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In this paper, a novel method named as splitting matching pursuit (SMP) is proposed to reconstruct𝐾-sparse signal in compressed
sensing.The proposedmethod selects𝐹𝑙 (𝐹𝑙 > 2𝐾) largest components of the correlation vector 𝑐, which are divided into𝐹 split sets
with equal length 𝑙.The searching area is thus expanded to incorporatemore candidate components, which increases the probability
of finding the true components at one iteration. The proposed method does not require the sparsity level 𝐾 to be known in prior.
The Merging, Estimation and Pruning steps are carried out for each split set independently, which makes it especially suitable for
parallel computation. The proposed SMP method is then extended to more practical condition, e.g. the direction of arrival (DOA)
estimation problem in phased array radar systemusing compressed sensing. Numerical simulations show that the proposedmethod
succeeds in identifying multiple targets in a sparse radar scene, outperforming other OMP-type methods. The proposed method
also obtains more precise estimation of DOA angle using one snapshot compared with the traditional estimation methods such as
Capon, APES (amplitude and phase estimation) and GLRT (generalized likelihood ratio test) based on hundreds of snapshots.

1. Introduction

The standard noiseless model in compressed sensing is

𝑦 = Φ𝑥, (1)

where 𝑥 ∈ R𝑁 is a 𝐾-sparse signal (𝐾 ≪ 𝑁), 𝑦 ∈ R𝑀 is a
measurement of 𝑥, and Φ is an 𝑀 × 𝑁 sensing matrix. The
compressed sensing recovery problem is defined as follows:
given 𝑦 and Φ, find a signal 𝑥 within the class of interest
satisfies (1) exactly. The compressed sensing recovery process
consists of a search for the sparsest signal 𝑥 that yields the
measurement 𝑦. By defining the 𝑙

0
“norm” of a vector ‖𝑤‖

0
as

the number of nonzero entries in𝑤, the simplest way to pose
a recovery algorithm is using the optimization

𝑥 = arg min
𝑦=Φ𝑤

‖𝑤‖0. (2)

Solutions to (2) therefore lead to algorithms for recovering
𝐾-sparse signals from 𝑀 linear measurements. In general,

the minimization of (2) is NP-hard. An alternative to the 𝑙
0

“norm” used in (2) is to use the 𝑙
1
“norm”, defined as ‖𝑤‖

1
=

∑
𝑁

𝑛=1
|𝑤(𝑛)|. The resulting adaptation of (2), known as basis

pursuit (BP) [1], is formally defined as

𝑥 = arg min
𝑦=Φ𝑤

‖𝑤‖1. (3)

Since the 𝑙
1
“norm” is convex, (3) can be seen as a convex

relaxation of (2). The optimization (3) can be modified to
allow for noise in the measurements 𝑦 = Φ𝑥 + 𝑒, where
𝑒 denotes an 𝑀 × 1 measurement noise vector. We simply
change the constraint on the solution to

𝑥 = arg min
‖𝑦−Φ𝑤‖

2
≤𝜖

‖𝑤‖1, (4)

where 𝜖 > ‖𝑒‖
2
is an appropriately chosen bound on

the noise magnitude. This modified optimization is known
as basis pursuit with inequality constraints (BPIC) and is
a quadratic program with polynomial complexity solvers
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[2]. The Lagrangian relaxation of this quadratic program is
written as

𝑥 = arg min ‖𝑤‖1 + 𝜆
󵄩󵄩󵄩󵄩𝑦 − Φ𝑤

󵄩󵄩󵄩󵄩2 (5)

and is known as basis pursuit denoising (BPDN). There exist
many efficient solvers to find BP, BPIC, and BPDN solutions;
for an overview, see [3]. Unfortunately, the complexity of the
linear programming algorithms for solving (3)∼(5) is highly
impractical for large-scale applications.

An alternative approach to sparse signal recovery is based
on the idea of iterative greedy pursuit. The basic greedy algo-
rithm is thematching pursuit (MP) [4].OMP [5] is a variation
of MP method, which adds a least-squares minimization
step to MP method to obtain the best approximation over
the chosen atoms. Unlike MP and OMP choosing just one
atom at each time, ROMP, StOMP, SP, CoSaMP, and BAOMP
methods choose several atoms at each iteration. Furthermore,
regularized OMP (ROMP) [6], subspace pursuit (SP) [7],
compressive sampling matching pursuit (CoSaMP) [8], and
backtracking-basedmatching pursuit (BAOMP) [9]methods
also use a two-step selection technique to carefully choose
the atoms. While SP and CoSaMP have offered comparable
theoretical reconstruction quality to the linear programming
methods along with low reconstruction complexity, they
require the sparsity level to be known for exact recovery.
As an improvement, the BAOMP algorithm achieves the
blind sparse signal reconstruction without requiring the
sparsity level 𝐾. However, the BAOMP algorithm adopts
two parameters (atom-adding constant 𝜇

1
and atom-deleting

constant𝜇
2
) which are relatedwith sparsity level and required

to be tuned online.
In this paper, a novelmethod named as splittingmatching

pursuit (SMP) is proposed to reconstruct sparse signal in
compressed sensing.The SP/CoSaMPalgorithmassumes that
the true indices in the support set of the original signal
correspond to the large components of the correlation vector
and choose 𝐾/2𝐾 largest components at each iteration.
However, in practice some true indices may correspond to
a set of small components. The proposed method selects 𝐹𝑙
(𝐹𝑙 > 2𝐾) largest components of the correlation vector, which
expands the searching area and increases the probability
of finding the true components at one iteration. The 𝐹𝑙

candidate components are divided into 𝐹 split sets with
equal length 𝑙. The proposed method does not require the
sparsity level𝐾 to be known in prior. Different from BAOMP
algorithm which adopts two tuning parameters related with
sparsity level, the proposed algorithm uses two parameters
𝐹 and 𝑙 which are preset and determined by 𝑁 and 𝑀. The
candidate components are divided into 𝐹 split sets, which
could be processed simultaneously and suitable for parallel
computation.

The proposed SMP method is then extended to more
practical condition, for example, the direction of arrival
(DOA) estimation problem in phased-array radar system
using compressed sensing. Numerical simulations show that
the proposedmethod succeeds in identifyingmultiple targets
in a sparse radar scene, outperforming other OMP-type
methods. The proposed method also obtains more precise

estimation of DOA angle using one snapshot compared
with the traditional estimation methods such as Capon
[10], APES [11], and GLRT [12] based on hundreds of
snapshots.

The rest of the sections are organized as follows. The
proposed SMP method is introduced in Section 2. The
simulation results are listed in Section 3, and the paper is
summarized in Section 4.

2. The Splitting Matching Pursuit Method

The most difficult part of signal reconstruction is to identify
the locations of 𝐾 largest components in the target signal.
The SP/CoSaMP algorithm assumes that the true indices
in the support set of the original signal correspond to
the large components of the correlation vector and choose
𝐾/2𝐾 largest components at each iteration. However, in
practice some true indices may correspond to a set of small
components. The proposed SMP selects 𝐹𝑙 (𝐹𝑙 > 2𝐾) largest
components of the correlation vector, which expands the
searching area and increases the probability of finding the
true components at one iteration. In the following, a short
introduction of the proposed method is given in Section 2.1,
and the detailed algorithm is introduced in Section 2.2.
The convergency analysis, parameters setting, complexity
analysis, and convergency speed analysis of the proposed
method are provided in Sections 2.3 to 2.6, respectively.

2.1. Brief Introduction to Splitting Matching Pursuit Method.
A schematic diagram of the proposed algorithm is depicted
in Figure 1. At the beginning of each iteration, the proposed
method selects 𝐹𝑙 (𝐹𝑙 > 2𝐾) largest components of the
correlation vector, which are divided into 𝐹 split sets with
equal length 𝑙. Each split set is merged with the estimated
support set from the previous iteration, resulting in a
sequence of merged split sets. The proposed algorithm then
approximates the target signal on each merged split set
to obtain a sequence of split estimates using least-square
algorithm. A set of pruned split sets are then built by
retaining only the 𝑙 largest magnitude entries in the split
estimates. The obtained pruned split sets are then combined
to a final merged set, which contains as much as possible
true components. An interim estimate is then calculated
based on the final merged set using least-square algorithm.
An estimated support set is obtained by retaining 𝑙 indices
corresponding to the largest magnitude entries in the interim
estimate, based on which a final estimate is generated. The
iterations repeat if the 𝑙

2
norm (magnitude) of the calculated

residual is less than a threshold 𝑇.

2.2. Detailed Procedures of Splitting Matching Pursuit Method.
Thedetailed procedure of the SMPmethod is listed as follows.
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Figure 1: Description of reconstruction procedures of the SMP method.

Algorithm 1 (the SMP method).
Input. Sensing matrix Φ, measurement vector 𝑦, parameters
𝐹 and 𝑙, and threshold 𝑇 to halt the iterations.

Output. The estimated signal 𝑥out.
Initialization

(1) 𝑎0 = 0, where 𝑎
0 indicates the initial estimated

support set and 0 denotes empty set. 𝑎 is the estimated
support set with length 𝑙.

(2) 𝑟0 = 𝑦, where 𝑟0 denotes the initial residual.
(3) 𝑐0 = Φ

∗
𝑟
0, where 𝑐

0 denotes the initial correlation
vector and Φ

∗ denotes the transpose of matrixΦ.

Iteration. At the 𝑘th iteration, go through the following steps.

(1) Splitting. Locate the 𝐹𝑙 largest components of the
correlation vector at the (𝑘−1)th iteration, and divide
them into 𝐹 split sets as

𝐼
𝑘

𝑗
= 𝑐
𝑘−1

(𝑗−1)𝑙+1:𝑗𝑙
, 𝑗 = 1, . . . , 𝐹, (6)

where 𝐼𝑘
𝑗
denotes the 𝑗th split set at the 𝑘th iteration,

and 𝑐
𝑘−1 denotes the correlation vector at the (𝑘−1)th

iteration. Furthermore, 𝑐𝑘−1
(𝑗−1)𝑙+1:𝑗𝑙

denotes the ((𝑗 −

1)𝑙 + 1)th largest magnitude entry to the (𝑗𝑙)th largest
magnitude entry of 𝑐𝑘−1, 𝑗 = 1, . . . , 𝐹.

(2) Support Merging. Each newly identified split set is
united with the estimated support set from the previ-
ous iteration, resulting in a sequence of merged split
sets as

𝐽
𝑘

𝑗
= 𝐼
𝑘

𝑗
∪ 𝑎
𝑘−1

, 𝑗 = 1, . . . , 𝐹, (7)

where 𝐽
𝑘

𝑗
denotes the 𝑗th merged split set at the 𝑘th

iteration, and 𝑎
𝑘−1 denotes the estimated support set

at the (𝑘 − 1)th iteration.
(3) Estimation. The proposed algorithm then solves a

least square problem to approximate the nonzero

entries of the target signal on each merged split set
(𝐽𝑘
𝑗
, 𝑗 = 1, . . . , 𝐹) and sets other entries as zero,

resulting in a sequence of split estimates as

𝑏
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨𝐽𝑘
𝑗

= (Φ
𝐽
𝑘

𝑗

)

†

𝑦,

𝑏
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨(𝐽𝑘
𝑗
)
𝑐 = 0, 𝑗 = 1, . . . , 𝐹,

(8)

where 𝑏
𝑘

𝑗
denotes the 𝑗th split estimate of the target

signal at the 𝑘th iteration. The vector 𝑏
𝑘

𝑗
|
𝐽
𝑘

𝑗

is com-
posed of the entries of 𝑏

𝑘

𝑗
indexed by 𝑖 ∈ 𝐽

𝑘

𝑗
, and

𝑏
𝑘

𝑗
|
(𝐽
𝑘

𝑗
)
𝑐 is composed of the entries of 𝑏𝑘

𝑗
indexed by

𝑖 ∈ (𝐽
𝑘

𝑗
)
𝑐. † indicates pseudoinverse operation. The

matrix Φ
𝐽
𝑘

𝑗

consists of the columns of Φ with indices
𝑖 ∈ 𝐽
𝑘

𝑗
.

(4) Pruning. Obtain a sequence of pruned split sets via
retaining only the largest 𝑙 indices corresponding to
the largest magnitude entries in 𝑏

𝑘

𝑗
|
𝐽
𝑘

𝑗

, 𝑗 = 1, . . . , 𝐹,
for example,

𝐻
𝑘

𝑗
= {indices of 𝑙 largest magnitude entries in 𝑏

𝑘

𝑗
|
𝐽
𝑘

𝑗

} ,

𝑗 = 1, . . . , 𝐹,

(9)

where 𝐻𝑘
𝑗
denotes the 𝑗th pruned split set at the 𝑘th

iteration.

(5) Split Sets Merging. The pruned split sets are merged to
form a final merged set, 𝐺𝑘, as

𝐺
𝑘
= union {𝐻

𝑘

1
, 𝐻
𝑘

2
, . . . , 𝐻

𝑘

𝐹
} . (10)
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(6) Estimation. An interim estimate of the original signal
is calculated based on the final merged set 𝐺𝑘 using
least-square algorithm as

𝑞
𝑘󵄨󵄨󵄨󵄨󵄨𝐺𝑘

= (𝐺
𝑘
)
†

𝑦,

𝑞
𝑘󵄨󵄨󵄨󵄨󵄨(𝐺𝑘)

𝑐 = 0,

(11)

where 𝑞𝑘 denotes the interim estimate of the original
signal at the 𝑘th iteration. The vector 𝑞

𝑘
|
𝐺
𝑘 is com-

posed of the entries of 𝑞𝑘 indexed by 𝑖 ∈ 𝐺
𝑘, and

𝑞
𝑘
|
(𝐺
𝑘
)
𝑐 is composed of the entries of 𝑞𝑘 indexed by

𝑖 ∈ (𝐺
𝑘
)
𝑐.

(7) Pruning. Obtain the estimated support set by retain-
ing 𝑙 indices corresponding to the largest magnitude
entries in the vector 𝑞𝑘|

𝐺
𝑘 , as

𝑎
𝑘
= {indices of 𝑙 largest magnitude entries in 𝑞

𝑘󵄨󵄨󵄨󵄨󵄨𝐺𝑘
} ,

(12)

where 𝑎𝑘 denotes the estimated support set at the 𝑘th
iteration.

(8) Estimation. Obtain the final estimate at each iteration,
based on 𝑎

𝑘 using least-square algorithm as

𝑥
𝑘

𝐹

󵄨󵄨󵄨󵄨󵄨𝑎𝑘
= (Φ
𝑎
𝑘)
†
𝑦,

𝑥
𝑘

𝐹

󵄨󵄨󵄨󵄨󵄨(𝑎𝑘)
𝑐 = 0,

(13)

where 𝑥
𝑘

𝐹
denotes the final estimate at the 𝑘th itera-

tion. The vector 𝑥𝑘
𝐹
|
𝑎
𝑘 is composed of the entries of

𝑥
𝑘

𝐹
indexed by 𝑖 ∈ 𝑎

𝑘, and 𝑥
𝑘

𝐹
|
(𝑎
𝑘
)
𝑐 is composed of the

entries of 𝑥𝑘
𝐹
indexed by 𝑖 ∈ (𝑎

𝑘
)
𝑐. The matrix Φ

𝑎
𝑘

consists of the columns of Φ with indices 𝑖 ∈ 𝑎
𝑘.

(9) Residual calculation:

𝑟
𝑘
= 𝑦 − (Φ

𝑎
𝑘) 𝑥
𝑘

𝐹

󵄨󵄨󵄨󵄨󵄨𝑎𝑘
, (14)

where 𝑟𝑘 denotes the residual at the 𝑘th iteration.
(10) If ‖𝑟𝑘‖

2
> 𝑇, perform the correlation calculation 𝑐

𝑘
=

Φ
∗
𝑟
𝑘, and then go to step (1) of the (𝑘+1)th iteration;

otherwise, set 𝑥out = 𝑥
𝑘

𝐹
and quit the iteration.

2.3. Convergency Analysis. Here, we will discuss the conver-
gency of the proposed SMP method.

Theorem 2 (Theorem 2.1 in [8]). Let 𝑥 ∈ R𝑁 be a 𝐾-sparse
signal, and let its corresponding measurement be 𝑦 = Φ𝑥 +

𝑒 ∈ R𝑀. If the sampling matrix satisfies the restricted isometry
property (RIP) with constant

𝛿
4𝐾

< 0.1, (15)

then the signal approximation 𝑥
𝑘 is 𝐾-sparse and

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘+1󵄩󵄩󵄩󵄩󵄩2

≤ 0.5
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩2

+ 10V. (16)

In particular,

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩2

≤ 2
−𝑘
‖𝑥‖2 + 20V, (17)

where V denotes the unrecoverable energy in the signal.

Proposition 3. Let 𝑥 ∈ R𝑁 be a 𝐾-sparse signal, and let its
corresponding measurement be 𝑦 = Φ𝑥 + 𝑒 ∈ R𝑀. If the
sampling matrix satisfies the RIP with constant

𝛿
𝐹𝑙

< 0.1, (18)

then the proposed SMP algorithm is guaranteed to recover 𝑥
from 𝑦 via a finite number of iterations.

Proof. The proving process is very similar to that of
Theorem 2 (Theorem 2.1 in [8]). The CoSaMP algorithm
selects the 2𝐾 largest components of the correlation vector
at each iteration, while the proposed SMP method selects
the 𝐹𝑙 largest components of the correlation vector. We can
obtain the similar results through replacing 2𝐾with 𝐹𝑙 in the
derivation process in [8].

2.4. Parameters Setting. Here, we will discuss how to set
values of the number of split sets 𝐹 and the length of the split
set 𝑙.

Proposition 4. Note that 𝐹𝑙 < 4𝐾 guarantees 𝛿
𝐹𝑙

< 0.1 if
𝛿
4𝐾

< 0.1.

Proof. Considering the monotonicity of 𝛿
𝐾
: for any two

integers𝐾 ≤ 𝐾
󸀠, 𝛿
𝐾
≤ 𝛿
󸀠

𝐾
according to Lemma 1 in [7]. So we

have 𝛿
𝐹𝑙

< 𝛿
4𝐾

provided that 𝐹𝑙 < 4𝐾.

Proposition 5. Step (7) in Algorithm 1 guarantees 𝐾 ≤ 𝑙.

Proof. As the estimated support set, 𝑎𝑘 contains at least 𝐾
elements, resulting in𝐾 ≤ 𝑙.

According to Propositions 3∼5, in order to guarantee a
perfect recovery of the 𝐾-sparse vector 𝑥 from 𝑦 via a finite
number of iterations, we have 𝐹𝑙 < 4𝐾 ≤ 4𝑙, resulting in
𝐹 < 4. Since 𝐹 is set large enough to expand the searching
area, 𝐹 is set as 3 in the proposed method. We then have
𝑙 < (4/3)𝐾 according to 𝐹𝑙 < 4𝐾. Propositions 3∼5 are based
onTheorem 2, which has a rigid setting for 𝛿

4𝐾
. We can relax

the range of 𝑙 to [𝐾, 2𝐾). As a result, we need not know the
exact value of 𝐾 and can select an integer randomly from
[𝐾, 2𝐾) based on an estimated value of𝐾.

2.5. Complexity Analysis. The process of complexity analysis
is similar to that of [7]. In each iteration, the correlationmax-
imization procedure requires 𝑀𝑁 computations in general,
while the cost of computing the projections is of the order
of 𝑂(𝐹(2𝑠)

2
𝑀 + (2𝐹𝑠)

2
𝑀), which could be approximated as

𝑂(𝑠
2
𝑀) when 𝐹 is chosen as a small value (e.g. 3 in the

simulation setup). As a result, the total cost of computing is
of the order of 𝑂(𝑀𝑁 + 𝑠

2
𝑀), which is comparable to the

SP/CoSaMP algorithm.
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2.6. Convergence Speed Analysis. Here, we will discuss the
convergence speed of the proposed SMP method.

Theorem6 (Theorem 8 in [7]). Thenumber of iterations (𝑛SP
𝑖𝑡
)

of the SP algorithm is upper bounded by

𝑛
SP
𝑖𝑡

≤
1.5𝐾

− log (𝑐
𝐾
)
, (19)

where 𝑐
𝐾
= 2𝛿
3𝐾
(1 + 𝛿

3𝐾
)/(1 − 𝛿

3𝐾
)
3.

Proposition 7. The number of iterations (𝑛SMP
𝑖𝑡

) of the SMP
algorithm is upper bounded by

𝑛
SMP
𝑖𝑡

<
𝑛
SP
𝑖𝑡

𝐹
. (20)

Proof. The SP algorithm selects the 𝐾 largest components
of the correlation vector at each iteration, while the pro-
posed SMP method selects the 𝐹𝑙 (𝐹𝑙 ≥ 𝐹𝐾 according to
Proposition 5) largest components of the correlation vector.
The searching area is thus expanded to at least 𝐹 times of
that of SP algorithm. The probability of finding the true
components at one iteration is increased to at least 𝐹 times
of that of SP algorithm. As a result, the number of iterations
is decreased to 1/𝐹 of that of the SP algorithm by average
according toTheorem 6.

3. Simulation Results and Analysis

In this section, a simple example is firstly carried out to
verify the performance of the proposed SMP method in
reconstructing zero-one binary and Gaussian signals. The
proposed method is then extended to cope with the DOA
estimation problem in phased-array radar system.

3.1. A Simple Example. The simulations are carried out to
compare the accuracy of different reconstruction algorithms
empirically. The proposed SMP algorithm is compared with
some popular greedy algorithms (including OMP, ROMP,
StOMP, SP, CoSaMP, and BAOMP algorithms) and the
convex optimization algorithm (BP method).

In the simulation setup, a signal sparsity level𝐾 is chosen
such that 𝐾 ≤ 𝑀/2 given the length of the original signal 𝑁
(𝑁 = 256) and the length of themeasurement vector𝑀 (𝑀 =

128). An 𝑀 × 𝑁 sampling matrix Φ is randomly generated
from the standard i.i.d. Gaussian ensemble. A support set 𝑆
of size 𝐾 is selected uniformly at random, and the original
sparse signal vector 𝑥 is chosen as either Gaussian signal or
zero-one signal [7]. The estimate of the original signal, 𝑥,
is computed based on the measurement vector 𝑦 generated
through 𝑦 = Φ𝑥. In the experiments, OMP uses𝐾 iterations,
StOMP and BP methods use the default settings (OMP,
StOMP, and BP tools use SparseLab [13]), and ROMP and SP
methods use the parameters given in [6, 7], respectively. The
proposed SMPmethod use𝐹 = 3, 𝑙 = 84, 𝑛max = 𝑀, 𝜀 = 10

−5,
as the input parameters.

The signal sparsity level 𝐾 is varied from 0 to 𝑀/2.
For each fixed 𝐾, five hundred Monte Carlo simulations
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Figure 2: Zero-one signal.
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Figure 3: Gaussian signal.

are carried out for each algorithm. The reconstruction is
considered to be exact when the 𝑙

2
norm of the difference

between the original signal 𝑥 and the reconstructed one 𝑥 is
smaller than 10

−5, that is, ‖𝑥 − 𝑥‖
2
< 10
−5. The frequency of

exact reconstruction (𝜉) is used to evaluate the reconstruction
performance of the different methods, which is defined as

𝜉 =
𝛼

𝑁MC
, (21)

where 𝛼 denotes the number of exact reconstructions for
each algorithm given a fixed 𝐾, and 𝑁MC denotes the
number of Monte Carlo simulations. The frequency of exact
reconstruction is also adopted by the SP method to evaluate
the reconstruction performance [7].

Figures 2 and 3 show the reconstruction results for
binary zero-one andGaussian sparse signals, respectively.We
only present the results of the SP algorithm since the SP
and CoSaMP algorithms are almost the same with different
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deviation process, and both obtain the same simulation
results. As can be seen in Figure 2, for binary zero-one sparse
signal which is a difficult case for OMP-type methods, the
performance of the proposed SMP method is much better
than all other OMP-type methods and comparable to the BP
minimization method. Of particular interest is the sparsity
level at which the recovery rate drops below 100%, that is,
the critical sparsity defined in [7]. It could be seen from
Figure 2 that the proposed method is with the largest critical
sparsity (39), which exceeds that of the BP method (36). For
theGaussian sparse signal, as shown in Figure 3, the proposed
method also gives the comparable performance to the BP
method.

3.2. DOA Estimation Based on Splitting Matching Pursuit
Method. In this section, the proposed SMP method is
extended to solve the DOA estimation problem in phased-
array radar system. The signal model for DOA estimation
in phased-array radar system is represented in a standard
compressed sensing form in Section 3.2.1, where the sparse
radar scene is abstracted as a sparse signal. And the simula-
tion results are shown in Section 3.2.2, which shows that the
proposed method succeeds in identifying multiple targets in
a sparse radar scene.

3.2.1. Signal Model for DOA Estimation and Sparse Represen-
tation. Assume that a phased-array radar system consists of
half wavelength spaced uniform linear arrays (ULAs). Targets
may appear at directions represented by DOA angles. The
task of signal processing is to estimate the directions to the
targets and the corresponding complex amplitudes (DOA
estimation, see [14]). We assume that the other parameters
like range and Doppler frequency have been isolated before
by appropriate processing.

The ULA of the phased-array radar system consists of𝑀
antennas, which are used to emit the transmitted signal 𝑠(𝑡).
The 𝑀 × 1 received complex vector of array observations is
defined as 𝑓(𝑡) = [𝑓

1
(𝑡), . . . , 𝑓

𝑀
(𝑡)]
𝑇. Assuming a hypothet-

ical target located at a DOA angle of 𝜃 in the far field, the
received complex vector of array observations can be written
as

𝑓 (𝑡) = 𝛽 (𝜃) 𝑠 (𝑡) 𝑎 (𝜃) + 𝑛 (𝑡) , (22)

where 𝛽(𝜃) is the reflection coefficient of the hypothetical
target, and 𝑛(𝑡) is an 𝑀 × 1 complex Gaussian noise vector.
𝑎(𝜃) is the𝑀× 1 steering vector, which is defined as

𝑎 (𝜃) = [1𝑒
𝑗(2𝜋𝑑 sin 𝜃/𝜆)

, . . . , 𝑒
𝑗(𝑀−1)(2𝜋𝑑 sin 𝜃/𝜆)

]
𝑇

, (23)

where𝑑 is the distance between the elements of the arrays and
𝜆 denotes wavelength.

Assuming 𝐷 targets are observed with reflection coeffi-
cients {𝛽

𝑖
}
𝐷

𝑖=1
and DOA angles {𝜃

𝑖
}
𝐷

𝑖=1
, the 𝑀 × 1 received

complex vector of array observations can be written as

𝛼 (𝑡) =

𝐷

∑

𝑖=1

𝛽 (𝜃
𝑖
) 𝑠 (𝑡) 𝑎 (𝜃𝑖) + 𝛾 (𝑡) , (24)

where 𝛾(𝑡) is an 𝑀 × 1 complex Gaussian noise vector.
Equation (24) could be rewritten as

𝛼 (𝑡) = 𝐴 (𝜃) 𝑆 (𝑡, 𝜃) 𝛾 (𝑡) , (25)

where 𝐴(𝜃) = [𝑎(𝜃
1
)𝑎(𝜃
2
) ⋅ ⋅ ⋅ 𝑎(𝜃

𝐷
)] is an 𝑀 × 𝐷 steering

matrix, and 𝑆(𝑡, 𝜃) = 𝑠(𝑡)[𝛽(𝜃
1
)𝛽(𝜃
2
) ⋅ ⋅ ⋅ 𝛽(𝜃

𝐷
)]
𝑇 denotes a

𝐷 × 1 reflection vector.
Since the radar scene is generally in practice sparse,

compressed sensing is a valid candidate for estimating the
DOA angles for multiple targets. To do so, the DOA angle
plane is divided into 𝑁 fine grids, each cell generally with
the same size Δ𝜃. The 𝑖th grid represents the DOA angle
of 𝜃
0
+ (𝑖 − 1)Δ𝜃, where 𝜃

0
is the initial angle of the DOA

plane. The steering matrix and reflection vector in (25) are
extended to obtain the 𝑀 × 𝑁 extended steering matrix Φ

and the𝑁×1 extended reflection vector 𝑥, which are defined
asΦ = [𝑎(𝜃

0
)𝑎(𝜃
0
+Δ𝜃) ⋅ ⋅ ⋅ 𝑎(𝜃

0
+(𝑖−1)Δ𝜃)𝑎(𝜃

0
+(𝑁−1)Δ𝜃)]

and 𝑥 = 𝑠(𝑡)[𝛽(𝜃
0
)𝛽(𝜃
0
+ Δ𝜃) ⋅ ⋅ ⋅ 𝛽(𝜃

0
+ (𝑖 − 1)Δ𝜃)𝛽(𝜃

0
+

(𝑁 − 1)Δ𝜃)]
𝑇. Since small number of grids are occupied by

the targets, 𝑥 is a sparse vector with the 𝑖th element defined
as 𝑥(𝑖) = 𝑠(𝑡)𝛽(𝜃

0
+ (𝑖 − 1)Δ𝜃) if the 𝑖th grid is occupied by

the target; otherwise, 𝑥(𝑖) = 0. As a result, the𝑀×1 received
complex vector of array observations 𝑦 could be written as

𝑦 = Φ𝑥 + 𝑒, (26)

where 𝑒 is an 𝑀 × 1 complex Gaussian noise vector. Though
in (26) the radar vectors and matrices are complex valued in
contrary to the original compressed sensing environment, it
is easy to transfer it to real variables according to [15, 16].

Discussion. In [17, 18], it is assumed that the discretized step
is small enough so that each target falls on some specific
grid point. However, no matter how finely the parameter
space is gridded, the sources may not lie in the center of the
grid cells, and consequently there is mismatch between the
assumed and the actual bases for sparsity. The sensitivity of
compressed sensing to mismatch between the assumed and
the actual sparsity bases is studied in [19]. The effect of basis
mismatch is analyzed on the best 𝑘-term approximation error,
and some achievable bounds for the 𝑙

1
error of the best 𝑘-term

approximation are provided. The readers can refer to [19] for
a detailed analysis on the influence of the griding operations
on the estimation performance.

3.2.2. Simulation Results. In this section, an example about
DOA estimation is provided based on the phased-array radar
system, which consists of half wavelength spaced uniform
linear arrays (ULAs). The number of transmit/receive anten-
nas is 20. The antennas transmit independent orthogonal
quadrature phase shift keyed (QPSK) waveforms and the
carrier frequency is 8.62GHz. The SNR of the measurement
noise is set to a fixed value (20 dB). The range of the
DOA plane is [0

∘
, 90
∘
], which is divided into 30 cells with

the initial angle (𝜃
0
) and angle interval (Δ𝜃) equaling 0

∘

and 3
∘, respectively. A maximum of 𝐿 = 512 snapshots

are considered at the receive node. Targets may appear at
directions represented by DOA angles.
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Table 1: Performance comparison.

Average reconstruction
error

Average RMSE of DOA
angles (degree)

SMP 0.04 0.05
OMP 0.2 0.19
ROMP 0.24 0.23
StOMP 0.23 0.25
SP/CoSaMP 0.15 0.13
BAOMP 0.17 0.16
BPDN 0.09 0.07
Capon 0.38 1.1
APES 0.35 0.54
GLRT 0.27 0.17

The proposed SMPmethod is compared to several popu-
lar greedy algorithms, for example, the OMP, ROMP, StOMP,
SP, CoSaMP and BAOMP algorithms, and the convex opti-
mization algorithm, BPDN method. The proposed method
is further compared to three commonly used methods in
DOA estimation, for example, the Capon, APES, and GLRT
methods. The compressed sensing based methods (the SMP
method, the greedy algorithms, and the BPDN method)
use one snapshot only, and the Capon, APES, and GLRT
methods use 512 snapshots each. Five hundred Monte Carlo
simulations are carried out, and in each trial four targets
locate randomly within the DOA range of [0∘, 90∘], and the
corresponding reflection coefficients are set as {𝛽

𝑘
= 1, 𝑘 =

1, . . . , 4}.
The average reconstruction error is adopted to evaluate

the reconstruction performance of the methods, which is
defined as

𝜒average =

𝑁MC

∑

𝑖=1

𝜒
𝑖

𝑁MC
, (27)

where 𝜒
𝑖 denotes the reconstruction error at the 𝑖th Monte

Carlo simulation, which is defined as

𝜒
𝑖
=

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖

estimate − 𝑥
𝑖󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑥
𝑖󵄩󵄩󵄩󵄩2

, (28)

where 𝑥𝑖 and 𝑥
𝑖

estimate represent the true and estimated signal
representing the sparse radar scene at the 𝑖th Monte Carlo
simulation, respectively. The average root mean square error
(RMSE) is also adopted to evaluate the DOA estimation
performance of the methods, which is defined in [20].

The results in Table 1 show that the proposed SMP
method is with the smallest average reconstruction error and
average RMSE.The proposedmethod succeeds in identifying
multiple targets in a sparse radar scene, outperforming other
OMP-type methods. It also obtains more precise estimation
of DOA angle using one snapshot compared with the tradi-
tional estimation methods such as Capon, APES, and GLRT
based on 512 snapshots.

4. Conclusion

We have presented a novel SMP method for sparse signal
reconstruction in compressed sensing.The proposedmethod
expands the searching area and increases the probability of
finding the true components at one iteration. It also does
not require the sparsity level 𝐾 to be known in prior. The
proposed method is then extended to more practical condi-
tion, for example, the direction of arrival (DOA) estimation
problem in phased-array radar system using compressed
sensing. Numerical simulations show that the proposed
method succeeds in identifying multiple targets in a sparse
radar scene, outperforming other OMP-type methods. The
proposed method also obtains more precise estimation of
DOA angle using one snapshot comparedwith the traditional
estimation methods such as Capon, APES, and GLRT based
on hundreds of snapshots.
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