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This work aims to investigate the existence of global attractors for a class of partial functional differential equations with state-
dependent delay. Using the classic theory about global attractors in infinite dimensional dynamical systems, we obtain some
sufficient conditions for guaranteeing the existence of a global attractor.

1. Introduction

Partial functional differential equations with state-dependent
delay appear frequently in applications as models of various
phenomena, such as biological, chemical, and physical sys-
tems, which are characterized by both spatial and temporal
variables. For this reason, the study of this kind of equation
has receivedmuch attention in recent years. For more details,
see for instance [1–5] and the references therein.However, it is
worth pointing out that all of the papers mentioned above are
mainly devoted to the existence of solutions ormild solutions.
The literature related to global attractors is limited.

It is known that the global attractor is a very useful tool,
which is valid for more general situations than those for
stability to study the asymptotical behavior. In the present
paper, we are devoted to investigating the existence of a global
attractor for a type of partial functional differential equations
with state-dependent delay as follows:

𝑢
󸀠

(𝑡) = 𝐴𝑢 (𝑡) + 𝐹 (𝑡, 𝑢
𝜌(𝑡,𝑢
𝑡
)
) , 𝑡 ≥ 0,

𝑢
0
= 𝜙 ∈ 𝐶,

(1)

where 𝐶 := 𝐶([−𝑟, 0], 𝐸), 𝑟 > 0, is the space of continuous
functions from [−𝑟, 0] to the Banach space 𝐸, equipped with
the uniform norm ‖𝜙‖ = sup

−𝑟≤𝜃≤0
|𝜙(𝜃)|, and 𝐴 is a linear

operator on a Banach space 𝐸 satisfying the following well-
known Hille-Yosida condition:

(H
1
) there exist 𝑀

0
≥ 1 and 𝜔 ∈ R such that

󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴)

−𝑛󵄩
󵄩
󵄩
󵄩
≤

𝑀
0

(𝜆 − 𝜔)
𝑛

for 𝜆 ∈ R (𝐴) , 𝜆 > 𝜔, (2)

whereR(𝐴) is the resolvent set of 𝐴.

Consider that 𝜌 : [0, +∞) × 𝐶 → [0, +∞) satisfies
the following properties.

(H
2
) Let L(𝜌) = {𝜌(𝑠, 𝜙) : (𝑠, 𝜙) ∈ [0, +∞) × 𝐶, 𝜌(𝑠, 𝜙) ≥

0} . There exists a continuous and bounded function
𝐽
𝜙
: L(𝜌) → [0, +∞) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
𝜌(𝑡,𝑥
𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝐽
𝜙

(𝑡)
󵄩
󵄩
󵄩
󵄩
𝜙
𝑡

󵄩
󵄩
󵄩
󵄩
, ∀𝑡 ∈ L (𝜌) . (3)

Consider that𝐹 : [0, +∞)×𝐶 → 𝐸 satisfies the following
properties.

(H3) (i) For every 𝜙 ∈ 𝐶, the function 𝑡 → 𝐹(𝑡, 𝜙) is
strongly measurable.

(ii) For each 𝑡 ∈ [0, +∞], 𝐹(𝑡, ⋅) : 𝐶 → 𝐸 is
continuous.
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(iii) There exist a positive constant 𝑐 and a bounded
function𝑚 : [0, +∞) → [0, +∞) such that

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑡, 𝜙)

󵄨
󵄨
󵄨
󵄨
≤ 𝑐 + 𝑚 (𝑡)

󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
. (4)

For every 𝑡 ≥ 0, the history function 𝑥
𝑡
∈ 𝐶 is defined by

𝑥
𝑡
(𝜃) = 𝑥 (𝑡 + 𝜃) , for 𝜃 ∈ [−𝑟, 0] . (5)

In the present paper, wewill obtain some sufficient conditions
for guaranteeing the existence of a global attractor to (1) with
𝐴 being a Hille-Yosida operator but not necessarily densely
defined.

2. Preliminaries

We recall some definitions and results from the integrated
semigroup.

Definition 1 (see [6]). Let 𝑇 > 0. A function 𝑥 : [−𝑟, 𝑇] → 𝐸

is said to be an integral solution of (1) if

(i) ∫

𝑡

0
𝑥(𝑠)𝑑𝑠 ∈ 𝐷(𝐴) for 𝑡 ≥ 0,

(ii) 𝑥(𝑡) = 𝜙(0) + 𝐴(∫

𝑡

0
𝑥(𝑠)𝑑𝑠) + ∫

𝑡

0
𝐹(𝑠, 𝑥

𝜌(𝑠,𝑥
𝑠
)
)𝑑𝑠,

(iii) 𝑥
0
= 𝜙.

Remark 2. Clearly, if 𝑥 is an integral solution of (1), then
𝑥
𝑡
(0) = 𝑥(𝑡) ∈ 𝐷(𝐴) for 𝑡 ∈ [0, 𝑇]. So 𝜙(0) ∈ 𝐷(𝐴), which is a

necessary condition for the existence of an integral solution.

Let us introduce the part 𝐴
0
of the operator 𝐴 in 𝐷(𝐴)

which is defined by

𝐷(𝐴
0
) = {𝑥 ∈ 𝐷 (𝐴) : 𝐴𝑥 ∈ 𝐷 (𝐴)} ,

𝐴
0
𝑥 = 𝐴𝑥 for 𝑥 ∈ 𝐷 (𝐴

0
) .

(6)

Lemma 3 (see [7]). 𝐴
0
generates a strongly continuous semi-

group (𝑇
0
(𝑡))
𝑡≥0

on 𝐷(𝐴).

Based on the previous abstract results, we give some
concrete results for (1); see [6].

Definition 4. Let 𝑇 > 0. For any given 𝜙 ∈ 𝐶 with 𝜙(0) ∈

𝐷(𝐴), the function 𝑥(⋅) := 𝑥(⋅, 𝜙) : [−𝑟, 𝑇] → 𝐸 is said to be
an integral solution of (1) with initial function 𝜙 at 𝑡 = 0 if

𝑥 (𝑡)

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑇
0
(𝑡) 𝜙 (0)

+ lim
𝜆→+∞

∫

𝑡

0

𝑇
0
(𝑡 − 𝑠)

× 𝜆(𝜆𝐼 − 𝐴)
−1

𝐹 (𝑠, 𝑥
𝜌(𝑠,𝑥
𝑠
)
) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,

𝜙 (𝑡) , −𝑟 ≤ 𝑡 ≤ 0.

(7)

Lemma 5 (see [6]). Under the assumptions (H
1
)–(H
3
), if 𝜙 ∈

𝐶 with 𝜙(0) ∈ 𝐷(𝐴), then (1) posseses a unique global integral
solution 𝑥(⋅, 𝜙) : [−𝑟, +∞) → 𝐸 with initial function 𝜙 at
𝑡 = 0, which can be expressed by (7).

According to Remark 2, denote Σ
0

= {𝜙 ∈ 𝐶 : 𝜙(0) ∈

𝐷(𝐴)}. Then from Lemma 5, for each 𝜙 ∈ Σ
0
, we define the

following operator on Σ
0
by

𝑈 (𝑡) 𝜙 = 𝑥
𝑡
(⋅, 𝜙) , 𝑡 ≥ 0, (8)

where 𝑥
𝑡
(⋅, 𝜙) is a unique global integral solution of (1)

in Lemma 5. Clearly, (𝑈(𝑡))
𝑡≥0

is a strongly continuous
semigroup on Σ

0
.

Definition 6 (see [8]). An invariant set A is said to be a
global attractor ifA is amaximal compact invariant set which
attracts each bounded set 𝐵 ⊂ 𝑋.

Definition 7 (see [8]). A semigroup 𝑈(𝑡) : 𝑋 → 𝑋, 𝑡 ≥ 0,
is said to be point dissipative if there is a bounded set 𝐵 ⊆ 𝑋

that attracts each point of 𝐸 under 𝑈(𝑡).

Lemma 8 (see [9]). If

(i) there is a 𝑡
0
≥ 0 such that 𝑈(𝑡) is compact for 𝑡 > 𝑡

0
,

(ii) 𝑈(𝑡) is point dissipative in 𝑋,

then there exists a nonempty global attractorA in 𝑋.

3. The Global Attractor

In this section, we will obtain the existence of a global
attractor to (7) by using Lemma 8. For the convenience of the
proof, we give some assumptions and lemmas.

(H
4
) For 𝐶

0
-semigroup 𝑇

0
(𝑡), 𝑡 ≥ 0, there exists positive

constant 𝛼 such that
󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝑡)

󵄩
󵄩
󵄩
󵄩
≤ 𝑒
−𝛼𝑡 for 𝑡 ≥ 0. (9)

(H
5
) 𝑇
0
(𝑡) is compact for 𝑡 > 0.

Lemma 9 (see [10]). If

𝑥 (𝑡) ≤ ℎ (𝑡) + ∫

𝑡

𝑡
0

𝑘 (𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) , (10)

where all the functions involved are continuous on [𝑡
0
, 𝑇), 𝑇 ≤

+∞, and 𝑘(𝑡) ≥ 0, then 𝑥(𝑡) satisfies

𝑥 (𝑡) ≤ ℎ (𝑡) + ∫

𝑡

𝑡
0

ℎ (𝑠) 𝑘 (𝑠) 𝑒
∫
𝑡

𝑠
𝑘(𝑢)𝑑𝑢

𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇) . (11)

Lemma 10. Assume that assumptions (H
1
)–(H
4
) hold. Then,

for each 𝜙 ∈ Σ
0
, if 𝛼 ̸=𝑚

𝑎
𝐽
𝑎
𝑒
𝛾𝑟, there exists a constant 𝛾 >

𝛼 such that the integral solution 𝑥(⋅, 𝜙) of (1) satisfies the
following inequality:

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤

𝑐𝑒
𝛾𝑟

𝛼 − 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

+ 𝑒
𝛾𝑟

(
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
−

𝑐

𝛼 − 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

) 𝑒
(𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟
−𝛼)𝑡

, 𝑡 ≥ 0,

(12)

where𝑚
𝑎
= max

𝑠∈[0,∞)
𝑚(𝑠) and 𝐽

𝑎
= max

𝑠∈L(𝜌)𝐽
𝜙
(𝑠).
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Proof. By (H
3
), for each 𝜙 ∈ Σ

0
, we have

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑡, 𝜙)

󵄨
󵄨
󵄨
󵄨
≤ 𝑐 + 𝑚 (𝑡)

󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
. (13)

In the following proof, for simplicity, take 𝑀
0
= 1, 𝑛 = 1

in (H
1
); then

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴)

−1󵄩󵄩
󵄩
󵄩
󵄩
≤

1

𝜆 − 𝜔

for 𝜆 > 𝜔. (14)

Instead of considering the norm ‖𝑥
𝑡
‖ directly, we firstly

estimate ‖𝑒
𝛾⋅
𝑥
𝑡
‖ for some constant 𝛾 > 𝛼.

Case 1. For 0 ≤ 𝑡 ≤ 𝑟, by (7), we have

sup
−𝑟≤𝜃≤0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝜃
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨

= max{ sup
−𝑟≤𝜃≤−𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝜃
𝜙 (𝑡 + 𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
, sup
−𝑡≤𝜃≤0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝜃
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
}

≤ max{𝑒
−𝛾𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
, sup
−𝑡≤𝜃≤0

𝑒
𝛾𝜃
𝑒
−𝛼(𝑡+𝜃) 󵄨

󵄨
󵄨
󵄨
𝜙 (0)

󵄨
󵄨
󵄨
󵄨

+ sup
−𝑡≤𝜃≤0

𝑒
𝛾𝜃 lim
𝜆→+∞

∫

𝑡+𝜃

0

𝑒
−𝛼(𝑡+𝜃−𝑠) 󵄩󵄩

󵄩
󵄩
󵄩
𝜆(𝜆𝐼 − 𝐴)

−1󵄩󵄩
󵄩
󵄩
󵄩

× [𝑐 + 𝑚 (𝑠) 𝐽
𝜙

(𝑠)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
] 𝑑𝑠}

≤ max{𝑒
−𝛾𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
, 𝑒
−𝛼𝑡 󵄨

󵄨
󵄨
󵄨
𝜙 (0)

󵄨
󵄨
󵄨
󵄨

+ sup
−𝑡≤𝜃≤0

𝑐𝑒
−𝛼(𝑡+𝜃)

𝑒
𝛾𝜃 lim
𝜆→+∞

∫

𝑡+𝜃

0

𝜆

𝜆 − 𝜔

𝑒
𝛼𝑠
𝑑𝑠

+ sup
−𝑡≤𝜃≤0

𝑚
𝑎
𝐽
𝑎
𝑒
−𝛼(𝑡+𝜃)

𝑒
𝛾𝜃

× lim
𝜆→+∞

∫

𝑡+𝜃

0

𝜆

𝜆 − 𝜔

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠}

≤ 𝑒
−𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+ 𝑐𝑒
−𝛼𝑡

∫

𝑡

0

𝑒
𝛼𝑠
𝑑𝑠 + 𝑚

𝑎
𝐽
𝑎
𝑒
−𝛼𝑡

∫

𝑡

0

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠

= 𝑒
−𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

(1 − 𝑒
−𝛼𝑡

) + 𝑚
𝑎
𝐽
𝑎
𝑒
−𝛼𝑡

∫

𝑡

0

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠.

(15)

Case 2. For 𝑡 ≥ 𝑟, we have

sup
−𝑟≤𝜃≤0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝜃
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
−𝑟≤𝜃≤0

𝑒
𝛾𝜃
𝑒
−𝛼(𝑡+𝜃) 󵄨

󵄨
󵄨
󵄨
𝜙 (0)

󵄨
󵄨
󵄨
󵄨

+ sup
−𝑟≤𝜃≤0

𝑒
𝛾𝜃 lim
𝜆→+∞

∫

𝑡+𝜃

0

𝑒
−𝛼(𝑡+𝜃−𝑠) 󵄩󵄩

󵄩
󵄩
󵄩
𝜆(𝜆𝐼 − 𝐴)

−1󵄩󵄩
󵄩
󵄩
󵄩

× [𝑐 + 𝑚
𝑎
𝐽
𝑎

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
] 𝑑𝑠

≤ 𝑒
−𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

(1 − 𝑒
−𝛼𝑡

)

+ 𝑚
𝑎
𝐽
𝑎
𝑒
−𝛼𝑡

∫

𝑡

0

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠.

(16)

Therefore, from (15) and (16), for 𝑡 ≥ 0, we get

sup
−𝑟≤𝜃≤0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝜃
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑒
−𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

(1 − 𝑒
−𝛼𝑡

)

+ 𝑚
𝑎
𝐽
𝑎
𝑒
−𝛼𝑡

∫

𝑡

0

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠.

(17)

On the other hand, we have

sup
−𝑟≤𝜃≤0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝛾𝜃
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
= sup
−𝑟≤𝜃≤0

𝑒
𝛾𝜃 󵄨

󵄨
󵄨
󵄨
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨

≥ sup
−𝑟≤𝜃≤0

𝑒
−𝛾𝑟 󵄨

󵄨
󵄨
󵄨
𝑥
𝑡
(𝜃)

󵄨
󵄨
󵄨
󵄨

= 𝑒
−𝛾𝑟 󵄩

󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
,

(18)

which combines with (17) and yields

𝑒
−𝛾𝑟 󵄩

󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ 𝑒
−𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

(1 − 𝑒
−𝛼𝑡

) + 𝑚
𝑎
𝐽
𝑎
𝑒
−𝛼𝑡

∫

𝑡

0

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠.

(19)

So we get

𝑒
𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ 𝑒
𝛾𝑟

[
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

(𝑒
𝛼𝑡

− 1)] + 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

∫

𝑡

0

𝑒
𝛼𝑠 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠.

(20)

Using Lemma 9, we have

𝑒
𝛼𝑡 󵄩

󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ 𝑒
𝛾𝑟 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

𝑒
𝛾𝑟

(𝑒
𝛼𝑡

− 1)

+ 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

∫

𝑡

0

[𝑒
𝛾𝑟 󵄩

󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
+

𝑐

𝛼

𝑒
𝛾𝑟

(𝑒
𝛼𝑠

− 1)]

× 𝑒
∫
𝑡

𝑠
𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟
𝑑𝑢

𝑑𝑠

≤

𝑐𝑒
𝛾𝑟
𝑒
𝛼𝑡

𝛼 − 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

+ 𝑒
𝛾𝑟

(
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩
−

𝑐

𝛼 − 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

) 𝑒
𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟
𝑡
.

(21)

Thus, (12) holds.

Lemma 11. Assume that the conditions of Lemma 10 are
satisfied; furthermore, 𝛼 > 𝑚

𝑎
𝐽
𝑎
𝑒
𝛾𝑟, where 𝛾 is the constant

defined by Lemma 10. Then (𝑈(𝑡))
𝑡≥0

is point dissipative.

Proof. From Lemma 10, we find that for each 𝜙 ∈ Σ
0
, since

𝛼 > 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟, there exits a 𝑡

0
:= 𝑡
0
(𝜙) > 0 such that for 𝑡 > 𝑡

0
,

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤

𝑐𝑒
𝛾𝑟

𝛼 − 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

+ 1 (independent of 𝜙) . (22)
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Therefore,

𝐵
𝑋
0

(0,

𝑐𝑒
𝛾𝑟

𝛼 − 𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

+ 1) ∩ 𝑋
0

(23)

attracts each point of𝑋
0
, where 𝐵

𝑋
0

(0, (𝑐𝑒
𝛾𝑟
/(𝛼 −𝑚

𝑎
𝐽
𝑎
𝑒
𝛾𝑟
)) +

1) denotes the open ball in Σ
0
with center 0 and radius

(𝑐𝑒
𝛾𝑟
/(𝛼 − 𝑚

𝑎
𝐽
𝑎
𝑒
𝛾𝑟
)) + 1.

Now, we show the compactness of the operator 𝑈(𝑡).

Lemma 12. Assume that assumptions (H
1
)–(H
5
) hold. Then,

𝑈(𝑡) is compact for 𝑡 > 𝑟.

Proof. Let 𝑡 > 𝑟 and let {𝜙
𝑛
} be any bounded sequence of Σ

0
.

We will use the Ascoli-Arzelà theorem to show that {𝑈(𝑡)𝜙
𝑛
:

𝑛 ∈ N} is precompact in Σ
0
by two steps.

Step 1. Show that for any 𝜃 ∈ [−𝑟, 0], the set

𝑍 (𝜃) = {((𝑈 (𝑡) 𝜙
𝑛
) (𝜃) : 𝑛 ∈ N)} (24)

is precompact. For 𝑡 > 𝑟 and 𝜃 ∈ [−𝑟, 0], by (8), we have

(𝑈 (𝑡) 𝜙
𝑛
) (𝜃) = 𝑇

0
(𝑡 + 𝜃) 𝜙

𝑛
(0)

+ lim
𝜆→+∞

∫

𝑡+𝜃

0

𝑇
0
(𝑡 + 𝜃 − 𝑠)

× 𝜆(𝜆𝐼 − 𝐴)
−1

𝐹(𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠,

(25)

where 𝑥
𝑛
(⋅) is the integer solution of (1) with initial function

𝜙
𝑛
. From (H

4
) and the boundedness of {𝜙

𝑛
}, we know that

{𝑇
0
(𝑡 + 𝜃)𝜙

𝑛
(0) : 𝑛 ∈ N} are precompact. Now, considering

the second term in (25), for sufficiently small 𝜀 > 0, we have

lim
𝜆→+∞

∫

𝑡+𝜃

0

𝑇
0
(𝑡 + 𝜃 − 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠

= 𝑇
0
(𝜀) lim
𝜆→+∞

∫

𝑡+𝜃−𝜀

0

𝑇
0
(𝑡 + 𝜃 − 𝑠 − 𝜀) 𝜆(𝜆𝐼 − 𝐴)

−1

× 𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠

+ lim
𝜆→+∞

∫

𝑡+𝜃

𝑡+𝜃−𝜀

𝑇
0
(𝑡 + 𝜃 − 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠.

(26)

Note that from Lemma 10, we have

sup
𝑛∈N

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

𝑠

󵄩
󵄩
󵄩
󵄩
< ∞, 𝑠 ∈ [0, 𝑡] . (27)

By (H
2
) and (H

3
), we get

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐 + 𝑚
𝑎
𝐽
𝑎

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛

𝑠

󵄩
󵄩
󵄩
󵄩
. (28)

Therefore, there exist some constants 𝑀
1
,𝑀
2
> 0 such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝜆→+∞

∫

𝑡+𝜃−𝜀

0

𝑇
0
(𝑡 + 𝜃 − 𝑠 − 𝜀) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹(𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
1
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

lim
𝜆→+∞

∫

𝑡+𝜃

𝑡+𝜃−𝜀

𝑇
0
(𝑡 + 𝜃 − 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
2
𝜀

(29)

which yields

𝑇
0
(𝜀) { lim
𝜆→+∞

∫

𝑡+𝜃−𝜀

0

𝑇
0
(𝑡 + 𝜃 − 𝑠 − 𝜀)

× 𝜆(𝜆𝐼 − 𝐴)
−1

𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠 : 𝑛 ∈ N} ⊂ Γ

𝜀
,

(30)

where Γ
𝜀
is a compact set. Thus, 𝑍(𝜃) is precompact.

Step 2. Show the equicontinuity of {𝑈(𝑡)𝜙
𝑛
: 𝑛 ∈ N}. Let −𝑟 ≤

𝜃
1
< 𝜃
2
≤ 0; we have

(𝑈 (𝑡) 𝜙
𝑛
) (𝜃
2
) − (𝑈 (𝑡) 𝜙

𝑛
) (𝜃
1
)

= [𝑇
0
(𝑡 + 𝜃
2
) − 𝑇
0
(𝑡 + 𝜃
1
)] 𝜙
𝑛
(0)

+ lim
𝜆→+∞

∫

𝑡+𝜃
2

0

𝑇
0
(𝑡 + 𝜃
2
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠

− lim
𝜆→+∞

∫

𝑡+𝜃
1

0

𝑇
0
(𝑡 + 𝜃
1
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
) 𝑑𝑠

= 𝑇
0
(𝑡 + 𝜃
1
) [𝑇
0
(𝜃
2
− 𝜃
1
) − 𝐼] 𝜙

𝑛
(0)

+ lim
𝜆→+∞

∫

𝑡+𝜃
2

𝑡+𝜃
1

𝑇
0
(𝑡 + 𝜃
2
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1
𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥
𝑠
)
) 𝑑𝑠

+ lim
𝜆→+∞

∫

𝑡+𝜃
1

0

[𝑇
0
(𝑡 + 𝜃
2
− 𝑠) − 𝑇

0
(𝑡 + 𝜃
1
− 𝑠)]

× 𝜆(𝜆𝐼 − 𝐴)
−1

𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥
𝑠
)
) 𝑑𝑠,

(31)

which leads to

󵄨
󵄨
󵄨
󵄨
(𝑈 (𝑡) 𝜙

𝑛
) (𝜃
2
) − (𝑈 (𝑡) 𝜙

𝑛
) (𝜃
1
)
󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝑡 + 𝜃
1
) [𝑇
0
(𝜃
2
− 𝜃
1
) − 𝐼]

󵄩
󵄩
󵄩
󵄩

+ lim
𝜆→+∞

∫

𝑡+𝜃
2

𝑡+𝜃
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇
0
(𝑡 + 𝜃
2
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1

× 𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 +
󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝜃
2
− 𝜃
1
) − 𝐼

󵄩
󵄩
󵄩
󵄩
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× lim
𝜆→+∞

∫

𝑡+𝜃
1

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇
0
(𝑡 + 𝜃
1
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1

× 𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠.

(32)

Since the mapping 𝑡 → 𝑇
0
(𝑡) is norm continuous for 𝑡 > 0,

for some 𝛿 ∈ (0, 𝑡 − 𝑟), put

𝑇
0
(𝑡 + 𝜃
1
) [𝑇
0
(𝜃
2
− 𝜃
1
) − 𝐼]

= 𝑇
0
(𝑡 + 𝜃
1
− 𝛿) [𝑇

0
(𝜃
2
− 𝜃
1
+ 𝛿) − 𝑇

0
(𝛿)] .

(33)

Then
󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝜃
2
− 𝜃
1
+ 𝛿) − 𝑇

0
(𝛿)

󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝜃

2
󳨀→ 𝜃
1
. (34)

Thus
󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝑡 + 𝜃
1
) [𝑇
0
(𝜃
2
− 𝜃
1
) − 𝐼]

󵄩
󵄩
󵄩
󵄩
󳨀→ 0 as 𝜃

2
󳨀→ 𝜃
1
. (35)

By the boundedness of |𝑇
0
(𝑡 + 𝜃
2
− 𝑠)𝜆(𝜆𝐼 − 𝐴)

−1
𝐹(𝑥
𝑛

𝜌(𝑠,𝑥
𝑠
)
)|,

then

lim
𝜆→+∞

∫

𝑡+𝜃
2

𝑡+𝜃
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇
0
(𝑡 + 𝜃
2
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1

× 𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 󳨀→ 0 as 𝜃
2
󳨀→ 𝜃
1
.

(36)

Obviously, lim
𝜆→+∞

∫

𝑡+𝜃
1

0
|𝑇
0
(𝑡 + 𝜃

1
− 𝑠)𝜆(𝜆𝐼 − 𝐴)

−1

𝐹(𝑥
𝑛

𝜌(𝑠,𝑥
𝑠
)
)|𝑑𝑠 belongs to a compact subset of 𝐸; we have

󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝜃
2
− 𝜃
1
) − 𝐼

󵄩
󵄩
󵄩
󵄩

× lim
𝜆→+∞

∫

𝑡+𝜃
1

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇
0
(𝑡 + 𝜃
1
− 𝑠) 𝜆(𝜆𝐼 − 𝐴)

−1

× 𝐹 (𝑥
𝑛

𝜌(𝑠,𝑥𝑠)
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 󳨀→ 0

as 𝜃
2
󳨀→ 𝜃
1
.

(37)

Hence {𝑈(𝑡)𝜙
𝑛
: 𝑛 ∈ N} is equicontinuity.

Here, we state our main theorem of this paper, which is
an immediate consequence of Lemmas 8, 11, and 12.

Theorem 13. Assume that assumptions (H
1
)–(H
5
) hold. If 𝛼 >

𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟, then (1) has a nonempty global attractorA.

As applications, we give the following example.
Let 𝐸 = 𝐶([0, 𝜋],R) and 𝐶 = 𝐶([−𝑟, 0], 𝐸).

𝜕

𝜕𝑡

𝑢 (𝑡, 𝑥) =

𝜕
2

𝜕𝑥
2
𝑢 (𝑡, 𝑥) − 𝜇𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑢 (𝑡 − 𝑟, 𝑥)) , 0 ≤ 𝑥 ≤ 𝜋, 𝑡 ≥ 0,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ≥ 0,

𝑢 (𝜃, 𝑥) = 𝜙 (𝜃) 𝑥, 0 ≤ 𝑥 ≤ 𝜋, −𝑟 ≤ 𝜃 ≤ 0,

(38)

where 𝜇 > 0 is a constant, 𝑢(𝑡, ⋅) ∈ 𝐸, and 𝑓 : 𝐶 → 𝐸

satisfies (H
3
). Define the operator 𝐴 by

𝐷 (𝐴) = {𝑞 ∈ 𝐶
2

([0, 𝜋] ,R) : 𝑞 (0) = 𝑞 (𝜋) = 0} ,

𝐴 (𝑞) = 𝑞
󸀠󸀠

(39)

and 𝐹 : 𝐶 → 𝐸 with

𝐹 (𝜑) (𝑥) = 𝑓 (𝜑 (−𝑟) (𝑥)) , 𝑥 ∈ [0, 𝜋] . (40)

Then 𝐴 satisfies the Hille-Yosida condition in 𝐸 and

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆𝐼 − 𝐴)

−1󵄩󵄩
󵄩
󵄩
󵄩
≤

1

𝜆

for 𝜆 > 0. (41)

Moreover, the part 𝐴
0
of 𝐴 in 𝐷(𝐴) is the infinitesimal

generator of a strongly continuous semigroup (𝑇
0
(𝑡))
𝑡≥0

on
𝐸 such that

󵄩
󵄩
󵄩
󵄩
𝑇
0
(𝑡)

󵄩
󵄩
󵄩
󵄩
≤ 𝑒
−𝑡 for 𝑡 ≥ 0. (42)

According toTheorem 13, if there exist 𝛾 > 𝜇,𝑚
𝑎
and 𝐽
𝑎
such

that𝑚
𝑎
𝐽
𝑎
𝑒
𝛾𝑟

< 𝜇, then (38) has a global attractor.
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