𝑞(Ω;|𝑓|)
= ∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥)

󵄨

󵄨

󵄨

󵄨

|𝑢|

𝑞
𝑑𝑥,

‖𝑢‖

𝑟

𝐿𝑟(Γ;𝑔)
= ∫

Γ

𝑔 (𝑥) |𝑢|

𝑟
𝑑𝑆,

(4)

respectively. The definition of the weak solution of problem
(2) reads as follows.

Definition 1. One says 𝑢 ∈ 𝐸 is a weak solution of problem (2)
if

∫

Ω

𝑎 (𝑥) |∇𝑢|

𝑝−2
∇𝑢∇V 𝑑𝑥 + ∫

Ω

𝑏 (𝑥) |𝑢|

𝑝−2
𝑢V 𝑑𝑥

+ ∫

Γ

𝑔 (𝑥) |𝑢|

𝑟−2
𝑢V 𝑑𝑆 = ∫

Ω

𝑓 (𝑥) |𝑢|

𝑞−2
𝑢V 𝑑𝑥

(5)

holds for all V ∈ 𝐸.

The energy functional corresponding to problem (2) is

𝐽 (𝑢) =

1

𝑝

‖𝑢‖

𝑝

𝐸
+

1

𝑟

𝐺 (𝑢) −

1

𝑞

𝐹 (𝑢) , (6)

where 𝐺(𝑢) = ∫

Γ
𝑔(𝑥)|𝑢|

𝑟
𝑑𝑆, 𝐹(𝑢) = ∫

Ω
𝑓(𝑥)|𝑢|

𝑞
𝑑𝑥. It is well

known that the weak solutions of (2) are the critical points of
the energy functional 𝐽(⋅). If 𝑢 is a critical point of 𝐽(⋅), then
necessarily 𝑢 belongs to the Nehari manifold:

N = {𝑢 ∈ 𝐸 \ {0} : ⟨𝐽

󸀠
(𝑢) , 𝑢⟩ = 0} , (7)

where

⟨𝐽

󸀠
(𝑢) , 𝑢⟩ = ‖𝑢‖

𝑝

𝐸
+ 𝐺 (𝑢) − 𝐹 (𝑢) . (8)

For all 𝑢 ∈ N, we have 𝑢 ∈ 𝐹+, where

𝐹+ = {𝐹 (𝑢) > 0} . (9)

Moreover

𝐽 (𝑢) = (

1

𝑝

−

1

𝑞

) ‖𝑢‖

𝑝

𝐸
+ (

1

𝑟

−

1

𝑞

)𝐺 (𝑢)

= (

1

𝑝

−

1

𝑟

) ‖𝑢‖

𝑝

𝐸
+ (

1

𝑟

−

1

𝑞

)𝐹 (𝑢)

= (

1

𝑝

−

1

𝑞

)𝐹 (𝑢) + (

1

𝑟

−

1

𝑝

)𝐺 (𝑢) .

(10)

The variational framework that we adopt is based on
the so-called one-dimensional fibering method proposed by
Pohozaev [13]. The central idea of this strategy consists in
embedding the original variational problem into the “wider”
space 𝐸1 := R × 𝐸 and then investigating the conditional
solvability of the new problem in 𝐸1 under an appropriately
imposed constraint. To this end, we define the extended
functional 𝜙 : [0,∞) × 𝐸 → R by setting for any V ∈ 𝐸

𝜙 (𝑡, V) = 𝐽 (𝑡V) =
𝑡

𝑝

𝑝

‖V‖
𝑝

𝐸
+

𝑡

𝑟

𝑟

𝐺 (V) −
𝑡

𝑞

𝑞

𝐹 (V) , 𝑡 ≥ 0.

(11)

If 𝑢 = 𝑡V is a critical point of 𝐽(⋅), then necessarily 𝜙𝑡(𝑡, V) = 0;
that is,

𝑡

𝑝−1
‖V‖

𝑝

𝐸
+ 𝑡

𝑟−1
𝐺 (V) − 𝑡

𝑞−1
𝐹 (V) = 0.

(12)

In particular, if 𝑡 ̸= 0, then (12) is equivalent to

𝜓 (𝑡, V) = ‖V‖
𝑝

𝐸
, (13)

where

𝜓 (𝑡, V) = 𝑡

𝑞−𝑝
𝐹 (V) − 𝑡

𝑟−𝑝
𝐺 (V) . (14)

Now, suppose that 𝑡 = 𝑡(V) ≥ 0 solves (13) for all V ∈ 𝐸\{0};
then 𝑡 ∈ 𝐶

1
(𝐸). Furthermore, if 𝑡(V) > 0 exists and is unique

for all V ∈ 𝐸 \ {0}, then (13) generates a bijection between
𝐸 \ {0} andN. Moreover, the following proposition holds.
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Lemma 2 (see [13]). If V is a conditional critical point of Φ(⋅),
under the constraint ‖V‖𝐸 = 1, then 𝑢 = 𝑡(V)V is a critical point
of 𝐽(⋅), whereΦ(V) = 𝐽(𝑡(V)V) and 𝑡(V) is a nonnegative solution
of (13).

In view of Lemma 2, the problem of finding solutions of
(2) will be reduced to that of locating the critical point ofΦ(⋅)
under the constraint ‖V‖𝐸 = 1.

The following compact embedding theorems play an
important role in the proof of our main results.

Lemma 3. Assume (𝐻2)–(𝐻4). Then the embedding 𝐸 󳨅→

𝐿

𝑞
(Ω; |𝑓|) is compact.

Proof. Let 𝑢 ∈ 𝐸. Since 𝑝/(𝑝 − 𝑞) ≥ 𝛿 > 𝑞0, it follows that
𝑝 ≤ 𝑞𝛿

󸀠
= 𝑞𝛿/(𝛿 − 1) < 𝑝

∗. Let 𝑊1,𝑝
(Ω) be the standard

Banach space endowedwith the norm ‖𝑢‖

𝑝

𝑊1,𝑝(Ω)
= ∫

Ω
(|∇𝑢|

𝑝
+

|𝑢|

𝑝
)𝑑𝑥. By assumptions (𝐻2)-(𝐻3), 𝐸 ∼ 𝑊

1,𝑝
(Ω). Similar to

the proof of [10, Lemma 2] (see also the proof of [14,Theorem
7.9]), we can prove that 𝑊1,𝑝

(Ω) 󳨅→ 𝐿

𝑞𝛿
󸀠

(Ω) is compact
and so is 𝐸 󳨅→ 𝐿

𝑞𝛿
󸀠

(Ω). Let 𝑆1 be the best trace embedding
constant; that is,

𝑆1 = inf
𝑢∈𝐸,𝑢 ̸= 0

‖𝑢‖

𝑝

𝐸

‖𝑢‖

𝑝

𝐿𝑞𝛿
󸀠
(Ω)

. (15)

By Hölder’s inequality, we have

∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥)

󵄨

󵄨

󵄨

󵄨

|𝑢|

𝑞
𝑑𝑥 ≤ (∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑓

󵄨

󵄨

󵄨

󵄨

𝛿
𝑑𝑥)

1/𝛿

(∫

Ω

|𝑢|

𝑞𝛿
󸀠

𝑑𝑥)

1/𝛿
󸀠

≤ 𝑆

−𝑞/𝑝

1

󵄩

󵄩

󵄩

󵄩

󵄨

󵄨

󵄨

󵄨

𝑓

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩𝐿𝛿(Ω)
‖𝑢‖

𝑞

𝐸
.

(16)

This shows that the embedding 𝐸 󳨅→ 𝐿

𝑞
(Ω; |𝑓|) is continu-

ous.
Assume {𝑢𝑛} is a bounded sequence in 𝐸. Then by the

compact embedding 𝐸 󳨅→ 𝐿

𝑞𝛿
󸀠

(Ω), there exist 𝑢 ∈ 𝐸 and a
subsequence of {𝑢𝑛} (not relabelled) such that 𝑢𝑛 → 𝑢

strongly in 𝐿

𝑞𝛿
󸀠

(Ω).
By Hölder’s inequality again, we infer

∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢𝑛 − 𝑢

󵄨

󵄨

󵄨

󵄨

𝑞
𝑑𝑥

≤ (∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑓

󵄨

󵄨

󵄨

󵄨

𝛿
𝑑𝑥)

1/𝛿

(∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑢𝑛 − 𝑢

󵄨

󵄨

󵄨

󵄨

𝑞𝛿
󸀠

𝑑𝑥)

1/𝛿
󸀠

󳨀→ 0

as 𝑛 󳨀→ ∞.

(17)

This completes the proof.

Lemma 4. Assume (𝐻2)-(𝐻3) and (𝐻5). Then the embedding
𝐸 󳨅→ 𝐿

𝑟
(Γ; 𝑔) is compact.

Proof. Let 𝑢 ∈ 𝐸. Since 𝑝/(𝑝 − 𝑟) ≥ 𝜎 > 𝑟0, it follows that 𝑝 ≤

𝑟𝜎

󸀠
= 𝑟𝜎/(𝜎 − 1) < 𝑝∗. Hence the embedding 𝐸 󳨅→ 𝐿

𝑟𝜎
󸀠

(Γ)

is compact (see [15, 16]). Let 𝑆2 be the best trace embedding
constant; that is,

𝑆2 = inf
𝑢∈𝐸,𝑢 ̸= 0

‖𝑢‖

𝑝

𝐸

‖𝑢‖

𝑝

𝐿𝑟𝜎
󸀠
(Γ)

. (18)

By Hölder’s inequality, we have

∫

Γ

𝑔 (𝑥) |𝑢|

𝑟
𝑑𝑆 ≤ (∫

Γ

𝑔

𝜎
𝑑𝑆)

1/𝜎

(∫

Γ

|𝑢|

𝑟𝜎
󸀠

𝑑𝑆)

1/𝜎
󸀠

≤ 𝑆

−𝑟/𝑝

2

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿𝜎(Γ)
‖𝑢‖

𝑟

𝐸
.

(19)

This shows that the embedding 𝐸 󳨅→ 𝐿

𝑟
(Γ; 𝑔) is continuous.

Assume {𝑢𝑛} is a bounded sequence in 𝐸. Then by the
compact embedding 𝐸 󳨅→ 𝐿

𝑟𝜎
󸀠

(Γ), there exist 𝑢 ∈ 𝐸 and a
subsequence of {𝑢𝑛} (not relabelled) such that 𝑢𝑛 → 𝑢

strongly in 𝐿

𝑟𝜎
󸀠

(Γ).
By Hölder’s inequality again, we infer

∫

Γ

𝑔 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢𝑛 − 𝑢

󵄨

󵄨

󵄨

󵄨

𝑟
𝑑𝑆

≤ (∫

Γ

𝑔

𝜎
𝑑𝑆)

1/𝜎

(∫

Γ

󵄨

󵄨

󵄨

󵄨

𝑢𝑛 − 𝑢

󵄨

󵄨

󵄨

󵄨

𝑟𝜎
󸀠

𝑑𝑆)

1/𝜎
󸀠

󳨀→0 as 𝑛 󳨀→ ∞.

(20)

This completes the proof.

We also need the followingmountain pass lemma (see [17,
18]).

Lemma 5. Let𝐸 be a real Banach space and 𝐽 ∈ 𝐶

1
(𝐸,R)with

𝐽(0) = 0. Suppose

(𝐴1) there are 𝜌, 𝛼 > 0 such that 𝐽(𝑢) ≥ 𝛼 for ‖𝑢‖𝐸 = 𝜌;
(𝐴2) there is 𝑒 ∈ 𝐸,‖𝑒‖𝐸 > 𝜌 such that 𝐽(𝑒) < 0.

Define

Γ0 = {𝛾 ∈ 𝐶

1
([0, 1] , 𝐸) | 𝛾 (0) = 0, 𝛾 (1) = 𝑒} . (21)

Then

𝑐 = inf
𝛾∈Γ0

max
0≤𝑡≤1

𝐽 (𝛾 (𝑡)) ≥ 𝛼 (22)

is finite and 𝐽(⋅) possess a (PS)𝑐 sequence at level 𝑐. Further-
more, if 𝐽 satisfies the (PS) condition, then 𝑐 is a critical value
of 𝐽.

To get multiplicity results, we need the following fountain
theorem due to Bartsch [19] and a critical point theorem in
[20, 21].

Let𝑋 be a reflexive and separable Banach space. It is well
known that there exist 𝑒𝑗 ∈ 𝑋 and 𝑒∗

𝑗
∈ 𝑋

∗ (𝑗 = 1, 2, . . .) such
that

(1) ⟨𝑒𝑖, 𝑒
∗

𝑗
⟩ = 𝛿𝑖𝑗, where 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 for

𝑖 ̸= 𝑗,
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(2) 𝑋 = span{𝑒1, 𝑒2, . . .} and𝑋
∗
= span{𝑒∗

1
, 𝑒

∗
2
, . . .}.

For convenience, we write

𝑋𝑗 = span {𝑒𝑗} , 𝑌𝑘 =

𝑘

⨁

𝑗=1

𝑋𝑗, 𝑍𝑘 =

∞

⨁

𝑗=𝑘

𝑋𝑗,

𝑗, 𝑘 = 1, 2, . . . .

(23)

Lemma 6 (fountain theorem [19]). Assume 𝐽 ∈ 𝐶

1
(𝑋,R1

) is
an even functional that satisfies the (PS)𝑐 condition. If for every
𝑘 ∈ N there exist 𝜌𝑘 > 𝑟𝑘 > 0 such that

(𝐵1) 𝑎𝑘 := inf𝑢∈𝑍𝑘,‖𝑢‖𝑋=𝑟𝑘𝐽(𝑢) → ∞ as 𝑘 → ∞,
(𝐵2) 𝑏𝑘 := max𝑢∈𝑌𝑘,‖𝑢‖𝑋=𝜌𝑘𝐽(𝑢) ≤ 0,

then J has a sequence of critical points {𝑢𝑘} with 𝐽(𝑢𝑘) → ∞.

Lemma 7 (see [20, 21]). Let 𝐽 ∈ 𝐶

1
(𝑋,R1

), where 𝑋 is a
Banach space. Assume that 𝐽 satisfies the (PS)𝑐 condition and
is even and bounded from below, and 𝐽(0) = 0. If for any 𝑘 ∈ N

there exists a 𝑘-dimensional subspace 𝑌𝑘 and 𝜌𝑘 > 0 such that

sup
𝑢∈𝑌𝑘,‖𝑢‖𝑋=𝜌𝑘

𝐽 (𝑢) < 0, (24)

then 𝐽 has a sequence of critical values 𝑐𝑘 < 0 satisfying 𝑐𝑘 → 0

as 𝑘 → ∞.

3. Existence of Nonnegative Solutions

In this section, the existence results are established for prob-
lem (2). The proofs combine variational methods with a
fibering map. Since 𝐽(𝑢) = 𝐽(|𝑢|), we may suppose that the
solution to problem (2) is nonnegative throughout this paper.

Theorem 8. Let (𝐻1)–(𝐻5) hold with either 𝑞 < min{𝑝, 𝑟} or
𝑞 > max{𝑝, 𝑟}. Then problem (2) admits a nonnegative non-
trivial weak solution 𝑢 ∈ 𝐸 \ {0} which is also a ground state.

Proof. Suppose 𝑞 < min{𝑝, 𝑟}. Rewriting (13) as

𝑡

𝑝−𝑞
‖V‖

𝑝

𝐸
+ 𝑡

𝑟−𝑞
𝐺 (V) = 𝐹 (V) , (25)

we immediately see that for every V ∈ 𝐹+ (where 𝐹+ is defined
by (9)) there exists a unique 𝑡(V) > 0 satisfying (25). More-
over, it can be easily checked that

𝜇𝑡 (𝜇V) = 𝑡 (V) , for 𝜇 > 0, V ∈ 𝐹+, (26)

Φ (V) = (

1

𝑝

−

1

𝑞

) (𝑡 (V))
𝑝
‖V‖

𝑝

𝐸
+ (

1

𝑟

−

1

𝑞

) (𝑡 (V))
𝑟
𝐺 (V) < 0

∀V ∈ 𝐹+.

(27)

Consider now the variational problem

𝑀 := inf
V∈𝐹+,‖V‖𝐸=1

Φ (V) < 0. (28)

Let {V𝑛} be aminimizing sequence in 𝐹+ with ‖V𝑛‖𝐸 = 1.Then
there exists V0 ∈ 𝐸 such that V𝑛 ⇀ V0 in 𝐸. By Lemmas 3 and
4, we have 𝐹(V𝑛) → 𝐹(V0) ≥ 0 and 𝐺(V𝑛) → 𝐺(V0) ≥ 0.

We first assert that V0 ∈ 𝐹+. Suppose the contrary; then
𝐹(V0) = 0. In view of (25),

𝐹 (V𝑛) ≥ (𝑡(V𝑛))
𝑝−𝑞

.
(29)

Letting 𝑛 → ∞, it follows that 𝑡(V𝑛) → 0. Thus

Φ(V𝑛) = (

1

𝑝

−

1

𝑞

) (𝑡 (V𝑛))
𝑝
󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝

𝐸

+ (

1

𝑟

−

1

𝑞

) (𝑡 (V𝑛))
𝑟
𝐺 (V𝑛) 󳨀→ 0, as 𝑛 󳨀→ ∞,

(30)

which contradicts𝑀 < 0.
Next, we prove ‖V0‖𝐸 = 1. If not, then ‖V0‖𝐸 <

lim inf𝑛→∞‖V𝑛‖𝐸 = 1. So, there exists 𝜇 > 1 such that
‖𝜇V0‖𝐸 = 1. From (25), we have

(𝑡(𝜇V0))
𝑝−𝑞

+ (𝑡(𝜇V0))
𝑟−𝑞

𝐺 (𝜇V0) = 𝐹 (𝜇V0) . (31)

This and (26) yield

𝜇

−𝑝
(𝑡(V0))

𝑝−𝑞
+ (𝑡(V0))

𝑟−𝑞
𝐺 (V0) = 𝐹 (V0) . (32)

On the other hand, it follows from (29) that {𝑡(V𝑛)} is
bounded and so there exists a subsequence (not relabelled)
such that 𝑡(V𝑛) → 𝑡0 > 0. Thus by (25), we have

𝑡

𝑝−𝑞

0
+ 𝑡

𝑟−𝑞

0
𝐺 (V0) = 𝐹 (V0) . (33)

Hence 𝑡0 < 𝑡(V0). Notice that

Ψ (𝑡) = (

1

𝑝

−

1

𝑞

) 𝑡

𝑝󵄩
󵄩

󵄩

󵄩

V0
󵄩

󵄩

󵄩

󵄩

𝑝

𝐸
+ (

1

𝑟

−

1

𝑞

) 𝑡

𝑟
𝐺 (V0) (34)

is strictly decreasing for all 𝑡 > 0; we have

𝑀 = lim inf
𝑛→∞

Φ(V𝑛) ≥ Ψ (𝑡0) > Ψ (𝑡 (V0)) = Φ (V0) , (35)

which is a contradiction. So, ‖V0‖𝐸 = 1 and V0 is a critical point
of Φ(⋅). By Lemma 2, 𝑢 = 𝑡(V0)V0 is a nontrivial solution of
problem (2). Since 𝑡 = 𝑡(V) is a unique solution of (25), then
(25) generates a bijection between 𝐸 \ {0} and N and so the
obtained solution is actually a ground state.

The case 𝑞 > max{𝑝, 𝑟} can be treated in a similar way.

Remark 9. Afrouzi and Rasouli [12] consider the following
problem:

− div (|∇𝑢|𝑝−2∇𝑢) + 𝑏 (𝑥) |𝑢|

𝑝−2
𝑢 = 𝜆𝑓 (𝑥) |𝑢|

𝑞−2
𝑢, in Ω,

|∇𝑢|

𝑝−2 𝜕𝑢

𝜕𝑛

= 𝑔 (𝑥) |𝑢|

𝑟−2
𝑢, on Γ = 𝜕Ω,

(36)

where Ω is a bounded domain in R𝑁 and 1 < 𝑞 < 𝑝 <

𝑟 < 𝑝∗ = (𝑁 − 1)𝑝/(𝑁 − 𝑝). The functions 𝑓 and 𝑔

are continuous functions which change sign in Ω. Using the
Nehari manifold and fibering map, they proved that problem
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(36) has at least two nontrivial nonnegative solutions if |𝜆| is
sufficiently small. In fact, by slightmodification, we can prove
that the result they established is still true if Ω is a smooth
exterior domain or the parameters satisfy 1 < 𝑟 < 𝑝 < 𝑞 <

𝑝

∗
= 𝑁𝑝/(𝑁−𝑝). But for𝑔(𝑥) ≥ 0, we can prove that problem

(36) has at least one nontrivial nonnegative solution for |𝜆| is
sufficiently small via the method used in [12]. Notice that our
result (Theorem 8) does not need |𝜆| to be small.

Theorem 10. Let (𝐻1)–(𝐻5) hold with 𝑟 < 𝑞 < 𝑝. Then
problem (2) has a nonnegative nontrivial weak solution.

Proof. From Lemma 3, we have

𝐹 (𝑢) ≤ 𝑆

−𝑞/𝑝

1

󵄩

󵄩

󵄩

󵄩

𝑓

󵄩

󵄩

󵄩

󵄩𝐿𝛿(Ω)
‖𝑢‖

𝑞

𝐸
.

(37)

Thus

𝐽 (𝑢) ≥

1

𝑝

‖𝑢‖

𝑝

𝐸
−

1

𝑞

𝑆

−𝑞/𝑝

1

󵄩

󵄩

󵄩

󵄩

𝑓

󵄩

󵄩

󵄩

󵄩𝐿𝛿(Ω)
‖𝑢‖

𝑞

𝐸
. (38)

So 𝐽(𝑢) is coercive by 𝑝 > 𝑞.
By Lemmas 3 and 4, it is easy to verify that 𝐽 is weakly

lower semicontinuous. So 𝐽 has a minimum point 𝑢 in 𝐸 and
𝑢 is a weak solution of (2).

In the following, we prove inf𝑢∈𝐸𝐽(𝑢) < 0. Let V ∈

𝑊

1,𝑝

0
(Ω) ∩ 𝐹+. Then

𝐽 (𝑡V) =
1

𝑝

𝑡

𝑝
‖V‖

𝑝

𝐸
−

1

𝑞

𝑡

𝑞
𝐹 (V) . (39)

Thus 𝐽(𝑡V) < 0 for 𝑡 > 0 is sufficiently small. Notice that
𝑊

1,𝑝

0
(Ω) ∩ 𝐹+ ⊂ 𝐸; we obtain

inf
V∈𝐸

𝐽 (V) ≤ inf
V∈𝑊
1,𝑝

0
(Ω)∩𝐹+

𝐽 (V) < 0. (40)

Thus the minimum point of 𝐽 is nontrivial.

Theorem 11. Let (𝐻1)–(𝐻5) hold with 𝑝 < 𝑞 < 𝑟. Then
problem (2) has a nonnegative nontrivial weak solution in
𝑊

1,𝑝

0
(Ω) ∩ 𝐹+.

Proof. Let 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) ∩ 𝐹+. Then

𝐽 (𝑡𝑢) =

𝑡

𝑝

𝑝

‖𝑢‖

𝑝

𝐸
−

𝑡

𝑞

𝑞

𝐹 (𝑢) . (41)

Thus 𝐽(𝑡𝑢) ≥ 𝛼 > 0 for 𝑡 small and 𝐽(𝑡𝑢) < 0 for 𝑡 large.
Let {𝑢𝑛} ⊂ 𝑊

1,𝑝

0
(Ω) ∩ 𝐹+ satisfy 𝐽(𝑢𝑛) → 𝑐 in 𝐸 and

𝐽

󸀠
(𝑢𝑛) → 0 in 𝐸

∗. Then

𝑐 + 1 ≥ 𝐽 (𝑢𝑛) −
1

𝑞

⟨𝐽

󸀠
(𝑢𝑛) , 𝑢𝑛⟩ = (

1

𝑝

−

1

𝑞

)

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

𝐸
. (42)

This shows that ‖𝑢𝑛‖𝐸 is bounded in 𝐸. Up to a subsequence,
we obtain 𝑢𝑛 ⇀ 𝑢 in 𝐸. Thus

∫

Ω

𝑎 (𝑥) |∇𝑢|

𝑝−2
∇𝑢∇ (𝑢𝑛 − 𝑢) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑥) |𝑢|

𝑝−2
𝑢 (𝑢𝑛 − 𝑢) 𝑑𝑥 󳨀→ 0.

(43)

It follows from Lemmas 3 and 4 that

𝑢𝑛 󳨀→ 𝑢 in 𝐿

𝑞
(Ω;

󵄨

󵄨

󵄨

󵄨

𝑓

󵄨

󵄨

󵄨

󵄨

) , 𝐿

𝑟
(Γ; 𝑔) . (44)

Hence

∫

Ω

𝑓 (𝑥) |𝑢|

𝑞−2
𝑢 (𝑢𝑛 − 𝑢) 𝑑𝑥 󳨀→ 0,

∫

Γ

𝑔 (𝑥)

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑟−2
𝑢𝑛 (𝑢𝑛 − 𝑢) 𝑑𝑆 󳨀→ 0,

𝐵𝑛 := ∫

Ω

𝑓 (𝑥) (

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑞−2
𝑢𝑛 − |𝑢|

𝑞−2
𝑢) (𝑢𝑛 − 𝑢) 𝑑𝑥 󳨀→ 0,

𝐶𝑛 := ∫

Γ

𝑔 (𝑥) (

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑟−2
𝑢𝑛 − |𝑢|

𝑟−2
𝑢) (𝑢𝑛 − 𝑢) 𝑑𝑆 󳨀→ 0.

(45)

Then (45) give that ⟨𝐽󸀠(𝑢), 𝑢𝑛−𝑢⟩ → 0. Notice that 𝐽󸀠(𝑢𝑛) →

0; we have

⟨𝐽

󸀠
(𝑢𝑛) − 𝐽

󸀠
(𝑢) , 𝑢𝑛 − 𝑢⟩ = 𝐴𝑛 + 𝐵𝑛 − 𝐶𝑛 󳨀→ 0, (46)

where

𝐴𝑛 = ∫

Ω

𝑎 (𝑥) (

󵄨

󵄨

󵄨

󵄨

∇𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝−2
∇𝑢𝑛 − |∇𝑢|

𝑝−2
∇𝑢)∇ (𝑢𝑛 − 𝑢) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑥) (

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝−2
𝑢𝑛 − |𝑢|

𝑝−2
𝑢) (𝑢𝑛 − 𝑢) 𝑑𝑥.

(47)

Using the standard inequality inR𝑁 given by

⟨

󵄨

󵄨

󵄨

󵄨

𝜉

󵄨

󵄨

󵄨

󵄨

𝑝−2
𝜉 −

󵄨

󵄨

󵄨

󵄨

𝜂

󵄨

󵄨

󵄨

󵄨

𝑝−2
𝜂, 𝜉 − 𝜂⟩ ≥ 𝐶𝑝

󵄨

󵄨

󵄨

󵄨

𝜉 − 𝜂

󵄨

󵄨

󵄨

󵄨

𝑝
, 𝑝 ≥ 2,

⟨

󵄨

󵄨

󵄨

󵄨

𝜉

󵄨

󵄨

󵄨

󵄨

𝑝−2
𝜉 −

󵄨

󵄨

󵄨

󵄨

𝜂

󵄨

󵄨

󵄨

󵄨

𝑝−2
𝜂, 𝜉 − 𝜂⟩ ≥ 𝐶𝑝

󵄨

󵄨

󵄨

󵄨

𝜉 − 𝜂

󵄨

󵄨

󵄨

󵄨

2
(

󵄨

󵄨

󵄨

󵄨

𝜉

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜂

󵄨

󵄨

󵄨

󵄨

)

𝑝−2
,

1 < 𝑝 < 2,

(48)

we have from (46) that 𝑢𝑛 → 𝑢 in 𝐸. Thus 𝐽(⋅) satisfies (PS)
condition. Then the assertion of this theorem follows from
Lemma 5.

Next, we seek for a solution in𝐸\𝑊1,𝑝

0
(Ω)with𝑝 < 𝑞 < 𝑟.

In this case, we find it necessary to strengthen our hypothesis
by assuming that the function 𝑔(⋅) is positive. That is, (𝐻5)
will be replaced by

(𝐻󸀠

5
) the function 𝑔(𝑥) > 0 and 𝑔(𝑥) ∈ 𝐿

𝜎
(Γ) with 𝑝/(𝑝 −

𝑟) ≥ 𝜎 > 𝑟0 = 𝑝∗/(𝑝∗ − 𝑟).

Theorem 12. Let (𝐻1)–(𝐻4) and (𝐻󸀠

5
) hold with 𝑝 < 𝑞 < 𝑟.

Suppose also

M := {(𝐹(V))
𝑟−𝑝

> 𝜉(𝐺(V))
𝑞−𝑝

‖V‖
𝑝(𝑟−𝑞)

𝐸
} ̸= 0,

(49)

where 𝜉 = (𝑟 − 𝑝)

𝑟−𝑝
/((𝑞 − 𝑝)

𝑞−𝑝
(𝑟 − 𝑞)

𝑟−𝑞
)(𝑟/𝑝)

𝑟−𝑞. Then
problem (2) has a nonnegative nontrivial weak solution in
𝐸/𝑊

1,𝑝

0
(Ω).
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Proof. Define

LV0
= {V ∈ M : 𝐺 (

V

‖V‖𝐸
) ≥ 𝐺(

V0
󵄩

󵄩

󵄩

󵄩

V0
󵄩

󵄩

󵄩

󵄩𝐸

)} . (50)

Fix V0 with LV0
̸= 0. In view of assumption (𝐻󸀠

5
), we have

𝐺(V0) > 0. For all 𝑢 ∈ LV0
, there exist 𝑡 > 0 and V ∈ LV0

with
‖V‖𝐸 = 1 such that 𝑢 = 𝑡V. Moreover,𝐺(V) ≥ 𝐺(V0/‖V0‖𝐸) > 0.
Thus

𝐽 (𝑢) =

𝑡

𝑝

𝑝

‖V‖
𝑝

𝐸
+

𝑡

𝑟

𝑟

𝐺 (V) −
𝑡

𝑞

𝑞

𝐹 (V) 󳨀→ ∞, (51)

as 𝑡 → ∞. Hence 𝐽(⋅) is coercive in LV0
. By Lemmas 3 and

4, it is easy to verify that 𝐽 is weakly lower semicontinuous.
So 𝐽 has a minimum point 𝑢 inLV0

and 𝑢 is a weak solution
of (2).

In the following, we prove that inf𝑢∈LV0
𝐽(𝑢) < 0. Notice

that 𝜓(𝑡, V) = 0 as 𝑡 → 0, 𝜓(𝑡, V) = −∞ as 𝑡 → +∞, and
𝜓

󸀠

𝑡
(𝑡, V) = (𝑞 − 𝑝)𝑡

𝑞−𝑝−1
𝐹(V) − (𝑟 − 𝑝)𝑡

𝑟−𝑝−1
𝐺(V); we infer that

𝜓(𝑡, V) attain its maximum at 𝑡𝑀(V), where

𝑡𝑀 (V) = (

𝑞 − 𝑝

𝑟 − 𝑝

𝐹(V)

𝐺(V)
)

1/(𝑟−𝑞)

.

(52)

If 0 < ‖V‖
𝑝

𝐸
< 𝜓(𝑡𝑀(V), V), then (13) has exactly two

solutions 𝑡1(V) and 𝑡2(V) with 0 < 𝑡1(V) < 𝑡𝑀(V) < 𝑡2(V). Let
𝑡(V) = 𝑡2(V). We have from (11) and (12) that

𝐽 (𝑡 (V) V) =
𝑞 − 𝑝

𝑝𝑞

(𝑡 (V))
𝑝
‖V‖

𝑝

𝐸
−

𝑟 − 𝑞

𝑞𝑟

(𝑡 (V))
𝑟
𝐺 (V) . (53)

Let V ∈ LV0
. It follows that

(𝑡 (V))
𝑟−𝑝

> (𝑡𝑀 (V))
𝑟−𝑝

>

𝑟 (𝑞 − 𝑝) ‖V‖
𝑝

𝐸

𝑝 (𝑟 − 𝑞)𝐺 (V)
,

(54)

which ensures 𝐽(𝑡(V)V) < 0. Thus inf𝑢∈LV0
𝐽(𝑢) < 0. This

implies that the weak solution of (2) is nontrivial.

Remark 13. Condition (49) may be viewed as grading the
“strength” of interaction induced by 𝐹(𝑢) and 𝐺(𝑢). Hence,
qualitatively speaking, one may rephrase Theorem 12 as
saying that if 𝑝 < 𝑞 < 𝑟, then problem (2) admits a nontrivial
weak solution provided that 𝐹(⋅) “prevails” over 𝐺(⋅).

4. Multiplicity of Nonnegative Solutions

In this section, we establish multiplicity results for the cases
𝑞 > max{𝑝, 𝑟} and 𝑞 < min{𝑝, 𝑟} by Lemmas 6 and 7,
respectively. To this purpose, the assumption (𝐻4) will be
replaced by the following:

(𝐻󸀠

4
) the function 𝑓(𝑥) satisfies 𝑓(𝑥) > 0 in Ω and 𝑓(𝑥) ∈

𝐿

𝛿
(Ω) with 𝑝/(𝑝 − 𝑞) ≥ 𝛿 > 𝑞0 = 𝑝

∗
/(𝑝

∗
− 𝑞).

Theorem 14. Let (𝐻1)–(𝐻3), (𝐻󸀠

4
), and (𝐻5) hold with 𝑞 >

max{𝑝, 𝑟}. Then problem (2) has a sequence of solutions 𝑢𝑘 in
E with 𝐽(𝑢𝑘) → ∞ as 𝑘 → ∞.

Proof. We will prove this theorem by fountain theorem. The
proof is divided into three steps.

(1) Let 𝑌𝑘 and 𝑍𝑘 be defined by (23) and 𝛽𝑘 =

sup
𝑢∈𝑍𝑘,‖𝑢‖𝐸=1

‖𝑢‖𝐿𝑞(Ω;𝑓). Then it follows that 𝛽𝑘 → 0 (see
[22]). Therefore, we have

𝐽 (𝑢) ≥

1

𝑝

‖𝑢‖

𝑝

𝐸
−

1

𝑞

𝐹 (𝑢) ≥

1

𝑝

‖𝑢‖

𝑝

𝐸
−

1

𝑞

𝛽

𝑞

𝑘
‖𝑢‖

𝑞

𝐸
. (55)

Choosing 𝑟𝑘 = (𝑞/(2𝑝𝛽

𝑞

𝑘
))

1/(𝑞−𝑝), we obtain that if 𝑢 ∈

𝑍𝑘,‖𝑢‖𝐸 = 𝑟𝑘, then

𝐽 (𝑢) ≥

1

2𝑝

𝑟

𝑝

𝑘
󳨀→ +∞. (56)

Thus (𝐵1) in Lemma 6 is proved.
(2)Since in the finite dimensional space 𝑌𝑘 all norms are

equivalent, there exist 𝐶 > 0 such that 𝐹(𝑢) ≥ 𝐶‖𝑢‖

𝑞

𝐸
hold for

all 𝑢 ∈ 𝑌𝑘. Thus by (19),

𝐽 (𝑢) ≤

1

𝑝

‖𝑢‖

𝑝

𝐸
+

1

𝑟

𝑆

−𝑟/𝑝

2

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿𝜎(Γ)
‖𝑢‖

𝑟

𝐸
−

1

𝑞

𝐶‖𝑢‖

𝑞

𝐸
,

∀𝑢 ∈ 𝑌𝑘.

(57)

Therefore (𝐵2) in Lemma 6 is satisfied for every 𝜌𝑘 := ‖𝑢‖𝐸 >

0 large enough.
(3) Let {𝑢𝑛} be a (PS)𝑐 sequence of 𝐽. Then we have

𝑐 + 1 ≥ 𝐽 (𝑢𝑛) −
1

𝑞

⟨𝐽

󸀠
(𝑢𝑛) , 𝑢𝑛⟩

= (

1

𝑝

−

1

𝑞

)

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

𝐸
+ (

1

𝑟

−

1

𝑞

)𝐺 (𝑢) ≥ (

1

𝑝

−

1

𝑞

)

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

𝐸
.

(58)

Therefore {𝑢𝑛} is bounded in 𝐸. Similar to the proof of
Theorem 11, we can verify that 𝐽(⋅) satisfies (PS) condition.

Obviously, 𝐽(⋅) is an even functional and 𝐽(0) = 0. Thus
the assertion of Theorem 14 follows from Lemma 6.

Theorem 15. Let (𝐻1)–(𝐻3), (𝐻󸀠

4
), and (𝐻5) hold with 𝑞 <

min{𝑝, 𝑟}. Then problem (2) has a sequence of solutions 𝑢𝑘 in
E with 𝐽(𝑢𝑘) < 0 and 𝐽(𝑢𝑘) → 0 as 𝑘 → ∞.

Proof. Since

𝐽 (𝑢) =

1

𝑝

‖𝑢‖

𝑝

𝐸
+

1

𝑟

𝐺 (𝑢) −

1

𝑞

𝐹 (𝑢)

≥

1

𝑝

‖𝑢‖

𝑝

𝐸
−

1

𝑞

𝑆

−𝑞/𝑝

1

󵄩

󵄩

󵄩

󵄩

𝑓

󵄩

󵄩

󵄩

󵄩𝐿𝛿(Ω)
‖𝑢‖

𝑞

𝐸

(59)

and 𝑞 < 𝑝, 𝐽(⋅) is coercive and bounded from below. As
before, we can verify that (PS) condition holds.

Let 𝑌𝑘 be defined by (23) and 𝑢 ∈ 𝑌𝑘. Since 𝑌𝑘 is a finite
dimensional space and 𝑞 < min{𝑝, 𝑟}, we can choose 𝜌𝑘 > 0

small enough such that

sup
𝑢∈𝑌𝑘,‖𝑢‖𝐸=𝜌𝑘

𝐽 (𝑢) ≤

1

𝑝

‖𝑢‖

𝑝

𝐸
+

1

𝑟

𝑆

−𝑟/𝑝

2

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿𝜎(Γ)
‖𝑢‖

𝑟

𝐸

−

1

𝑞

𝐶‖𝑢‖

𝑞

𝐸
< 0.

(60)

We obtain a sequence of solutions 𝑢𝑘 by Lemma 7.
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