Research Article

Post-Lie Algebra Structures on the Lie Algebra gl(2,C)

Yuqiu Sheng and Xiaomin Tang
Department of Mathematics, Heilongjiang University, Harbin 150080, China
Correspondence should be addressed to Xiaomin Tang; x.m.tang@163.com
Received 1 August 2013; Accepted 15 September 2013
Academic Editor: Teoman Özer
Copyright © 2013 Y. Sheng and X. Tang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The post-Lie algebra is an enriched structure of the Lie algebra. We give a complete classification of post-Lie algebra structures on the Lie algebra $g l(2, C)$ up to isomorphism.

1. Introduction

Post-Lie algebras were introduced around 2007 by Vallette [1], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Moreover, Vallette [1] proves that post-Lie algebras have the important algebraic property of being Koszul. This property is shared by many other important algebras, such as Lie algebras, associative algebras, commutative algebras, pre-Lie algebras, LR-algebras, and dendriform algebras, see [2, 3]. Recently, many authors study some post-Lie algebras and post-Lie algebra structures [4-8]. We recall the definition of the postLie algebra (structure) as follows, see $[1,8]$.

Definition 1. A (left) post-Lie C-algebra is a C-vector space L with two binary operations \circ and [,] which satisfy the following relations:

$$
\begin{gather*}
{[x, y]=-[y, x],} \tag{1}\\
{[[x, y], z]+[[z, x], y]+[[y, z], x]=0,} \tag{2}\\
z \circ(y \circ x)-y \circ(z \circ x)+(y \circ z) \circ x \tag{3}\\
-(z \circ y) \circ x+[y, z] \circ x=0, \\
z \circ[x, y]-[z \circ x, y]-[x, z \circ y]=0 . \tag{4}
\end{gather*}
$$

Let $(\sigma(L),[]$,$) denote the Lie algebra defined by (1) and (2).$ $\operatorname{Call}(L,[],, \circ)$ a post-Lie algebra on $(\sigma(L),[]$,$) .$

Remark 2. Suppose ($g,[$,$]) is a Lie algebra. Two post-Lie$ $\operatorname{algebra}(g,[],, \circ)$ and $(g,[],, \star)$ on the Lie algebra g are
called isomorphic on the Lie algebra $(g,[]$,$) if there is an$ automorphism φ of the Lie algebra $(g,[]$,$) such that$

$$
\begin{equation*}
\varphi(x \circ y)=\varphi(x) \star \varphi(y), \quad \forall x, y \in g . \tag{5}
\end{equation*}
$$

One of the key problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [8], the authors determined all isomorphic classes of post-Lie algebra structures on $(s l(2, C),[]$,$) , the special$ linear Lie algebra of order 2. They use an important fact that the derivation of a semisimple Lie algebra is inner. But for the nonsemisimple Lie algebra, this fact dos not hold. So that we must find another way to study such problem for nonsemisimple Lie algebra. The purpose of this paper is to give a complete classification of post-Lie algebra structures on nonsemisimple Lie algebra $g l(2, C)$, the general linear Lie algebra of order 2, up to isomorphism. Now, we recall the above two Lie algebras.

Denote

$$
\begin{align*}
& u_{1}:=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad u_{2}:=\frac{1}{2 \sqrt{-1}}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \\
& u_{3}:=\frac{1}{2 \sqrt{-1}}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad u_{4}:=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \tag{6}
\end{align*}
$$

It is obvious that the previous four matrices form a C-linear basis of $g l(2, C)$ and determine the Lie algebra ($g l(2, C),[]$, through the Lie product

$$
\begin{gather*}
{\left[u_{1}, u_{2}\right]=u_{3}, \quad\left[u_{2}, u_{3}\right]=u_{1}, \quad\left[u_{3}, u_{1}\right]=u_{2}} \tag{7}\\
{\left[u_{i}, u_{4}\right]=0, \quad i=1,2,3}
\end{gather*}
$$

It is also well known that u_{1}, u_{2}, u_{3} form a C-linear basis of $s l(2, C)$ and determine the Lie algebra $(s l(2, C),[]$,$) through$ the relations (7). The authors in [8] got the following classification theorem, which will be used in our proof.

Theorem 3 (see [8]). The following is a complete set of representatives for the isomorphic classes of post-Lie algebra $(s l(2, C),[],, \circ)$ on the Lie algebra $(s l(2, C),[]$,$) .$
(1) $u_{i} \circ u_{j}=0, i, j=1,2,3$;
(2) $u_{i} \circ u_{j}=\left[u_{i}, u_{j}\right], i, j=1,2,3$;
(3) $u_{1} \circ u_{i}=\left[-u_{1}, u_{i}\right], u_{2} \circ u_{i}=\left[-((1+\sqrt{-1}) / 2) u_{2}+\right.$ $\left.((\sqrt{-1}-1) / 2) u_{3}, u_{i}\right], u_{3} \circ u_{i}=\left[-((1+\sqrt{-1}) / 2) u_{2}+\right.$ $\left.((\sqrt{-1}-1) / 2) u_{3}, u_{i}\right], i=1,2,3$;
(4) $u_{1} \circ u_{i}=\left[(\sqrt{-1}-(1 / 2)) u_{1}+(1-(\sqrt{-1} / 2)) u_{2}, u_{i}\right]$, $u_{2} \circ u_{i}=\left[(1+(\sqrt{-1} / 2)) u_{1}-(\sqrt{-1}+(1 / 2)) u_{2}, u_{i}\right]$, $u_{3} \circ u_{i}=0, i=1,2,3$;
(5) $u_{1} \circ u_{i}=\left[k u_{1}, u_{i}\right], u_{2} \circ u_{i}=\left[-(1 / 2) u_{2}+(\sqrt{-1} / 2) u_{3}, u_{i}\right]$, $u_{3} \circ u_{i}=\left[-(\sqrt{-1} / 2) u_{2}-(1 / 2) u_{3}, u_{i}\right], i=1,2,3, k \in$ C^{*}.

2. Equations from Post-Lie Algebras

From (4), we obtain $u_{1} \circ u_{2}=u_{1} \circ\left[u_{3}, u_{1}\right]=\left[u_{1} \circ u_{3}, u_{1}\right]+$ $\left[u_{3}, u_{1} \circ u_{1}\right] \in \operatorname{sl}(2, C)$ and $u_{4} \circ u_{1}=u_{4} \circ\left[u_{2}, u_{3}\right]=\left[u_{4} \circ u_{2}, u_{3}\right]+$ $\left[u_{2}, u_{4} \circ u_{3}\right] \in \operatorname{sl}(2, C)$. Similarly, we have $u_{i} \circ u_{j} \in \operatorname{sl}(2, C)$ for any $i \in\{1,2,3,4\}$ and $j \in\{1,2,3\}$. Thus, we get the following.

Lemma 4. $(s l(2, C),[],, \circ)$ is a post-Lie subalgebra of ($g l(2, C),[],, \circ)$.

Proposition 5. Let ($g l(2, C),[],, \circ)$ and ($g l(2, C),[], *$,$) be$ post-Lie algebras on the Lie algebra gl($2, C)$, they are isomorphic through automorphism φ of the Lie algebra $g l(2, C)$. Then, $s l(2, C)$ is a φ-subspace of $g l(2, C)$, and $\left.\varphi\right|_{s l(2, C)}$ is an isomorphism from $(s l(2, C),[],, \circ)$ to $(s l(2, C),[],, \star)$.

Proof. Suppose $Q=\left(q_{i j}\right)_{4 \times 4}$ is the matrix of φ with respect to the basis $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$; that is,

$$
\begin{equation*}
\varphi\left(u_{i}\right)=\sum_{j=1}^{3} q_{i j} u_{j}, \quad i=1,2,3,4 \tag{8}
\end{equation*}
$$

From $\varphi\left(\left[u_{i}, u_{4}\right]\right)=\varphi(0)=0, i=1,2,3,4$, we obtain $\varphi\left(u_{4}\right)=$ $q_{44} u_{4}$. Moreover, $\varphi\left(u_{1}\right)=\varphi\left(\left[u_{2}, u_{3}\right]\right)=\left[\varphi\left(u_{2}\right), \varphi\left(u_{3}\right)\right] \in$ $s l(2, C)$ means $q_{41}=0$. Similarly, we have $q_{42}=q_{43}=0$. Now, we see that Q has the form

$$
Q=\left[\begin{array}{cccc}
q_{11} & q_{21} & q_{31} & 0 \tag{9}\\
q_{12} & q_{22} & q_{32} & 0 \\
q_{13} & q_{23} & q_{33} & 0 \\
0 & 0 & 0 & q_{44}
\end{array}\right]
$$

From this we can easily get the conclusion.
Proposition 6. Let $(g l(2, C),[],, \circ)$ be post-Lie algebra on the Lie algebra gl($2, C$).
(1) There exists a linear map $f: \operatorname{sl}(2, C) \rightarrow s l(2, C)$ such that

$$
\begin{equation*}
x \circ y=[f(x), y], \quad \forall x, y \in \operatorname{sl}(2, C) \tag{10}
\end{equation*}
$$

(2) There exist $b_{1}, b_{2}, b_{3}, b_{4} \in C$ such that $u_{i} \circ u_{4}=b_{i} u_{4}$, $i=1,2,3,4$.
(3) There exist $l_{12}, l_{13}, l_{23} \in C$ such that

$$
\begin{align*}
& \left(u_{4} \circ u_{1}, u_{4} \circ u_{2}, u_{4} \circ u_{3}\right) \\
& \quad=\left(u_{1}, u_{2}, u_{3}\right)\left[\begin{array}{ccc}
0 & l_{12} & l_{13} \\
-l_{12} & 0 & l_{23} \\
-l_{13} & -l_{23} & 0
\end{array}\right] \tag{11}
\end{align*}
$$

Proof. (1) The conclusion is given by [8].
(2) For any $x, z \in g l(2, C)$, we have $\left[x, z \circ u_{4}\right]=z \circ\left[x, u_{4}\right]-$ $\left[z \circ x, u_{4}\right]=0$ from (4) and (7). Thus, $z \circ u_{4}$ is in the center of $g l(2, C)$, and so $z \circ u_{4}=h(z) u_{4}$, where h is a linear map from $g l(2, C)$ to C. Let $b_{i}=h\left(u_{i}\right)$. The conclusion of (2) is proved.
(3) Let $z=u_{4},\{x, y\}=\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\}$, and $\left\{u_{3}, u_{1}\right\}$ in (4), one can get the conclusion (3) by a simple computation.

Definition 7. Suppose A is the matrix of f (from Proposition 6) with respect to the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$; that is, $f\left(u_{i}\right)=\sum_{j=1}^{3} a_{i j} u_{j}, i=1,2,3$. Denote

$$
\begin{gather*}
L=\left[\begin{array}{ccc}
0 & l_{12} & l_{13} \\
-l_{12} & 0 & l_{23} \\
-l_{13} & -l_{23} & 0
\end{array}\right], \tag{12}\\
\beta=\left[b_{1}, b_{2}, b_{3}, b_{4}\right] .
\end{gather*}
$$

The matrix set $\{A, L, \beta\}$ is unique for a given \circ. On the other hand, \circ is defined uniquely by the matrix set $\{A, L, \beta\}$. Because of their uniqueness, the matrix set $\{A, L, \beta\}$ is called the matrix set of the post-Lie algebra ($g l(2, C),[],, \circ)$ and is also denoted by $\left\{A_{\circ}, L_{\circ}, \beta_{\circ}\right\}$.

Proposition 8. Suppose that $\left\{A_{\circ}, L_{\circ}, \beta_{0}\right\}$ and $\left\{A_{\star}, L_{\star}, \beta_{\star}\right\}$ are the matrix sets of post-Lie algebras $(g l(2, C),[],, \circ)$ and $(\mathrm{gl}(2, C),[],, \star)$, respectively. φ is an isomorphic map from ($g l(2, C),[],, \circ)$ to (gl(2, C), $[],, \star)$. Then,
(1)

$$
\begin{gather*}
\varphi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) Q \\
Q=\left[\begin{array}{cc}
Q_{1} & 0 \\
0 & q_{44}
\end{array}\right] \tag{13}
\end{gather*}
$$

where $Q_{1} \in S O(3, C)$, the group of all 3×3 complex orthogonal matrices whose determinants are (1);
(2) $Q_{1} A_{\circ} Q_{1}^{-1}=A_{\star}$;
(3) $\beta_{\circ}=\beta_{\star} Q$;
(4) $Q_{1} L_{\circ} Q_{1}^{-1}=q_{44} L_{\star}$.

Proof. (1) The conclusion is given by Proposition 5 and [8].
(2) It is given by [8].
(3) Let $\beta_{\circ}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ and $\beta_{\star}=\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}, b_{4}^{\prime}\right)$. Note that

$$
\left.\begin{array}{l}
\varphi\left(u_{1} \circ u_{4}, u_{2} \circ u_{4}, u_{3} \circ u_{4}, u_{4} \circ u_{4}\right) \\
\quad=\varphi\left(b_{1} u_{4}, b_{2} u_{4}, b_{3} u_{4}, b_{4} u_{4}\right) \\
\quad=q_{44}\left(b_{1} u_{4}, b_{2} u_{4}, b_{3} u_{4}, b_{4} u_{4}\right), \\
\left(\varphi\left(u_{1}\right) \star \varphi\left(u_{4}\right), \varphi\left(u_{2}\right) \star \varphi\left(u_{4}\right),\right. \\
\varphi
\end{array} \quad\left(u_{3}\right) \star \varphi\left(u_{4}\right), \varphi\left(u_{4}\right) \star \varphi\left(u_{4}\right)\right) .
$$

So, we have by $\varphi\left(u_{i} \circ u_{j}\right)=\varphi\left(u_{i}\right) \star \varphi\left(u_{j}\right)$ that $q_{44}\left(b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}, b_{4}^{\prime}\right) Q=q_{44}\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$, that is, $\beta_{\circ}=\beta_{\star} Q$.
(4) Since

$$
\begin{align*}
& \varphi\left(u_{4} \circ u_{1}, u_{4} \circ u_{2}, u_{4} \circ u_{3}\right) \\
& =\varphi\left(u_{1}, u_{2}, u_{3}\right) L_{\circ}=\left(u_{1}, u_{2}, u_{3}\right) Q_{1} L_{o}, \tag{15}\\
& \left(\varphi\left(u_{4}\right) \star \varphi\left(u_{1}\right), \varphi\left(u_{4}\right) \star \varphi\left(u_{2}\right), \varphi\left(u_{4}\right) \star \varphi\left(u_{3}\right)\right) \\
& =q_{44}\left(u_{4} \star \varphi\left(u_{1}\right), u_{4} \star \varphi\left(u_{2}\right), u_{4} \star \varphi\left(u_{3}\right)\right) \\
& =q_{44}\left(u_{4} \star u_{1}, u_{4} \star u_{2}, u_{4} \star u_{3}\right) Q_{1} \tag{16}\\
& =q_{44}\left(u_{1}, u_{2}, u_{3}\right) L_{\star} Q_{1} \\
& =\left(u_{1}, u_{2}, u_{3}\right) Q_{1} L_{o} \text {, }
\end{align*}
$$

we deduce by $\varphi\left(u_{i} \circ u_{j}\right)=\varphi\left(u_{i}\right) \star \varphi\left(u_{j}\right)$ that $Q_{1} L_{\circ} Q_{1}^{-1}=q_{44} L_{\star}$, the proof is completed.

Proposition 9. Suppose that $\{A, L, \beta\}$ is the matrix set of post-Lie algebra $(\mathrm{gl}(2, C),[],, \circ)$, then we have the following equations:

$$
\begin{gathered}
l_{12} b_{2}+l_{13} b_{3}+b_{1} b_{4}=0 \\
l_{12} b_{1}-l_{23} b_{3}-b_{2} b_{4}=0 \\
l_{13} b_{1}+l_{23} b_{2}-b_{3} b_{4}=0 \\
\text { i.e., }\left(b_{4} I_{3}+L\right)\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=0 \\
\left(a_{11}+a_{22}+1\right) b_{3}-a_{13} b_{1}-a_{23} b_{2}=0 \\
\left(a_{22}+a_{33}+1\right) b_{1}-a_{21} b_{2}-a_{31} b_{3}=0 \\
\left(a_{11}+a_{33}+1\right) b_{2}-a_{12} b_{1}-a_{32} b_{3}=0
\end{gathered}
$$

$$
\text { i.e., }\left((\operatorname{tr} A+1) I_{3}-A\right)\left[\begin{array}{l}
b_{1} \tag{18}\\
b_{2} \\
b_{3}
\end{array}\right]=0
$$

$$
\begin{align*}
& \left(b_{1}-a_{23}\right) l_{12}+\left(a_{11}-a_{33}\right) l_{13}+a_{12} l_{23}=0, \\
& \left(a_{12}+a_{21}\right) l_{12}+\left(a_{13}+a_{31}\right) l_{13}-b_{1} l_{23}=0, \\
& \left(a_{12}+a_{21}\right) l_{12}-b_{2} l_{13}-\left(a_{23}+a_{32}\right) l_{23}=0, \\
& \left(a_{11}-a_{22}\right) l_{12}-a_{23} l_{13}+\left(b_{2}-a_{31}\right) l_{23}=0, \\
& \left(a_{22}-a_{11}\right) l_{12}+\left(a_{32}+b_{1}\right) l_{13}+a_{13} l_{23}=0, \tag{19}\\
& \left(b_{2}+a_{13}\right) l_{12}+a_{21} l_{13}+\left(a_{22}-a_{33}\right) l_{23}=0, \\
& -a_{31} l_{12}+\left(b_{3}-a_{12}\right) l_{13}+\left(a_{33}-a_{22}\right) l_{23}=0, \\
& -a_{32} l_{12}+\left(a_{11}-a_{33}\right) l_{13}+\left(b_{3}+a_{21}\right) l_{23}=0, \\
& b_{3} l_{12}+\left(a_{13}+a_{31}\right) l_{13}+\left(a_{23}+a_{32}\right) l_{23}=0
\end{align*}
$$

Proof. We consider (3) and (10). Let $y=x=u_{4}$ and $z=$ u_{1}, u_{2}, and u_{3}, respectively, we get (17); Let $x=u_{4},\{z, y\}=$ $\left\{u_{2}, u_{1}\right\},\left\{u_{3}, u_{2}\right\}$ and $\left\{u_{3}, u_{1}\right\}$, respectively, we get (18); let $z=$ u_{4} and $\{y, x\}=\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{1}, u_{1}\right\},\left\{u_{2}, u_{1}\right\},\left\{u_{3}, u_{3}\right\}$, and $\left\{u_{3}, u_{1}\right\}$, respectively, we get (19).

3. Classification of Post-Lie Algebra ($g l(2, C),[],, \circ$)

Lemma 10 (see [9]). Suppose that A is a complex skewsymmetric 3×3 matrix, there exists $T \in O(3, C)$ such that

$$
T A T^{-1}
$$

$$
=\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right] \quad \text { or }\left[\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Based on Definition 7, we get the main result in this paper as follows.

Theorem 11. The following is a complete set of matrix sets of representatives for the isomorphic classes of post-Lie algebra ($g l(2, C),[],, \circ)$ on the Lie algebra $(g l(2, C),[]$,

$$
\begin{aligned}
& \text { (1) } A=0, \quad L=\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right] \text {, } \\
& \beta=\left[0,0,0, b_{4}\right], \quad b_{4}=0 \text { or } 1 ;
\end{aligned}
$$

$$
\begin{gathered}
\text { (2) } A=0, \quad L=\left[\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
\beta=\left[0,0,0, b_{4}\right], \quad a \in C, b_{4}=0 \text { or } 1 ; \\
\text { (3) } A=-I_{3}, \quad L=\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right], \\
\beta=\left[0,0,0, b_{4}\right], \quad b_{4}=0 \text { or } 1 ; \\
\text { (4) } A=-I_{3}, \quad L=\left[\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
\beta=\left[0,0,0, b_{4}\right], \quad a \in C, b_{4}=0 \text { or } 1 ;
\end{gathered}
$$

(5) $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \frac{-1-\sqrt{-1}}{2} & \frac{-1-\sqrt{-1}}{2} \\ 0 & \frac{-1+\sqrt{-1}}{2} & \frac{-1+\sqrt{-1}}{2}\end{array}\right], \quad L=0$,

$$
\beta=\left[b_{1}, \sqrt{-1} b_{3}, b_{3}, 0\right], \quad b_{1}, b_{3} \in C
$$

(6) $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \frac{-1-\sqrt{-1}}{2} & \frac{-1-\sqrt{-1}}{2} \\ 0 & \frac{-1+\sqrt{-1}}{2} & \frac{-1+\sqrt{-1}}{2}\end{array}\right]$,

$$
L=0, \quad \beta=[0,0,0,1]
$$

(7) $A=\left[\begin{array}{ccc}k & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \\ 0 & \frac{\sqrt{-1}}{2} & -\frac{1}{2}\end{array}\right], \quad L=0$,
$\beta=\left[b_{1}, 0,0,0\right], \quad k \neq-1, b_{1} \in C^{*} ;$
(8) $A=\left[\begin{array}{ccc}k & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \\ 0 & \frac{\sqrt{-1}}{2} & -\frac{1}{2}\end{array}\right]$,

$$
L=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & a \\
0 & -a & 0
\end{array}\right], \quad \beta=\left[0,0,0, b_{4}\right]
$$

$$
k \neq-1, a \in C, b_{4}=0 \text { or } 1
$$

(9) $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \\ 0 & \frac{\sqrt{-1}}{2} & -\frac{1}{2}\end{array}\right]$,

$$
\begin{align*}
& L=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & a \\
0 & -a & 0
\end{array}\right], \quad \beta=[0,0,0,1], \quad a \in C ; \\
& \text { (10) } A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \\
0 & \frac{\sqrt{-1}}{2} & -\frac{1}{2}
\end{array}\right], \quad L=0, \\
& \beta=\left[b_{1}, \sqrt{-1} b_{3}, b_{3}, 0\right], \quad b_{1}, b_{3} \in C \text {; } \\
& \text { (11) } A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \\
0 & \frac{\sqrt{-1}}{2} & -\frac{1}{2}
\end{array}\right] \text {, } \\
& L=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right], \quad \beta=0 ; \\
& \text { (12) } A=\left[\begin{array}{ccc}
\sqrt{-1}-\frac{1}{2} & 1+\frac{\sqrt{-1}}{2} & 0 \\
1-\frac{\sqrt{-1}}{2} & -\sqrt{-1}-\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \text {, } \\
& L=0, \quad \beta=[0,0,0,1] \text {; } \\
& \text { (13) } A=\left[\begin{array}{ccc}
\sqrt{-1}-\frac{1}{2} & 1+\frac{\sqrt{-1}}{2} & 0 \\
1-\frac{\sqrt{-1}}{2} & -\sqrt{-1}-\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \text {, } \\
& L=0, \quad \beta=\left[0,0, b_{3}, 0\right], \quad b_{3} \in C ; \\
& \text { (14) } A=\left[\begin{array}{ccc}
\sqrt{-1}-\frac{1}{2} & 1+\frac{\sqrt{-1}}{2} & 0 \\
1-\frac{\sqrt{-1}}{2} & -\sqrt{-1}-\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right], \quad L=0 \text {, } \\
& \beta=\left[\sqrt{-1} b_{2}, b_{2}, b_{3}, 0\right], \quad b_{2} \in C^{*}, b_{3} \in C . \tag{21}
\end{align*}
$$

Proof. Case 1. $A=0 . \mathrm{By}$ (18), we obtain $b_{1}=b_{2}=b_{3}=0$; that is, $\beta=\left[0,0,0, b_{4}\right]$. By Lemma 10 we have

$$
\begin{align*}
L= & {\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right] } \tag{22}\\
& \text { or }\left[\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{align*}
$$

Case 1.1. Consider

$$
L=\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \tag{23}\\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right]
$$

If $b_{4} \neq 0$, let

$$
\begin{gather*}
Q_{1}=\left[\begin{array}{ccc}
\frac{b_{4}^{2}+1}{2 b_{4}} & 0 & \frac{\sqrt{-1}\left(b_{4}^{2}-1\right)}{2 b_{4}} \\
0 & 1 & 0 \\
\frac{\sqrt{-1}\left(1-b_{4}^{2}\right)}{2 b_{4}} & 0 & \frac{b_{4}^{2}+1}{2 b_{4}}
\end{array}\right] \tag{24}\\
Q=\left[\begin{array}{cc}
Q_{1} & 0 \\
0 & b_{4}
\end{array}\right] \tag{25}
\end{gather*}
$$

then

$$
\begin{equation*}
Q_{1} A Q_{1}^{-1}=A, \quad Q_{1} L Q_{1}^{-1}=b_{4} L, \quad \beta=[0,0,0,1] Q \tag{26}
\end{equation*}
$$

In view of Proposition 8, we can suppose that

$$
\begin{gather*}
A=0, \quad L=\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right], \\
\beta=\left[0,0,0, b_{4}\right], \quad b_{4}=0 \text { or } 1 . \tag{27}
\end{gather*}
$$

Case 1.2. Consider $L=\left[\begin{array}{ccc}0 & a & 0 \\ -a & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. If $b_{4} \neq 0$, let

$$
Q_{1}=I_{3}, \quad Q=\left[\begin{array}{rr}
I_{3} & 0 \tag{28}\\
0 & b_{4}
\end{array}\right]
$$

then

$$
\begin{gathered}
Q_{1} A Q_{1}^{-1}=A \\
Q_{1}\left[\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right] Q_{1}^{-1}=b_{4}\left[\begin{array}{ccc}
0 & a b_{4}^{-1} & 0 \\
-a b_{4}^{-1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\beta=[0,0,0,1] Q
\end{gathered}
$$

Thus, we can suppose that $A=0, L=\left[\begin{array}{ccc}0 & a & 0 \\ -a & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and $\beta=$ $\left[0,0,0, b_{4}\right], a \in C, b_{4}=0$ or 1 .

Case 2. Consider $A=-I_{3}$. By Lemma 10 we have

$$
\begin{align*}
L= & {\left[\begin{array}{ccc}
0 & \frac{1+\sqrt{-1}}{2} & 0 \\
\frac{-1-\sqrt{-1}}{2} & 0 & \frac{-1+\sqrt{-1}}{2} \\
0 & \frac{1-\sqrt{-1}}{2} & 0
\end{array}\right] } \tag{30}\\
& \text { or }\left[\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{align*}
$$

By (18), we obtain $\beta=\left[0,0,0, b_{4}\right]$. In a similar way with the proof of Case 1, we can suppose that $\beta=\left[0,0,0, b_{4}\right], b_{4}=0$ or 1.

Case 3. Consider

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \tag{31}\\
0 & \frac{-1-\sqrt{-1}}{2} & \frac{-1-\sqrt{-1}}{2} \\
0 & \frac{-1+\sqrt{-1}}{2} & \frac{-1+\sqrt{-1}}{2}
\end{array}\right] .
$$

By (18), we obtain $b_{2}=\sqrt{-1} b_{3}$. Then, by (19), we get

$$
\begin{gather*}
l_{23}=0 \\
l_{12}=l_{13} \tag{32}\\
b_{2} l_{12}=b_{3} l_{12}=\left(b_{1}-i\right) l_{12}=0
\end{gather*}
$$

Therefore, by (17), we can have

$$
\begin{equation*}
l_{12}=l_{13}=0, \quad b_{1} b_{4}=b_{2} b_{4}=b_{3} b_{4}=0 \tag{33}
\end{equation*}
$$

Hence, $L=0$. If $b_{4} \neq 0$, then $b_{1}=b_{2}=b_{3}=0$. In a similar way with the proof of Case 1 , we can suppose that $\beta=[0,0,0,1]$. Else, if $b_{4}=0$, then $\beta=\left[b_{1}, \sqrt{-1} b_{3}, b_{3}, 0\right], b_{1}, b_{3} \in C$.

Case 4. Consider

$$
A=\left[\begin{array}{ccc}
k & 0 & 0 \tag{34}\\
0 & -\frac{1}{2} & -\frac{\sqrt{-1}}{2} \\
0 & \frac{\sqrt{-1}}{2} & -\frac{1}{2}
\end{array}\right]
$$

By (18), we obtain

$$
\begin{array}{ll}
b_{2}=b_{3}=0, & k \neq-1 \tag{35}\\
b_{2}=\sqrt{-1} b_{3}, & k=-1
\end{array}
$$

Case 4.1. When $k \neq-1, b_{2}=b_{3}=0$. By (17), we obtain $b_{1} b_{4}=$ $b_{1} l_{12}=b_{1} l_{13}=0$. Then, by (19), we get $l_{12}=l_{13}=b_{1} l_{23}=0$.

If $b_{1} \neq 0$, then $b_{4}=l_{23}=0$.
Therefore,
$L=0, \quad \beta=\left[b_{1}, 0,0,0\right], \quad b_{1} \in C^{*}$ or

$$
L=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{36}\\
0 & 0 & a \\
0 & -a & 0
\end{array}\right], \quad \beta=\left[0,0,0, b_{4}\right], \quad a, b_{4} \in C
$$

In a similar way with the proof of Case 1, we can suppose that $b_{4}=0$ or 1 .

Case 4.2. When $k=-1, b_{2}=\sqrt{-1} b_{3}$. By (19), we obtain

$$
\begin{gather*}
b_{i} l_{12}=b_{i} l_{13}=b_{i} l_{23}=0 \quad i=2,3, \\
b_{1} l_{23}=0, \\
l_{13}=\sqrt{-1} l_{12}, \tag{37}\\
\left(b_{1}-\sqrt{-1}\right) l_{13}=0 .
\end{gather*}
$$

This, together with (17), implies that $l_{12}=l_{13}=0, b_{i} b_{4}=$ 0 , and $i=1,2,3$.

If $b_{4} \neq 0$, then $b_{i}=0$, and $i=1,2,3$. Hence, in a similar way with the proof of Case 1, we can suppose that

$$
L=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{38}\\
0 & 0 & a \\
0 & -a & 0
\end{array}\right], \quad \beta=[0,0,0,1]
$$

If $b_{4}=0$ and $l_{23}=0$, then

$$
\begin{equation*}
L=0, \quad \beta=[a, \sqrt{-1} c, c, 0], \quad a, c \in C \tag{39}
\end{equation*}
$$

If $b_{4}=0$ and $l_{23} \neq 0$, then $b_{i}=0, i=1,2,3$. Hence,

$$
L=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{40}\\
0 & 0 & a \\
0 & -a & 0
\end{array}\right], \quad \beta=0, \quad a=l_{23} \in C^{*}
$$

Let

$$
Q_{1}=I_{3}, \quad Q=\left[\begin{array}{cc}
I_{3} & 0 \tag{41}\\
0 & a
\end{array}\right] ;
$$

then

$$
\begin{gather*}
Q_{1} A Q_{1}^{-1}=A, \\
Q_{1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & a \\
0 & -a & 0
\end{array}\right] Q_{1}^{-1}=a\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right], \tag{42}\\
0=\beta=\beta Q .
\end{gather*}
$$

Thus, we can suppose that $L=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right], \beta=0$.
Case 5. Consider

$$
A=\left[\begin{array}{ccc}
\sqrt{-1}-\frac{1}{2} & 1+\frac{\sqrt{-1}}{2} & 0 \\
1-\frac{\sqrt{-1}}{2} & -\sqrt{-1}-\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

By (18), we obtain $b_{1}=\sqrt{-1} b_{2}$. Then, by (19), we get

$$
\begin{gather*}
\sqrt{-1} b_{2} l_{12}+\left(\sqrt{-1}-\frac{1}{2}\right) l_{13}+\left(1-\frac{\sqrt{-1}}{2}\right) l_{23}=0 \tag{44}\\
2 l_{12}-\sqrt{-1} b_{2} l_{23}=0 \tag{45}\\
2 l_{12}-b_{2} l_{13}=0 \tag{46}\\
\left(b_{3}-1+\frac{\sqrt{-1}}{2}\right) l_{13}+\left(\frac{1}{2}+\sqrt{-1}\right) l_{23}=0 \tag{47}\\
\left(-\frac{1}{2}+\sqrt{-1}\right) l_{13}+\left(b_{3}+1+\frac{\sqrt{-1}}{2}\right) l_{23}=0 \tag{48}
\end{gather*}
$$

From (45) and (46), we have $b_{2}\left(l_{13}-\sqrt{-1} l_{23}\right)=0$.
Case 5.1. When $b_{2}=0, b_{1}=0$. From (45), we have $l_{12}=0$. Then by (44), (47), and (48) we obtain $l_{13}=l_{23}=0$. Therefore, by (17), we get $b_{3} b_{4}=0$. So, $L=0, \beta=\left[0,0, b_{3}, b_{4}\right], b_{3} b_{4}=0$. In a similar way with the proof of Case 1 , we can suppose that

$$
\begin{equation*}
L=0, \quad \beta=[0,0,0,1] \text { or } \beta=\left[0,0, b_{3}, 0\right], \quad b_{3} \in C . \tag{49}
\end{equation*}
$$

Case 5.2. When $b_{2} \neq 0, l_{13}=\sqrt{-1} l_{23}$. From (44), we have $b_{2} l_{12}=\sqrt{-1} l_{23}=l_{13}$. Then, by (45) and (46), we get $2 \sqrt{-1} l_{23}=$ $2 b_{2} l_{12}=\sqrt{-1} b_{2}^{2} l_{23}, 2 l_{13}=2 b_{2} l_{12}=b_{2}^{2} l_{13}$ and $2 l_{12}=b_{2} l_{13}=$ $b_{2}^{2} l_{12}$; that is, $\left(b_{2}^{2}-2\right) l_{23}=\left(b_{2}^{2}-2\right) l_{13}=\left(b_{2}^{2}-2\right) l_{12}=0$.

If $b_{2}^{2} \neq 2$, then $l_{23}=l_{13}=l_{12}=0$.
Else, if $b_{2}^{2}=2$, from (44) we obtain that $\sqrt{-1} b_{2}^{2} l_{12}+(\sqrt{-1}-$ $(1 / 2)) b_{2} l_{13}+(1-(\sqrt{-1} / 2)) b_{2} l_{23}=0$; that is, $2 \sqrt{-1} l_{12}+(\sqrt{-1}-$ $(1 / 2)) 2 l_{12}-\sqrt{-1}(1-(\sqrt{-1} / 2)) \sqrt{-1} b_{2} l_{23}=2 \sqrt{-1} l_{12}+(\sqrt{-1}-$ $(1 / 2)) 2 l_{12}-\sqrt{-1}(1-(\sqrt{-1} / 2)) 2 l_{12}=0$; thus, $l_{12}=0$. Therefore, by (45) and (46), we conclude that $l_{13}=l_{23}=0$.

Therefore, we can get $b_{4}=0$ by (17). So,

$$
\begin{equation*}
L=0, \quad \beta=\left[\sqrt{-1} b_{2}, b_{2}, b_{3}, 0\right], \quad b_{2} \in C^{*}, \quad b_{3} \in C \tag{50}
\end{equation*}
$$

The sufficiency of Theorem 11 is obvious from the proof of the necessity.

Acknowledgments

This work is supported in part by NSFC (11171294), The Natural Science Foundation of Heilongjiang Province of China (A201013), and the fund of Heilongjiang Education Committee (12531483).

References

[1] B. Vallette, "Homology of generalized partition posets," Journal of Pure and Applied Algebra, vol. 208, no. 2, pp. 699-725, 2007.
[2] D. Burde, "Left-symmetric algebras, or pre-Lie algebras in geometry and physics," Central European Journal of Mathematics, vol. 4, no. 3, pp. 323-357, 2006.
[3] D. Burde, K. Dekimpe, and S. Deschamps, "LR-algebras," in New Developments in Lie Theory and Geometry, vol. 491 of Contemporary Mathematics, pp. 125-140, American Mathematical Society, Providence, RI, USA, 2009.
[4] D. Burde and K. Dekimpe, "Post-Lie algebra structures and generalized derivations of semisimple Lie algebras," Moscow Mathematical Journal, vol. 13, no. 1, pp. 1-18, 2013.
[5] D. Burde, K. Dekimpe, and K. Vercammen, "Affine actions on Lie groups and post-Lie algebra structures," Linear Algebra and its Applications, vol. 437, no. 5, pp. 1250-1263, 2012.
[6] J.-L. Loday, "Generalized bialgebras and triples of operads," Astérisque, vol. 320, 2008.
[7] H. Z. Munthe-Kaas and A. Lundervold, "On post-lie algebras, lie-butcher series and moving frames," Foundations of Computational Mathematics, vol. 13, no. 4, pp. 583-613, 2013.
[8] Y. Pan, Q. Liu, C. Bai, and L. Guo, "PostLie algebra structures on the Lie algebra $S L(2, C)$," Electronic Journal of Linear Algebra, vol. 23, pp. 180-197, 2012.
[9] F. R. Gantmacher, The Theory of Matrices, vol. 2, Chelsea Publishing, New York, NY, USA, 1959.

