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The augmented Lagrangian method can be used for solving recourse problems and obtaining their normal solution in solving
two-stage stochastic linear programming problems. The augmented Lagrangian objective function of a stochastic linear problem
is not twice differentiable which precludes the use of a Newton method. In this paper, we apply the smoothing techniques and
a fast Newton-Armijo algorithm for solving an unconstrained smooth reformulation of this problem. Computational results and
comparisons are given to show the effectiveness and speed of the algorithm.

1. Introduction

In stochastic programming, some data are random variables
with specific possibility distribution [1], which was first intro-
duced by the designer of linear programming problems,
Dantzig, in [2].

In this paper, we consider the following two-stage sto-
chastic linear program (slp) with recourse which involves the
calculation of an expectation over a discrete set of scenarios:

min
𝑥∈𝑋

𝑓 (𝑥) = 𝑐𝑇𝑥 + 𝜙 (𝑥) ,

𝑋 = {𝑥 ∈ R
𝑛 : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} ,

(1)

where

𝜙 (𝑥) = 𝐸 (𝑄 (𝑥, 𝜔)) =
𝑁

∑
𝑖=1

𝑄(𝑥, 𝜔𝑖) 𝜌 (𝜔𝑖) (2)

and 𝐸 shows the expectation of function 𝑄(𝑥, 𝜔) which de-
pend on the random variable 𝜔. The function 𝑄 is defined as
follows:

𝑄 (𝑥, 𝜔) = min
𝑦∈R𝑛2

{𝑞(𝜔)
𝑇𝑦 | 𝑊(𝜔)

𝑇𝑦 ≥ ℎ (𝜔) − 𝑇 (𝜔) 𝑥} ,

(3)

where 𝐴 ∈ R𝑚×𝑛, 𝑐 ∈ R𝑛, and 𝑏 ∈ R𝑚. Also, in the problem
(3) vector of coefficients 𝑞(⋅) ∈ R𝑛2 , matrix of coefficients

𝑊𝑇(⋅) ∈ R𝑚2×𝑛2 , demand vector ℎ(⋅) ∈ R𝑚2 , andmatrix𝑇(⋅) ∈
R𝑚2×𝑛 depend on the random vector 𝜔 with support space
Ω. The problems (1) and (3) are called master and recourse
problems of stochastic programming, respectively.

We assume that the problem (3) has a solution for each
𝑥 ∈ 𝑋 and 𝜔 ∈ Ω.

In general, the recourse function 𝜙(𝑥) is not differentiable
everywhere. Therefore, the traditional methods use nons-
mooth optimization techniques [3–5]. However, in the last
decade, it is proposed smoothing method for recourse func-
tion in standard form of recourse problem [6–11]. In this
paper, we apply a smooth approximation technique to smooth
recourse function that the recourse problem has inequal-
ity linear constrained. For more explanation see Section 2.
The approximated problem is based on the least two-norm
solution of recourse problem. This paper considers the
augmented Lagrangian method to obtain least two-norm
solution (Section 3). For convenience, Euclidean least two-
norm solution of linear programming problem is named
normal solution. This effective method contains solving an
unconstrained quadratic problem which its objective func-
tion is not twice differentiable. To apply a fastNewtonmethod
we use the soothing technique and replace plus function by
an accurate smooth approximation [12, 13]. In Section 4, the
smoothing algorithmand the numerical results are presented.
Also, concluding remarks are given in Section 5.
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We now describe our notation. Let 𝑎 = [𝑎
𝑖
] be a vector in

R𝑛. By 𝑎
+
wemean a vector inR𝑛 whose 𝑖th entry is 0 if 𝑎

𝑖
< 0

and equals 𝑎
𝑖
if 𝑎
𝑖
≥ 0. By𝐴𝑇 wemean the transpose ofmatrix

𝐴, and∇𝑓(𝑥
0
) is the gradient of𝑓 at 𝑥

0
. For 𝑥 ∈ R𝑛, ‖ 𝑥 ‖ and

‖ 𝑥 ‖
∞

denote 2-norm and infinity norm, respectively.

2. Approximation of Recourse Function

As mentioned the objective function of (1) is nondifferen-
tiable. This disadvantage property occurs on the recourse
function. In this section, there is an attempt to approximate
it to a differentiable function.

Using dual of the problem (3), function 𝑄(𝑥, 𝜔) can be
written as follows:

𝑄 (𝑥, 𝜔) = max
𝑧∈R𝑚2

(ℎ (𝜔) − 𝑇 (𝜔) 𝑥)
𝑇𝑧

s.t. 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝑧 ≥ 0.

(4)

Unlike the linear recourse function, the quadratic recours
function is differentiable. Thus in this paper, the approxima-
tion is based on the following quadratic problemwith helpful
properties:

𝑄
𝜖
(𝑥, 𝜔) = max

𝑧∈R𝑚2
(ℎ (𝜔) − 𝑇 (𝜔) 𝑥)

𝑇𝑧 −
𝜖

2
‖𝑧‖
2

s.t. 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝑧 ≥ 0.

(5)

The next theorem shows that, for the sufficiently small 𝜖 >
0, the solution of this problem is the normal solution of the
problem (4).

Theorem 1. For functions 𝑄(𝑥, 𝜔) and 𝑄
𝜖
(𝑥, 𝜔) introduced in

(4) and (5), the following can be presented:

(a) ∃𝜖 > 0 such that, for each 𝜖 ∈ (0, 𝜖], the solution for the
problem (5) is the normal solution for the problem (4).

(b) For each 𝜖 > 0, function 𝑄
𝜖
(𝑥, 𝜔) is differentiable with

respect to 𝑥.
(c) The gradient of function 𝑄

𝜖
(𝑥, 𝜔) at point 𝑥 is

∇𝑄
𝜖
(𝑥, 𝜔) = −𝑇𝑇 (𝜔) 𝑧

∗

𝜖
(𝑥, 𝜔) (6)

in which 𝑧∗
𝜖
(𝑥, 𝜔) is the solution of the problem (5).

Proof. To prove (a), refer to [14, 15].
Also, (b) and (c) can be easily proved considering that

function 𝑄
𝜖
(𝑥, 𝜔) is the conjugate of function

𝑝 (𝑧) =
{
{
{

𝜖

2
‖𝑧‖2, 𝑧 ∈ 𝑍,

∞, 𝑧 ∉ 𝑍,
(7)

where

𝑍 = {𝑧 ∈ R
𝑚
2 : 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝑧 ≥ 0} , (8)

andTheorems (26-3) and (23-5) in [16].

Using the approximated recourse function 𝑄
𝜖
(𝑥, 𝜔), we

can define a differentiable approximation function to the
objective function of (1):

𝑓
𝜖
(𝑥) = 𝑐𝑇𝑥 +

𝑁

∑
𝑖=1

𝑄
𝜖
(𝑥, 𝜔𝑖) 𝜌 (𝜔𝑖) . (9)

By (6), the gradient of above function exists and is obtained
by

∇𝑓
𝜖
(𝑥) = 𝑐 +

𝑁

∑
𝑖=1

∇𝑄
𝜖
(𝑥, 𝜔𝑖) 𝜌 (𝜔𝑖)

= 𝑐 −
𝑁

∑
𝑖=1

𝑇𝑇 (𝜔𝑖) 𝑧∗
𝜖
(𝑥, 𝜔𝑖) 𝜌 (𝜔𝑖) .

(10)

This approximation has paved theway to use the optimization
algorithm for master problem (1) in which the objective
function is substituted by 𝑓

𝜖
(𝑥)

min
𝑥∈𝑋

𝑓
𝜖
(𝑥) . (11)

In [7], it is considered slp problem with inequality con-
strained in master problem and equality constrained in
recourse problem. Also, inTheorem 2.3 of [7], it is shown that
a solution of the approximated problem is a good approxi-
mation to a solution of master problem. Here we can express
a similar theorem for the problem (1) by using the similar
technique in the proof of Theorem 2.3 in [7].

Theorem 2. Consider the problem (1). Then, for any 𝑥 ∈ 𝑋,
there exists an 𝜖(𝑥) > 0 such that for any 𝜖 ∈ (0, 𝜖(𝑥)]

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓
𝜖
(𝑥)

󵄨󵄨󵄨󵄨 ≤
𝜖

2
𝑀, (12)

where𝑀 is defined as follows:

𝑀 = max
𝑖=1,2,...,𝑁

󵄩󵄩󵄩󵄩󵄩𝑧
∗

𝜖
(𝑥, 𝜔𝑖)

󵄩󵄩󵄩󵄩󵄩
2

. (13)

Let 𝑥∗ be a solution of (1) and 𝑥∗
𝜖
a solution of (11).Then, there

exists an 𝜖 > 0 such that for any 0 < 𝜖 ≤ 𝜖

max {𝑓 (𝑥∗
𝜖
) − 𝑓 (𝑥∗) , 𝑓

𝜖
(𝑥∗) − 𝑓

𝜖
(𝑥∗
𝜖
)} ≤

𝜖

2
𝑀. (14)

Further, one assumes that𝑓 or𝑓
𝜖
are strongly convex on𝑋with

modulus 𝜇 > 0. Then,

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑥∗
𝜖

󵄩󵄩󵄩󵄩 ≤ 𝑀
𝜖

𝜇
. (15)

According toTheorem 1, it can be found that for obtaining
the gradient of function 𝑓

𝜖
(𝑥) in each iteration, we need the

normal solution of 𝑁 linear programming problems (4). In
this paper, the augmented Lagrangianmethod [17] is used for
this purpose.
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3. Smooth Approximation and Augmented
Lagrangian Method

In the augmented Lagrangian method, the unconstrained
maximization problem is solved which gives the project of a
point on the solution set of the problem (4).

Assume that 𝑧̂ is an arbitrary vector. Consider the prob-
lem of finding the least 2-norm projection 𝑧̂

∗
of 𝑧̂ on the solu-

tion set 𝑍
∗
of the problem (4)

1

2

󵄩󵄩󵄩󵄩𝑧̂∗ − 𝑧̂
󵄩󵄩󵄩󵄩
2

= min
𝑧∈𝑍
∗

1

2
‖𝑧 − 𝑧̂‖

2,

𝑍
∗
= {𝑧 ∈ R

𝑚
2 : 𝑊 (𝜔) 𝑧 = 𝑞 (𝜔) , 𝜉𝑇𝑧 = 𝑄 (𝑥, 𝜔) , 𝑧 ≥ 0} .

(16)

In this problem, vector 𝑥 and random variable 𝜔 are con-
stants; therefore, for simplicity, this is assumed to be 𝜉 =

ℎ(𝜔) − 𝑇(𝜔)𝑥, and function 𝑄(𝜉) is defined in a way that
𝑄(𝜉) = 𝑄(𝑥, 𝜔).

Considering that the objective function of the problem
(16) is strictly convex, its solution is unique. Let us introduce
the Lagrangian function for the problem (16) as follow:

𝐿 (𝑧, 𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) =
1

2
‖𝑧 − 𝑧̂‖

2 + 𝑝𝑇 (𝑊 (𝜔) 𝑧 − 𝑞 (𝜔))

+ 𝛽 (𝜉𝑇𝑧 − 𝑄 (𝜉)) ,

(17)

where 𝑝 ∈ R𝑛2 and 𝛽 ∈ R are Lagrangian multipliers and 𝜉,
𝑧̂ are constant values. Therefore, the dual problem of (16)
becomes

max
𝛽∈R

max
𝑝∈R𝑛2

min
𝑧∈R
𝑚
2

+

𝐿 (𝑧, 𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) . (18)

By solving the innerminimization of the problem (18), duality
of the problem (16) is obtained:

max
𝛽∈R

max
𝑝∈R𝑛2

𝐿̂ (𝑝, 𝛽, 𝑧̂, 𝜉) , (19)

where duality function is

𝐿̂ (𝑝, 𝛽, 𝑧̂, 𝜉) = 𝑞𝑇 (𝜔) 𝑝 −
1

2

󵄩󵄩󵄩󵄩󵄩(𝑧̂ + 𝑊𝑇 (𝜔) 𝑝 + 𝛽𝜉)
+

󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽𝑄 (𝜉) +
1

2
‖𝑧̂‖
2.

(20)

The following theorem states that if 𝛽 is sufficiently large,
solving the inner maximization of (19) gives the solution of
the problem (16).

Theorem 3 (see [17]). Consider the following maximization
problem

max
𝑝∈R𝑛2

𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) (21)

in which 𝛽, 𝑧̂, and 𝜉 are constants, and function 𝑆(𝑝, 𝛽, 𝑧̂, 𝜉) is
introduced as follows:

𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) = 𝑞𝑇 (𝜔) 𝑝 −
1

2

󵄩󵄩󵄩󵄩󵄩(𝑧̂ + 𝑊𝑇 (𝜔) 𝑝 + 𝛽𝜉)
+

󵄩󵄩󵄩󵄩󵄩
2

.

(22)

Also, assume that the set 𝑍
∗
is nonempty, and the rank of

submatrix 𝑊
𝑙
of 𝑊 corresponding to nonzero components of

𝑧̂
∗
is 𝑛
2
. In such a case, there is 𝛽∗ which for all 𝛽 ≥ 𝛽∗,

𝑧̂
∗
= (𝑧̂ + 𝑊𝑇𝑝(𝛽) + 𝛽𝜉)

+
is the unique and exact solution for

the problem (16), where 𝑝(𝛽) is the point obtained from solving
the problem (21).

Also, in special conditions, the solution for the problem
(3) can be also obtained and the following theorem expresses
this issue.

Theorem 4 (see [17]). Assume that the solution set 𝑍
∗
is

nonempty. For each 𝛽 > 0 and 𝑧̂ ∈ 𝑍
∗
, 𝑦
∗

= 𝑝(𝛽)/𝛽 is one
exact solution for the linear programming problem (3), where
𝑝(𝛽) is the solution for the problem (21).

According to the theorems mentioned above, augmented
Lagrangian method presents the following iteration process
for solving the problem (16):

𝑝
𝑘+1

∈ arg max
𝑝∈R𝑛2

{𝑞𝑇 (𝜔) 𝑝 −
1

2

󵄩󵄩󵄩󵄩󵄩(𝑧𝑘 + 𝑊(𝜔)
𝑇𝑝 + 𝛽𝜉)

+

󵄩󵄩󵄩󵄩󵄩
2

} ,

𝑧
𝑘+1

= (𝑧
𝑘
+ 𝑊𝑇 (𝜔) 𝑝

𝑘+1
+ 𝛽𝜉)

+

,

(23)

where 𝑧
0
is an arbitrary vector and herewe can use zero vector

as initial vector for obtaining normal solution of the problem
(4).

We note that the problem (23) is a concave problem and
its objective function is piecewise quadratic and is not twice
differentiable. Applying the smoothing techniques [18, 19]
and replacing 𝑥

+
by a smooth approximation, we transform

this problem to a twice continuously differentiable problem.
Chen and Mangasarian [19] introduced a family of

smoothing functions, which is built as follows. Let 𝜌 : 𝑅 →
[0,∞) be a piecewise continuous density function satisfying

∫
+∞

−∞

𝜌 (𝑠) 𝑑𝑠 = 1, ∫
+∞

−∞

|𝑠| 𝜌 (𝑠) 𝑑𝑠 < ∞. (24)

It is obvious that the derivative of plus function is step func-
tion, that is, (𝑥)

+
= ∫
𝑥

−∞

𝛿(𝑡)𝑑𝑡, where the step function 𝛿(𝑥)

is defined 1 if 𝑥 > 0 and equals 0 if𝑥 ≤ 0.Therefore, a smooth-
ing approximation function of the plus function is defined by

𝜑 (𝑥, 𝛼) = ∫
𝑥

−∞

𝜓 (𝑡, 𝛼) 𝑑𝑡, (25)

where 𝜓(𝑥, 𝛼) is smoothing approximation function of step
function and is defined as

𝜓 (𝑥, 𝛼) = ∫
𝑥

−∞

𝛼𝜌 (𝛼𝑡) 𝑑𝑡. (26)

By choosing

𝜌 (𝑠) =
𝑒−𝑠

(1 + 𝑒−𝑠)2
, (27)
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specific cases of these approaches are obtained as follows:

𝜓 (𝑥, 𝛼) =
1

1 + 𝑒−𝛼𝑥
≈ 𝛿 (𝑥) ,

𝜑 (𝑥, 𝛼) = 𝑥 +
1

𝛼
log (1 + 𝑒−𝛼𝑥) ≈ (𝑥)

+
.

(28)

The function 𝜑 with a smoothing parameter 𝛼 is used here to
replace the plus function of (22) to obtain a smooth reformu-
lation of function (22):

𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝛽, 𝜔, 𝛼) := 𝑞𝑇 (𝜔) 𝑝

−
󵄩󵄩󵄩󵄩󵄩𝜑(𝑧̂ + 𝑊𝑇(𝜔)𝑝 + 𝛽𝜉, 𝛼)

󵄩󵄩󵄩󵄩󵄩
2

.

(29)
Therefore, we have the following iterative process instead of
(23) and (28):

𝑝
𝑘+1

∈ arg max
𝑝∈R𝑛2

{𝑞𝑇 (𝜔) 𝑝 −
󵄩󵄩󵄩󵄩󵄩𝜑(𝑧𝑘 + 𝑊𝑇(𝜔)𝑝 + 𝛽𝜉, 𝛼)

󵄩󵄩󵄩󵄩󵄩
2

} ,

𝑧
𝑘+1

= 𝜑 (𝑧
𝑘
+ 𝑊𝑇 (𝜔) 𝑝

𝑘+1
+ 𝛽𝜉, 𝛼) .

(30)
It can be shown that as the smoothing parameter 𝛼 approach-
es infinity any solution of smooth problem (29) approaches
the solution of the equivalent problem (22) (see [19]).

We beginwith a simple lemma that bounds the square dif-
ference between the plus function 𝑥

+
and its smooth approx-

imation 𝜑(𝑥, 𝛼).

Lemma 5 (see [13]). For 𝑥 ∈ R and |𝑥| < 𝜛

𝜑2 (𝑥, 𝛼) − (𝑥
+
)
2

≤ (
log (2)

𝛼
)
2

+
2𝜛

𝛼
log (2) , (31)

where 𝜑(𝑥, 𝛼) is the 𝜑 function of (28) with smoothing param-
eter 𝛼 > 0.

Theorem 6. Consider the problems (21) and

max
𝑝∈R𝑛2

𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) . (32)

Then, for any 𝑝 ∈ R𝑛2 and 𝛼 > 0

󵄨󵄨󵄨󵄨󵄨𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)
󵄨󵄨󵄨󵄨󵄨 ≤ (

log (2)
𝛼

)
2

+ 2𝑀𝑚
2

log (2)
𝛼

,

(33)
where𝑀 is defined as follows:

𝑀 = max
1≤𝑖≤𝑚

2

󵄨󵄨󵄨󵄨󵄨𝑧̂𝑖 + 𝑊𝑇
𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖

󵄨󵄨󵄨󵄨󵄨 . (34)

Let 𝑝∗ be a solution of (21) and 𝑝∗
𝛼
a solution of (32). Then

max {𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔) ,

𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)}

≤ (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(35)

Further, one assumes that 𝑊𝑇 is a full rank matrix. Then,

󵄩󵄩󵄩󵄩𝑝
∗ − 𝑝∗
𝛼

󵄩󵄩󵄩󵄩 ≤ 𝜇(
2 log (2)

𝛼
)
2

+ 8𝑀𝑚
2
𝜇
log (2)

𝛼
. (36)

Proof. For any 𝛼 > 0 and 𝑝 ∈ R𝑛2

𝜑 (𝑧̂
𝑖
+ 𝑊𝑇
𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼) ≥ (𝑧̂

𝑖
+ 𝑊𝑇
𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼)
+

.

(37)

Hence

󵄨󵄨󵄨󵄨󵄨𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)
󵄨󵄨󵄨󵄨󵄨

= 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

=
󵄩󵄩󵄩󵄩󵄩𝜑(𝑧̂ + 𝑊𝑇(𝜔)𝑝 + 𝛽𝜉, 𝛼)

󵄩󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩(𝑧̂ + 𝑊𝑇 (𝜔) 𝑝 + 𝛽𝜉, 𝛼)

+

󵄩󵄩󵄩󵄩󵄩
2

=
𝑚
2

∑
𝑖=1

(𝜑2 (𝑧̂
𝑖
+ 𝑊𝑇
𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼)

−(𝑧̂
𝑖
+ 𝑊𝑇
𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼)
2

+

) .

(38)

By using Lemma 5, we get that

󵄨󵄨󵄨󵄨󵄨𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)
󵄨󵄨󵄨󵄨󵄨

≤
𝑚
2

∑
𝑖=1

((
log (2)

𝛼
)
2

+ 2
󵄨󵄨󵄨󵄨󵄨𝑧̂𝑖 + 𝑊𝑇

𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖
, 𝛼

󵄨󵄨󵄨󵄨󵄨
log (2)

𝛼
)

≤ (
log (2)

𝛼
)
2

+ 2
log (2)

𝛼

×
𝑚
2

∑
𝑖=1

max
1≤𝑖≤𝑚

2

󵄨󵄨󵄨󵄨󵄨𝑧̂𝑖 + 𝑊𝑇
𝑖
(𝜔) 𝑝 + 𝛽𝜉

𝑖

󵄨󵄨󵄨󵄨󵄨

= (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(39)

From above inequality, we have

𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) ≤ 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔)

≤ 𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) + (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(40)
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Table 1: Comparative between smooth augmented Lagrangian Newton method (SALN) and CPLEX solver.

N. P Recourse problem
𝑛
2
× 𝑚
2
× 𝑑

Solver ‖𝑊𝑧 − 𝑞‖
∞

|𝑄(𝜉) − 𝜉𝑇𝑧| ‖𝑧‖ Time (second)

P1 50 × 50 × 0.68
SALN 9.9135𝑒 − 011 7.2760𝑒 − 012 41.0362 0.3292

CPLEX 1.0717𝑒 − 007 5.2589𝑒 − 007 41.0362 0.3182

P2 100 × 105 × 0.4
SALN 1.8622𝑒 − 010 4.3074𝑒 − 009 57.1793 0.1275

CPLEX 6.5591𝑒 − 008 1.6105𝑒 − 006 57.1826 0.1585

P3 150 × 150 × 0.5
SALN 3.1559𝑒 − 010 5.6361𝑒 − 009 74.9098 0.6593

CPLEX 5.9572𝑒 − 010 1.2014𝑒 − 009 74.9098 0.1605

P4 200 × 200 × 0.5
SALN 5.3819𝑒 − 010 1.0506𝑒 − 008 85.6646 0.2530

CPLEX 1.1734𝑒 − 007 1.3964𝑒 − 006 85.6646 0.1820

P5 300 × 300 × 0.5
SALN 9.4178𝑒 − 010 2.7951𝑒 − 008 102.4325 2.1356

CPLEX 4.1638𝑒 − 010 4.4456𝑒 − 009 102.4325 0.1830

P6 350 × 350 × 0.5
SALN 1.2787𝑒 − 009 2.6226𝑒 − 008 110.4189 3.2102

CPLEX 7.7398𝑒 − 010 3.4452𝑒 − 009 110.4189 0.2116

P7 450 × 500 × 0.05
SALN 1.6564𝑒 − 010 4.7094𝑒 − 009 124.1204 0.7807

CPLEX 9.0949𝑒 − 013 1.6371𝑒 − 011 124.1205 0.2606

P8 500 × 550 × 0.04
SALN 1.0425𝑒 − 010 1.0241𝑒 − 009 134.3999 0.7567

CPLEX 6.1618𝑒 − 011 1.9081𝑒 − 009 134.3999 0.2660

P9 700 × 800 × 0.6
SALN 4.6139𝑒 − 009 2.3908𝑒 − 007 153.9782 7.1364

CPLEX 9.1022𝑒 − 009 1.3768𝑒 − 007 153.9906 0.8435

P10 900 × 1100 × 0.4
SALN 5.3396𝑒 − 009 1.5207𝑒 − 007 178.1151 7.9383

CPLEX 4.5020𝑒 − 011 2.0373𝑒 − 010 178.1163 1.3643

P11 1500 × 2000 × 0.1
SALN 1.1289𝑒 − 008 2.0696𝑒 − 007 231.5284 13.2493

CPLEX 7.5886𝑒 − 011 1.1059𝑒 − 009 231.5286 2.1343

P12 1000 × 2000 × 0.01
SALN 3.6398𝑒 − 010 7.9162𝑒 − 009 198.4905 5.2620

CPLEX 6.8212𝑒 − 013 1.1642𝑒 − 010 198.4922 0.6752

P13 1000 × 5000 × 0.001
SALN 2.7853𝑒 − 010 1.9281𝑒 − 010 190.0141 0.2709

CPLEX 4.8203𝑒 − 010 1.5425𝑒 − 009 190.0142 0.2162

P14 1000×10000×0.001
SALN 1.1221𝑒 − 010 1.4988𝑒 − 009 212.2416 0.4867

CPLEX 7.9094𝑒 − 009 2.6691𝑒 − 007 212.3453 0.3353

P15 1000 × 1𝑒5 × 0.001
SALN 9.7702𝑒 − 010 2.3283𝑒 − 009 231.7930 3.7511

CPLEX 2.7285𝑒 − 012 1.8044𝑒 − 009 231.8763 1.2472

P16 1000 × 1𝑒6 × 0.0002
SALN 9.9432𝑒 − 013 2.0464𝑒 − 012 121.3937 9.0948

CPLEX 9.9098𝑒 − 006 1.1089𝑒 − 004 121.3940 3.7848

P17 100 × 1𝑒6 × 0.001
SALN 3.9563𝑒 − 010 5.6607𝑒 − 009 73.8493 6.8537

CPLEX 2.0082𝑒 − 003 1.1777𝑒 − 002 73.9412 2.5582

P18 10 × 1𝑒4 × 0.001
SALN 2.2737𝑒 − 013 7.9581𝑒 − 013 19.5735 0.0166

CPLEX 2.2737𝑒 − 013 1.1369𝑒 − 013 19.5739 0.1386

P19 10 × 1𝑒6 × 0.001
SALN 1.2478𝑒 − 009 1.0710𝑒 − 008 18.8192 5.6399

CPLEX 5.9615𝑒 − 004 6.4811𝑒 − 005 18.8863 2.5623

P20 10 × 5𝑒6 × 0.01
SALN 2.0425𝑒 − 008 1.1816𝑒 − 008 20.8470 28.7339

CPLEX 4.9966𝑒 + 004 3.3500𝑒 + 005 0.0000 1.9482

P21 100 × 1𝑒6 × 0.01
SALN 3.8654𝑒 − 012 7.7875𝑒 − 012 42.0698 7.8895

CPLEX 1.7994𝑒 − 004 6.2712𝑒 − 005 42.0931 8.8324

P22 100 × 1𝑒4 × 0.1
SALN 1.1084𝑒 − 012 2.1600𝑒 − 012 39.4563 0.1440

CPLEX 1.2518𝑒 − 005 1.3174𝑒 − 005 39.4563 0.3099

P23 100 × 1𝑒5 × 0.05
SALN 1.7053𝑒 − 012 6.3121𝑒 − 012 43.5944 1.1379

CPLEX 3.9827𝑒 − 006 2.8309𝑒 − 006 43.5944 1.5729
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Table 1: Continued.

N. P Recourse problem
𝑛
2
× 𝑚
2
× 𝑑

Solver ‖𝑊𝑧 − 𝑞‖
∞

|𝑄(𝜉) − 𝜉𝑇𝑧| ‖𝑧‖ Time (second)

P24 1000 × 5𝑒4 × 0.1
SALN 1.3074𝑒 − 012 2.4102𝑒 − 011 117.4693 15.1065

CPLEX 6.7455𝑒 − 007 6.7379𝑒 − 006 117.4699 20.3967

P25 1000 × 1𝑒5 × 0.08
SALN 2.5011𝑒 − 012 1.0516𝑒 − 011 116.6964 23.2540

CPLEX 9.4298𝑒 − 006 5.5861𝑒 − 004 116.6964 33.4319

Therefore
𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝∗

𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔)

≤ 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

+ (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

≤ (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

,

𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

≤ 𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔) − 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔)

+ (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

≤ (
log (2)

𝛼
)
2

+ 2𝑀𝑚
2

log (2)
𝛼

.

(41)

Suppose that𝑊𝑇 is full rank.Then theHessian of 𝑆 is negative
definite, and 𝑆 is strongly concave on bounded sets. By the
definition of strong concavity, for any 𝛾 ∈ (0, 1),

𝑆 (𝛾𝑝∗
𝛼
+ (1 − 𝛾) 𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) − 𝛾𝑆 (𝑝∗

𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

− (1 − 𝛾) 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

≥
1

2
𝜇𝛾 (1 − 𝛾)

󵄩󵄩󵄩󵄩𝑝
∗

𝛼
− 𝑝∗

󵄩󵄩󵄩󵄩
2

.

(42)

Let 𝛾 = 1/2, then
1

8
𝜇
󵄩󵄩󵄩󵄩𝑝
∗

𝛼
− 𝑝∗

󵄩󵄩󵄩󵄩
2

≤ 𝑆 (
1

2
(𝑝∗
𝛼
+ 𝑝∗) , 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

−
1

2
(𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) + 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼))

≤ 𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)

−
1

2
(𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) + 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼))

≤
1

2
(𝑆 (𝑝∗
𝛼
, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) − 𝑆 (𝑝∗, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼))

≤
1

2
(
log (2)

𝛼
)
2

+ 𝑀𝑚
2

log (2)
𝛼

.

(43)

Considering the advantage of the twice differentiability of
the objective function of the problem (32) allows us to use a
quadratically convergent Newton algorithm with an Armijo
stepsize [20] that makes the algorithm globally convergent.

4. Numerical Results and Algorithm

In each iteration of the process (30), one concave, quadratic,
unconstrained maximization problem is solved. For solving
it, the fast Newton method can be used.

In the algorithm, theHessianmatrixmay be singular, thus
we use amodified Newton.The direction in each iteration for
solving (30) is obtained through the following relation:

𝑑
𝑠
= −(∇2

𝑝
𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼) − 𝛿𝐼

𝑛
2

)
−1

(∇
𝑝
𝑆 (𝑝, 𝛽, 𝑧̂, 𝜉, 𝜔, 𝛼)) ,

𝑝
𝑠+1

= 𝑝
𝑠
+ 𝜆
𝑠
𝑑
𝑠
,

(44)

where 𝛿 is a small positive number, 𝐼
𝑛
2

is the identity matrix
of order 𝑛

2
, and 𝜆

𝑠
is the suitable step length that Armijo

algorithm is used for determining it (see Algorithm 1).
The proposed algorithm was applied to solve some

recourse problems. Table 1 compares this algorithm with
CPLEX v. 12.1 solver for quadratic convex programming
problems (5). As is evident from Table 1, most of recourse
problems could be solved more successful by the algorithm
which is based on smooth augmented Lagrangian Newton
method (SALN) than CPLEX package (for illustration see the
problems 21–25 in Table 1).This algorithm gives us high accu-
racy and the solution with minimum norm in suitable time
(see last column of Table 1). Also, we can find that CPLEX
is better than the algorithm proposed for some recourse
problems inwhich thematrices are approximately square (Ex.
line 5–12).

The test generator generates recourse problems. These
problems are generated using the MATLAB code show in
Algorithm 2.

The algorithm considered for solving several recourse
problems was run on a computer with 2.5 dual-core CPU and
4GB memory in MATLAB 7.8 programming environment.
Also, in the generated problems, recourse matrix 𝑊 is the
Sparse matrix (𝑛

2
× 𝑚
2
) with the density 𝑑. The constants 𝛽

and 𝛿 in the above algorithm in (44) were selected 1 and 10−8,
respectively.

In Table 1, the second column indicates the size and
density ofmatrix𝑊, the forth column indicates the feasibility
of the primal problem (4), and the next column indicates the
error norm function of this problem (the MATLAB code of
this paper is available from the authors upon request).
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Choose a 𝑧
0
∈ 𝑅𝑚2 , 𝛼 > 1, 𝜄 > 1, 𝜖 > 0 be error tolerance and 𝛿 is a small positive

number.
𝑖 = 0;
While 󵄩󵄩󵄩󵄩𝑧𝑖 − 𝑧

𝑖−1

󵄩󵄩󵄩󵄩∞ ≥ 𝜖
Choose a 𝑝

0
∈ 𝑅𝑛2 and set 𝑘 = 0.

While 󵄩󵄩󵄩󵄩󵄩∇𝑝𝑆(𝑝𝑘, 𝛽, 𝑧𝑖, 𝜉, 𝜔, 𝛼)
󵄩󵄩󵄩󵄩󵄩∞ ≥ 𝜖

Choose 𝜆
𝑘
= max{𝑠, 𝑠𝜎, 𝑠𝜎2, . . .} such that

𝑆(𝑝
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼) − 𝑆(𝑝

𝑘
+ 𝜆
𝑘
𝑑
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼) ≥ −𝜆

𝑖
𝜇∇(𝑆(𝑝

𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼))𝑇𝑑

𝑘
,

where,
𝑑
𝑘
= −(∇2𝑆(𝑝

𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼, ) − 𝛿𝐼

𝑛
2

)−1∇𝑆(𝑝
𝑘
, 𝛽, 𝑧
𝑖
, 𝜉, 𝜔, 𝛼), 𝑠 > 0 be a constant,

𝜎 ∈ (0, 1) and 𝜇 ∈ (0, 1).
Put 𝑝

𝑘+1
= 𝑝
𝑘
+ 𝜆
𝑘
𝑑
𝑘
, 𝑘 = 𝑘 + 1 and 𝛼 = 𝜄𝛼.

end
Set 𝑝
𝑖+1

= 𝑝
𝑘+1

, 𝑧
𝑖+1

= 𝜑(𝑧
𝑖
+ 𝑊𝑇(𝜔)𝑝

𝑖+1
+ 𝛽𝜉, 𝛼) and 𝑖 = 𝑖 + 1.

end

Algorithm 1: Newton method with the Armijo rule.

%Sgen: Generate random solvable recourse problems:

%Input: m,n,d(ensity); Output: W,q,𝜉;
m=input(’Enter 𝑛

2
:’)

n=input(’Enter 𝑚
2
:’)

d=input(’Enter d:’)
pl=inline(’(abs(x)+x)/2’)
W=sprand(𝑛

2
,𝑚
2
,d);W=100∗(W-0.5∗spones(W));

z=sparse(10∗pl(rand(𝑚
2
,1)));

q=W∗z;
y=spdiags((sign(pl(rand(𝑛

2
,1)-rand(𝑛

2
,1)))),0,𝑛

2
,𝑛
2
)

∗5∗((rand(𝑛
2
,1)-rand(𝑛

2
,1)));

𝜉=W’∗y-10∗spdiags((ones(𝑚
2
,1)-sign(z)),0,𝑚

2
,𝑚
2
)∗ones(𝑚

2
,1));

format short e; nnz(W)/prod(size(W))

Algorithm 2

5. Conclusion

In this paper, a smooth reformulation process, based on
augmented Lagrangian algorithm, was proposed for obtain-
ing the normal solution of recourse problem of a stochastic
linear programming. This smooth iterative process allows us
to use a quadratically convergent Newton algorithm, which
accelerates obtaining the normal solution.

Table 1 shows that the proposed algorithm has appropri-
ate speed in most of the problems. This result, specifically,
can be observed in recourse problems with the matrix of
coefficients in which the number of constraints is noticeably
more than the number of variables. The more challenging is
solving the problems which their coefficient matrix is square
(the numbers of constraints and variables get closer to each
other), and more time is needed by the algorithm for solving
the problem.
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