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For the first time the conservation laws for vonMises plasticity equations in three dimensions as well as for plane stress equations are
given. In the plane case conservation laws are used to construct characteristics for the Cauchy problem. For the system of the plane
strain, the conservation laws are used to solve the free boundary problem for any convex smooth contour loaded with constant
normal and zero tangential stresses.

1. Introduction

Conservation laws are becoming one of the most important
tools for studying and solving differential equations. Such sig-
nificance was gained after the article by Noether [1]. In this
paper it was shown that there is a close relationship between
the so-called Noether’s symmetries and conservation laws.
Namely, the conservation law corresponds to each such
symmetry.

Later it was shown that such a relationship exists only
for the equations derived from the variational principle. For
other equations the so-called operator of universal lineariza-
tion should be constructed. And then it is necessary to
consider the kernel of its (formally) adjoint operator [2, 3].
In particular, it permits consistently to construct the con-
servation laws of plasticity equations and moreover to use
them to solve the main boundary value problems of the plane
theory of perfect plasticity [4, 5].

Let us give some basic definitions of the theory of
conservation laws due to [2]. Let us consider a system

F : 𝐹
𝑟
(𝑥, 𝑢, 𝑝

𝑠

) = 0, 𝑟 = 1, . . . , 𝑚, (1)

of 𝑚 differential equations for 𝑚 unknown functions 𝑢 =

(𝑢
1

, . . . , 𝑢
𝑚

) and its derivatives 𝑝
𝑠

= {𝑢

1

𝛼, 𝑢
2

𝛼
, . . . , 𝑢
𝑠

𝛼
} up to the

order 𝑠with respect to 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) independent variables

(𝛼 = 1, . . . , 𝑚).
A conserved current is an 𝑛-dimensional vector function

𝐴 = (𝐴
1
, . . . , 𝐴

𝑛
) with components (fluxes) depending on 𝑥,

𝑢, 𝑢
1

𝛼
, . . . , 𝑢
𝑠

𝛼
, . . . , which satisfy the following relation for any

solution ofF:

𝜕𝐴
𝑖

𝜕𝑥
𝑖

= ◻
𝑟
(𝐹
𝑟
) , (2)

where ◻
𝑟
are some scalar differential operators. The above

relation (2) is called conservation law of systemF. Let us note
that all conserved currents are considered to be equivalence
classes with respect to trivial currents (for which div𝐴 = 0

for any form of 𝑢). Hereafter the summation over repeating
indices is assumed.

There follows (see [4] and cited bibliography) the follow-
ing theorem.

Theorem 1. Let system F of differential equations (1) be
derived from a variational principle and admit the following
point Noether’s symmetry (𝑖 = 1, . . . , 𝑛; 𝛼 = 1, . . . , 𝑚):

𝑋 = 𝜉
𝑗
𝜕

𝜕𝑥
𝑗

+ 𝜂
𝛼
𝜕

𝜕𝑢
𝛼
. (3)
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Then the 𝑖th component of conserved current has the following
form:

𝐴
(𝑋)

𝑖
= 𝜂
𝛼
𝜕𝐿

𝜕𝑢
𝛼

𝑖

+ 𝜉
𝑖

𝐿 − 𝜉
𝑗

𝑢
𝛼

𝑗

𝜕𝐿

𝜕𝑢
𝛼

𝑖

, (4)

where 𝐿(𝑥, 𝑢, 𝑢
1

𝛼
) is the density of the corresponding Lagran-

gian, 𝑢𝛼
𝑖
= 𝜕𝑢
𝛼

/𝜕𝑥
𝑖
.

Let us recall [2] that a functional

L = ∫𝐿(𝑥, 𝑢, 𝑢

1

𝛼
, 𝑢

2

𝛼
, . . . , 𝑢
𝑠

𝛼
, . . .) 𝑑𝑥 (5)

is called a Lagrangian (or an action or a variational func-
tional), and function 𝐿 is called the density ofL.

2. Conservation Laws of Three-Dimensional
Plasticity Equations

Let us consider [6] the system of perfect isotropic plasticity
in the three-dimensional stationary case which describes the
state of the plastic flow of an incompressible plastic medium
and consists of three equilibrium equations:

𝜕𝑝

𝜕𝑥
𝑖

=

𝜕𝑠
𝑖𝑗

𝜕𝑥
𝑗

, (6)

the von Mises yield criterion which is defined when the
medium achieves a plastic state

𝑠
𝑖𝑗
𝑠
𝑖𝑗
= 2𝑘
2

, (7)

the incompressibility equation

𝜕𝑢
𝑖

𝜕𝑥
𝑖

= 0, (8)

and the relation between components 𝑠
𝑖𝑗
= 𝜎
𝑖𝑗
+ 𝑝𝛿
𝑖𝑗
of the

deviatoric stress and components 𝑒
𝑖𝑗
of the symmetric strain-

rate tensor:

𝑠
𝑖𝑗
=

𝜆

2

(

𝜕𝑢
𝑖

𝜕𝑥
𝑗

+

𝜕𝑢
𝑗

𝜕𝑥
𝑖

) = 𝜆𝑒
𝑖𝑗
, (9)

where {𝑥
1
, 𝑥
2
, 𝑥
3
} is a Cartesian coordinate system, 𝑝 =

−𝜎
𝑖𝑖
/3 is the hydrostatic pressure, 𝑢𝑖 are the components of

the velocity vector, 𝑘 is the yield point, 𝜆 = 𝜆(𝑥
1
, 𝑥
2
, 𝑥
3
) is

a positive function defined by yield criterion, 𝜎
𝑖𝑗
are com-

ponents of stress tensor, 𝛿
𝑖𝑗
is the Kronecker delta, and 𝑖,

𝑗 = 1, 2, 3. Eliminating 𝑠
𝑖𝑗
and 𝜆 from (6)–(9) we come to

four nonlinear equations for functions 𝑝, 𝑢1, 𝑢2, 𝑢3 only:

𝐹
𝑖
:

𝜕𝑝

𝜕𝑥
𝑖

− 𝑘

𝜕

𝜕𝑥
𝑗

(

𝑢
𝑖

𝑗
+ 𝑢
𝑗

𝑖

√2𝑒𝑖𝑗
𝑒
𝑖𝑗

) = 0, 𝐹
4
: 𝑢
𝑖

𝑖
= 0, (10)

where 𝑢𝑗
𝑖
= 𝜕𝑢
𝑗

/𝜕𝑥
𝑖
.

System (10) admits Lie algebra 𝐿
15

of point transforma-
tions spanned by the following generators [7] (𝑖 = 1, 2, 3):

𝑋
𝑖
=

𝜕

𝜕𝑥
𝑖

, 𝑌
𝑖
=

𝜕

𝜕𝑢
𝑖
,

𝑆 =

𝜕

𝜕𝑝

, 𝑁 = 𝑥
𝑖

𝜕

𝜕𝑥
𝑖

, 𝑀 = 𝑢
𝑖
𝜕

𝜕𝑢
𝑖
,

𝑍
1
= 𝑥
2

𝜕

𝜕𝑥
3

− 𝑥
3

𝜕

𝜕𝑥
2

+ 𝑢
2
𝜕

𝜕𝑢
3
− 𝑢
3
𝜕

𝜕𝑢
2
,

𝑇
1
= 𝑥
2

𝜕

𝜕𝑢
3
− 𝑥
3

𝜕

𝜕𝑢
2
.

(11)

Generators 𝑍
2
, 𝑇
2
, 𝑍
3
, and 𝑇

3
are obtained from 𝑍

1
, 𝑇
1
by

cyclic permutation of indices. The group of point trans-
formations is generated by the following monoparametric
subgroups:

𝑥
󸀠

𝑖
= 𝑥
𝑖
+ 𝑎
𝑖
, 𝑢

𝑖
󸀠

= 𝑢
𝑖

+ 𝑏
𝑖
, 𝑝

󸀠

= 𝑝 + 𝑐, (12)

𝑥
󸀠

𝑖
= 𝑥
𝑖
exp (𝑎

𝑖+3
) , 𝑢

𝑖
󸀠

= 𝑢
𝑖 exp (𝑏

𝑖+3
) , (13)

𝑥
󸀠

2
= 𝑥
2
cos𝜑
1
+ 𝑥
3
sin𝜑
1
, 𝑥

󸀠

3
= −𝑥
2
sin𝜑
1
+ 𝑥
3
cos𝜑
1
,

𝑢
2
󸀠

= 𝑢
2 cos𝜑

1
+ 𝑢
3 sin𝜑

1
, 𝑢

3
󸀠

= −𝑢
2 sin𝜑

1
+ 𝑢
3 cos𝜑

1
,

(14)

𝑢
2
󸀠

= 𝑢
2

+ 𝑑
1
𝑥
3
, 𝑢

3
󸀠

= 𝑢
3

− 𝑑
1
𝑥
2
, (15)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝜑
𝑖
, and 𝑑

𝑖
, 𝑐 are group parameters.

Transformations (12) are translations with respect to 𝑥
𝑖
,

𝑢
𝑖, 𝑝; (13) are scaling on 𝑥

𝑖
, 𝑢𝑖; (14) are three rotations in the

planes 𝑥
1
𝑂𝑥
2
, 𝑥
2
𝑂𝑥
3
, and 𝑥

3
𝑂𝑥
1
and there are three rigid

displacements (15).
System (10) can be deduced from the Lagrangian (𝑢 =

(𝑢
1

, 𝑢
2

, 𝑢
3

, 𝑝)):

L =∭𝐿(𝑥, 𝑢, 𝑢

1

𝛼
)𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
, (16)

where the density of the Lagrangian has the form

𝐿 = 𝜎
𝑖𝑗
𝑒
𝑖𝑗
= 𝑠
𝑖𝑗
𝑒
𝑖𝑗
− 𝑝𝑒
𝑖𝑖
= 𝑘√2𝑒

𝑖𝑗
𝑒
𝑖𝑗
− 𝑝 (𝑢

1

1
+ 𝑢
2

2
+ 𝑢
3

3
) ,

(17)

and it represents the velocity of dissipation of mechanical
energy in elemental volume.

It is easy to verify that (10) are the Euler-Lagrange
equations corresponding toL which look as follows:

𝐹
𝑖
:

𝜕𝐿

𝜕𝑢
𝑖

−

𝜕

𝜕𝑥
𝑗

(

𝜕𝐿

𝜕𝑢
𝑖

𝑗

) = 0,

𝐹
4
:

𝜕𝐿

𝜕𝑝

−

𝜕

𝜕𝑥
𝑗

(

𝜕𝐿

𝜕𝑝
𝑗

) = 0,

(18)

where 𝑝
𝑖
= 𝜕𝑝/𝜕𝑥

𝑖
.
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Let us note that the von Mises yield criterion (7) was
obtained from a variation principle: actual stresses in plastic
state maximize the velocity of surface forces work [8] for
an incompressible medium. For such a medium quantity
√2𝑒𝑖𝑗

𝑒
𝑖𝑗
is called the intensity of the share strain rate [6].

For system (10) one can construct the conservation laws
with the help of Noether’s symmetries. It is well known that
Noether’s symmetries are a subalgebra of Lie algebra of point
symmetries admitted by F. It is sufficient from symmetries
(11) to determine the ones that do not change the density (17).
To verify if the given point symmetry𝑋 is a Noether’s one, let
us use the known condition of Lagrangian density invariance
[9]

𝑋

1

(𝐿) + 𝐿𝐷
𝑖
(𝜉
𝑖

) = 0. (19)

Here𝑋
1

is the first prolongation of𝑋 of the form (3), where 𝜉𝑗

are the coefficients of 𝜕/𝜕𝑥
𝑗
, 𝜂𝛼 are the coefficients of 𝜕/𝜕𝑢𝛼,

and 𝜂4 is the coefficient of 𝜕/𝜕𝑝; 𝐷
𝑖
is the total derivative

operator along 𝑥
𝑖
:

𝐷
𝑖
(𝑓) =

𝜕

𝜕𝑥
𝑖

+

𝜕𝑓

𝜕𝑥
𝑖

𝜕

𝜕𝑓

+

𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

𝜕

𝜕 (𝜕𝑓/𝜕𝑥
𝑗
)

+ ⋅ ⋅ ⋅ . (20)

The direct verification of (19) for symmetries (11) shows
that𝑋

𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, and 𝑇

𝑖
are point Noether’s symmetries of (17).

UsingTheorem 1 and taking into account that

𝜕𝐿

𝜕𝑢
𝑖

𝑗

= −𝑝𝛿
𝑖𝑗
+ 𝑠
𝑖𝑗
= 𝜎
𝑖𝑗
, (21)

one can obtain the fluxes of conserved current, corresponding
to generator𝑋

1
(𝑗 = 1, 2, 3)

𝐴
(𝑋
1
)

1
= 𝐿 + 𝑝𝑢

1

1
− 𝑢
𝑗

1
𝑠
1𝑗
= 𝐿 − 𝑢

𝑗

1
𝜎
1𝑗
,

𝐴
(𝑋
1
)

2
= −𝑢
𝑗

1
𝜎
2𝑗
, 𝐴

(𝑋
1
)

3
= −𝑢
𝑗

1
𝜎
3𝑗
,

(22)

and the conservation law represents the conservation of
generalized momentum along the 𝑥

1
-axis and reflects the

homogeneity of the medium.
For generator 𝑍

1
, the components of the conserved

current look as follows:

𝐴
(𝑍
1
)

1
= (𝑥
3
𝑢
1

2
− 𝑥
2
𝑢
1

3
) (𝑠
11
− 𝑝) + (𝑥

3
𝑢
2

2
− 𝑥
2
𝑢
2

3
− 𝑢
3

) 𝑠
12

+ (𝑥
3
𝑢
3

2
− 𝑥
2
𝑢
3

3
+ 𝑢
2

) 𝑠
13
,

𝐴
(𝑍
1
)

2
= (𝑥
3
𝑢
1

2
− 𝑥
2
𝑢
1

3
) 𝑠
21
+ (𝑥
3
𝑢
2

2
− 𝑥
2
𝑢
2

3
− 𝑢
3

) (𝑠
22
− 𝑝)

+ (𝑥
3
𝑢
3

2
− 𝑥
2
𝑢
3

3
+ 𝑢
2

) 𝑠
23
− 𝑥
3
𝐿,

𝐴
(𝑍
1
)

3
= (𝑥
3
𝑢
1

2
− 𝑥
2
𝑢
1

3
) 𝑠
31
+ (𝑥
3
𝑢
2

2
− 𝑥
2
𝑢
2

3
− 𝑢
3

) 𝑠
32

+ (𝑥
3
𝑢
3

2
− 𝑥
2
𝑢
3

3
+ 𝑢
2

) (𝑠
33
− 𝑝) + 𝑥

2
𝐿,

(23)

and represent the conservation law of angular momentum.

For 𝑌
1
we have the following fluxes:

𝐴
(𝑌
1
)

1
= −𝑝 + 𝑠

11
= 𝜎
11
, 𝐴

(𝑌
1
)

2
= 𝜎
12
, 𝐴

(𝑌
1
)

3
= 𝜎
13
,

(24)

and the conservation law is just the first equilibrium equation
from (6) which was obtained from conservation of momen-
tum. By analogy, the conservation laws for generators 𝑌

2

and 𝑌
3
correspond to the second and the third equilibrium

equations.
Generator 𝑇

1
produces

𝐴
(𝑌
1
)

1
= −𝑥
3
𝜎
12
+ 𝑥
2
𝜎
13
, 𝐴

(𝑌
1
)

2
= −𝑥
3
𝜎
22
+ 𝑥
2
𝜎
23
,

𝐴
(𝑌
1
)

3
= −𝑥
3
𝜎
23
+ 𝑥
2
𝜎
33
.

(25)

By analogy, one can construct the conserved currents for𝑋
2,3
,

𝑍
2,3
, 𝑇
2,3
.

It is easy to see that the linear combination 𝑃 = 𝑁 − 2𝑀

is a point Noether’s symmetry of (17). Then, the components
of corresponding conserved current from (4) are (𝑗 = 1, 2, 3):

𝐴
(𝑃)

1
= 𝑥
1
𝐿 − (2𝑢

1

+ 𝑥
𝑗
𝑢
1

𝑗
) 𝜎
11
− (2𝑢

2

+ 𝑥
𝑗
𝑢
2

𝑗
) 𝜎
12

− (2𝑢
3

+ 𝑥
𝑗
𝑢
3

𝑗
) 𝜎
13
,

𝐴
(𝑃)

2
= 𝑥
2
𝐿 − (2𝑢

1

+ 𝑥
𝑗
𝑢
1

𝑗
) 𝜎
21
− (2𝑢

2

+ 𝑥
𝑗
𝑢
2

𝑗
) 𝜎
22

− (2𝑢
3

+ 𝑥
𝑗
𝑢
3

𝑗
) 𝜎
23
,

𝐴
(𝑃)

3
= 𝑥
3
𝐿 − (2𝑢

1

+ 𝑥
𝑗
𝑢
1

𝑗
) 𝜎
31
− (2𝑢

2

+ 𝑥
𝑗
𝑢
2

𝑗
) 𝜎
32

− (2𝑢
3

+ 𝑥
𝑗
𝑢
3

𝑗
) 𝜎
33
.

(26)

Let us note that generator 𝑆 is not a point Noether’s
symmetry of (17), because relation (19) for 𝑆 does not vanish:

𝑆

1

(𝐿) + 𝐿𝐷
𝑖
(𝜉
𝑖

) = − (𝑢
1

1
+ 𝑢
2

2
+ 𝑢
3

3
) = 𝐷

𝑖
(𝐵
𝑖
) , (27)

where 𝐵
𝑖
= 𝑢
𝑖. In such a case, Noether’s symmetry is called

the symmetry of divergence type and it produces [9] the con-
servation law of the form 𝐷

𝑖
(𝐶
𝑖
) = 0, where 𝐶

𝑖
= 𝐴
(𝑋)

𝑖
− 𝐵
𝑖

and 𝐴(𝑋)
𝑖

are given by (4). So, for 𝑆 we obtain 𝐴(𝑆)
𝑖
= 0 and

𝐶
𝑖
= −𝑢
𝑖 which represents the conservation law of the mass

given by (8).
ForNavier-Stokes equations the complete set of conserva-

tion laws was found in [10]. Due to relative analogy of plastic
flow system andNavier-Stokes equations it is quite difficult to
expect conservation laws other than those specified here.

3. Conservation Laws of Plane
Stress Equations

Aplane stress state is approximately achieved in a thin lamina
deformed under the action of forces which lie in its median
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plane. Equations for stresses in a Cartesian plane 𝑥𝑂𝑦 can be
written as follows [6]:

𝐹
1
=

𝜕𝜑

𝜕𝑥

+

√3

2

sin 2𝜑𝜕𝜔
𝜕𝑥

−

1

2

(√3 cos 2𝜑 + cot𝜔) 𝜕𝜔
𝜕𝑦

= 0,

𝐹
2
=

𝜕𝜑

𝜕𝑦

−

1

2

(√3 cos 2𝜑 − cot𝜔) 𝜕𝜔
𝜕𝑥

−

√3

2

sin 2𝜑𝜕𝜔
𝜕𝑦

= 0,

(28)

where the angle 𝜔(𝑥, 𝑦) is connected with the value of the
mean pressure 𝜎: cos𝜔 = 𝜎√3/(2𝑘) and 𝜑(𝑥, 𝑦) is the angle
between the first principal direction of stress tensor and the
𝑥-axis.

To construct the conservation laws let us use the method
proposed in [2]. Firstly it is necessary to construct the matrix
differential operator of the universal linearization 𝑙F (or the
Fréchet derivative of F [11]). Then considering the formally
adjoint operator 𝑙∗F one needs to solve the equation

𝑙
∗

F (Ψ) = 0, (29)

restricted to the solutions of (28). HereΨ = (Ψ1, Ψ2) is called
the generating function of the conservation law. Let us recall
that operator 𝑙F has the form of matrix

𝑙F =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑙
𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐹
𝑖

𝜕𝑢
𝑗

𝜎

𝐷
𝜎

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

, (30)

where 𝑢𝑗
𝜎
= 𝜕
|𝜎|

𝑢
𝑗

/𝜕𝑥
𝑖
1

1
⋅ ⋅ ⋅ 𝜕𝑥
𝑖
𝑛

𝑛
, 𝜎 = (𝑖

1
, . . . , 𝑖

𝑛
) being a mul-

tiindex, |𝜎| = 𝑖
1
+ ⋅ ⋅ ⋅ + 𝑖

𝑛
⩽ 𝑠, and𝐷

𝜎
= 𝐷
𝑖
1

∘ ⋅ ⋅ ⋅ ∘ 𝐷
𝑖
𝑛

. And if
𝑙F = 𝑎

𝜎
𝐷
𝜎
= ‖𝑙
𝑖𝑗
‖, then 𝑙∗F = (−1)

|𝜎|

𝐷
𝜎
∘ 𝑎
𝜎
= ‖𝑙
∗

𝑗𝑖
‖.

After some manipulations (29) takes the following form:

𝐷
𝑥
(Ψ
1

) − √3(cos 2𝜑𝜕𝜔
𝜕𝑥

+ sin 2𝜑𝜕𝜔
𝜕𝑦

)Ψ
1

+ 𝐷
𝑦
(Ψ
2

) − √3(sin 2𝜑𝜕𝜔
𝜕𝑥

− cos 2𝜑𝜕𝜔
𝜕𝑦

)Ψ
2

= 0,

2√3(cos 2𝜑
𝜕𝜑

𝜕𝑥

+ sin 2𝜑
𝜕𝜑

𝜕𝑦

)Ψ
1

+ √3 sin 2𝜑𝐷
𝑥
(Ψ
1

)

− (√3 cos 2𝜑 + cot𝜔)𝐷
𝑦
(Ψ
1

)

+ 2√3(sin 2𝜑
𝜕𝜑

𝜕𝑥

− cos 2𝜑
𝜕𝜑

𝜕𝑦

)Ψ
2

− √3 sin 2𝜑𝐷
𝑦
(Ψ
2

)

− (√3 cos 2𝜑 − cot𝜔)𝐷
𝑥
(Ψ
2

) = 0,

(31)

where the derivatives, for example, 𝜕𝜑/𝜕𝑥 and 𝜕𝜔/𝜕𝑥, should
be changed by the corresponding expressions due to (28). It
is clear that (31) have an infinite number of solutions. Let
us consider one of them, namely, the one of the form Ψ

1

=

Ψ
1

(𝜑, 𝜔), Ψ2 = Ψ2(𝜑, 𝜔).
Let us note that it is possible to determine other solutions

of (29), but as far as the authors know for the conservation

laws depending on the derivative there is no application to
solve any practical problems.

Relations (31) should be valid for any solution of system
(28), and therefore the coefficients of derivatives 𝜕𝜔/𝜕𝑥,
𝜕𝜔/𝜕𝑦 are equal to zero identically. It gives two linear
equations to determine the components of conserved current
𝐴 = (𝐴(𝜑, 𝜔), 𝐵(𝜑, 𝜔)):

𝜕𝐴 (𝜑, 𝜔)

𝜕𝜔

−

√3

2

𝜕𝐴 (𝜑, 𝜔)

𝜕𝜑

sin 2𝜑

+

1

2

𝜕𝐵 (𝜑, 𝜔)

𝜕𝜑

(√3 cos 2𝜑 − cot𝜔) = 0,

𝜕𝐵 (𝜑, 𝜔)

𝜕𝜔

+

√3

2

𝜕𝐵 (𝜑, 𝜔)

𝜕𝜑

sin 2𝜑

+

1

2

𝜕𝐴 (𝜑, 𝜔)

𝜕𝜑

(√3 cos 2𝜑 + cot𝜔) = 0,

(32)

corresponding to generating function Ψ with Ψ1 = 𝜕𝐴/𝜕𝜑,
Ψ
2

= 𝜕𝐵/𝜕𝜑. It is easy to verify, substituting (Ψ1, Ψ2) in (31)
and taking into account the above system and its differential
consequences. In such a case, the differential operators ◻

𝑟

from (2) are just two functions:

◻
1
= ◻
∗

1
=

𝜕𝐴

𝜕𝜑

, ◻
2
= ◻
∗

2
=

𝜕𝐵

𝜕𝜑

. (33)

Finally, the following theorem is valid.

Theorem 2. The system of plane stress state admits infinite
series of conservation laws.

System (28) has two distinct families of real characteristic
curves in the hyperbolic region (if 4 cos2𝜔 < 3), defined by
equations [6]:

𝑑𝑦

𝑑𝑥

= tan (𝜑 − 𝜓) ,
𝑑𝑦

𝑑𝑥

= tan (𝜑 + 𝜓) (34)

with relations along characteristics

Ω − 𝜑 = const., Ω + 𝜑 = const., (35)

where

Ω = −

1

2

∫

𝜔

𝜋/6

√3 − 4cos2𝜔
sin𝜔

𝑑𝜔, 𝜓 =

𝜋

2

−

1

2

arccoscot𝜔
√3

,

𝜋

6

< 𝜔 <

5𝜋

6

,

(36)

where 2𝜓 is the angle of intersection of characteristic curves.
Let us introduce two new unknown functions 𝜉 and 𝜂

(characteristic coordinates or Riemann invariants) in such a
way: Ω − 𝜑 = 𝜉, Ω + 𝜑 = 𝜂.

Then system (28) takes the form

𝜕𝜉

𝜕𝑥

+ tan (𝜑 − 𝜓) 𝜕𝜉
𝜕𝑦

= 0,

𝜕𝜂

𝜕𝑥

+ tan (𝜑 + 𝜓)
𝜕𝜂

𝜕𝑦

= 0.

(37)
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Finally, for the components of conserved current we have
the following linear equations:

𝜕𝐵

𝜕𝜉

− tan (𝜑 − 𝜓) 𝜕𝐴
𝜕𝜉

= 0,

𝜕𝐵

𝜕𝜂

− tan (𝜑 + 𝜓) 𝜕𝐴
𝜕𝜂

= 0.

(38)

Let functions

𝜉|
𝑃𝑄
= 𝜉
0
(𝑥, 𝑦) , 𝜂|

𝑃𝑄
= 𝜂
0
(𝑥, 𝑦) (39)

be given along the smooth curve𝑃𝑄 (see Figure 1). Curve𝑃𝑄
is not a characteristic and it intersects with each characteristic
only once. Let 𝑀(𝑚

1
, 𝑚
2
) be a point of intersection of

characteristics 𝜉 = 𝜉
1
= const. going from point 𝑃(𝑝

1
, 𝑝
2
)

and 𝜂 = 𝜂
1
= const. going from point 𝑄(𝑞

1
, 𝑞
2
). Then it is

necessary to define a solution of the Cauchy problem (37),
(39) in curvilinear triangle 𝑃𝑄𝑀 [12].

Let us determine the coordinates of point𝑀. Taking an
integral over the closed path 𝑃𝑄𝑀 which due to the Green
theorem is equal to zero we have

∮

𝑃𝑄𝑀

𝐴𝑑𝑦 − 𝐵𝑑𝑥

= ∫

𝜉=𝜉
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥 + ∫

𝜂=𝜂
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥

+ ∫

𝑃𝑄

𝐴𝑑𝑦 − 𝐵𝑑𝑥 = 0.

(40)

Then, by integrating parts we obtain

∫

𝜉=𝜉
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥

= ∫

𝑀𝑃

(𝐴 tan (𝜑 − 𝜓) − 𝐵) 𝑑𝑥

= 𝑥 (𝐴 tan (𝜑 − 𝜓) − 𝐵)󵄨󵄨󵄨
󵄨

𝑥=𝑝
1

𝑥=𝑚
1

− ∫

𝜉=𝜉
1

𝑥𝑑 (𝐴 tan (𝜑 − 𝜓) − 𝐵) ,

∫

𝜂=𝜂
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥

= ∫

𝑄𝑀

(𝐴 tan (𝜑 + 𝜓) − 𝐵) 𝑑𝑥

= 𝑥 (𝐴 tan (𝜑 + 𝜓) − 𝐵)󵄨󵄨󵄨
󵄨

𝑥=𝑚
1

𝑥=𝑞
1

− ∫

𝜂=𝜂
1

𝑥𝑑 (𝐴 tan (𝜑 + 𝜓) − 𝐵) .

(41)

Without loss of generality let us take

𝐴 tan (𝜑 − 𝜓) − 𝐵 = 1, along 𝜉 = 𝜉
1
. (42)

Then we have

∫

𝜉=𝜉
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥 = 𝑝
1
− 𝑚
1
. (43)

y

x

S

O

C Q(q1, q2)

M(m1, m2)

P(p1, p2)

𝜙𝜉

𝜙𝜂

𝜉

𝜂

Figure 1: The Cauchy problem.

By analogy

∫

𝜂=𝜂
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥 = 0, (44)

if we put

𝐴 tan (𝜑 + 𝜓) − 𝐵 = 0, along 𝜂 = 𝜂
1
. (45)

Finally, from (40) we have

𝑚
1
= 𝑝
1
+ ∫

𝑃𝑄

𝐴𝑑𝑦 − 𝐵𝑑𝑥, (46)

where components of the conserved current 𝐴, 𝐵 are defined
from the linear system (38) and boundary conditions (42),
(45).

For the second coordinate of𝑀 we have

∫

𝜉=𝜉
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥

= ∫

𝑀𝑃

(𝐴 − 𝐵 cot (𝜑 − 𝜓)) 𝑑𝑦

= 𝑦 (𝐴 − 𝐵 cot (𝜑 − 𝜓))󵄨󵄨󵄨
󵄨

𝑦=𝑝
2

𝑦=𝑚
2

− ∫

𝜉=𝜉
1

𝑦𝑑 (𝐴 − 𝐵 cot (𝜑 − 𝜓)) ,

∫

𝜂=𝜂
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥

= ∫

𝑄𝑀

(𝐴 − 𝐵 cot (𝜑 + 𝜓)) 𝑑𝑦

= 𝑦 (𝐴 − 𝐵 cot (𝜑 + 𝜓))󵄨󵄨󵄨
󵄨

𝑦=𝑚
2

𝑦=𝑞
2

− ∫

𝜂=𝜂
1

𝑦𝑑 (𝐴 − 𝐵 cot (𝜑 + 𝜓)) .

(47)

Taking

𝐴 − 𝐵 cot (𝜑 − 𝜓) = 1, along 𝜉 = 𝜉
1
, (48)
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we obtain

∫

𝜉=𝜉
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥 = 𝑝
2
− 𝑚
2
,

∫

𝜂=𝜂
1

𝐴𝑑𝑦 − 𝐵𝑑𝑥 = 0,

(49)

if we take

𝐴 − 𝐵 cot (𝜑 + 𝜓) = 0, along 𝜂 = 𝜂
1
. (50)

Finally, from (40) one can determine the second coordinate
of point𝑀

𝑚
2
= 𝑝
2
+ ∫

𝑃𝑄

𝐴𝑑𝑦 − 𝐵𝑑𝑥, (51)

where components of conserved current𝐴, 𝐵 are solutions of
(38) with boundary conditions (48), (50).

The solution of the aforementioned problems for con-
served currents gives the solutions of the Cauchy problem for
the initial system, because at point𝑀 one can reconstruct the
values of functions 𝜉 and 𝜂 from boundary conditions (39)
and, finally, functionsΩ and 𝜑.

In such a way it is possible to determine the families
of characteristic curves for the system of the plane stress.
These curves do not coincide with the so-called slip lines
(lines where the tangent stress achieved its maximum value)
as in the case of the plane strain system considered later.
But principal directions of the stress tensor bisect the angles
between characteristic curves. That is why it is possible to
reconstruct slip lines from the known characteristic curves
field.

4. Conservation Laws of Plane
Strain Equations

Let us consider the system of perfect plane plasticity with
Tresca-Saint-Venant-Mises yield condition [6]:

𝜕𝜎

𝜕𝑥

− 2𝑘(

𝜕𝜃

𝜕𝑥

cos 2𝜃 + 𝜕𝜃
𝜕𝑦

sin 2𝜃) = 0,

𝜕𝜎

𝜕𝑦

− 2𝑘(

𝜕𝜃

𝜕𝑥

sin 2𝜃 − 𝜕𝜃
𝜕𝑦

cos 2𝜃) = 0,
(52)

where 𝜎 is the hydrostatic pressure, 𝜃 + 𝜋/4 is the angle
between the first principal direction of stress tensor and the
𝑥-axis, and 𝑘 is the plasticity constant. System (52) describes
the plain strain state of a plastic deformed medium. In such a
state the displacements of particles of the homogeneous and
isotropic body are parallel to 𝑥𝑂𝑦 plane and are independent
of the third coordinate 𝑧.

Quasilinear system (52) is of the hyperbolic type and
characteristics are given by the following equations:

𝑑𝑦

𝑑𝑥

= tan 𝜃,
𝑑𝑦

𝑑𝑥

= − cot 𝜃. (53)

Along corresponding characteristics the following relations
are valid:

𝜎

2𝑘

− 𝜃 = const., 𝜎

2𝑘

+ 𝜃 = const. (54)

The complete set of conservation laws of (52) as a solution
of (29) is described in detail in [13]. In [5], the conserved
currents depending only on 𝜎, 𝜃 are applied to solve main
boundary problems and are similar to (38) when 𝜑 = 𝜃+𝜋/4,
𝜓 = 𝜋/4. Thus, the solution of problem (38), (42), (45) has a
form

𝐴 = 2

𝜕𝜌

𝜕𝜉

cos 𝜃 − 𝜌 sin 𝜃, 𝐵 = 2

𝜕𝜌

𝜕𝜉

sin 𝜃 + 𝜌 cos 𝜃, (55)

where function 𝜌(𝜉, 𝜂) looks like the following:

𝜌 (𝜉, 𝜂) = 𝑅 (𝜉, 𝜉
1
, 𝜂, 𝜂
1
) cos(

𝜂
1
− 𝜉
1

2

)

−

1

2

∫

𝜂

𝜂
1

𝑅 (𝜉, 𝜉
1
, 𝜂, 𝜏) sin(𝜏 − 𝜉1

2

) 𝑑𝜏.

(56)

Accordingly, the solution of problem (38), (48), (50) is

𝜌 (𝜉, 𝜂) = 𝑅 (𝜉, 𝜉
1
, 𝜂, 𝜂
1
) sin(

𝜂
1
− 𝜉
1

2

)

+

1

2

∫

𝜂

𝜂
1

𝑅 (𝜉, 𝜉
1
, 𝜂, 𝜏) cos(𝜏 − 𝜉1

2

) 𝑑𝜏,

(57)

where 𝑅(𝜉, 𝜉
1
, 𝜂, 𝜂
1
) = 𝐼
0
(√(𝜉 − 𝜉

1
)(𝜂 − 𝜂

1
)) is the modified

Bessel function of the first kind of a zero order having the
following properties:

𝐼
0
(0) = 1, 𝐼

󸀠

0
(0) = 0,

𝑑𝐼
0
(𝑧)

𝑑𝑧

= 𝐼
1
(𝑧) ,

𝑑𝐼
1
(𝑧)

𝑑𝑧

= 𝐼
0
(𝑧) −

𝐼
1
(𝑧)

𝑧

.

(58)

Let us consider the problem of a free boundary. Let
the constant normal 𝜎

𝑛
and null tangent components 𝜏

𝑛
of

stresses be given along a smooth contour 𝐶 of some convex
cavity (see Figure 1), situated in an infinite plastic deformed
medium:

𝜎
𝐶

𝑛
= −𝑝, 𝜏

𝐶

𝑛
= 0. (59)

It is necessary to determine the free boundary 𝑆 along which

𝜎
𝑆

𝑛
= 𝜏
𝑆

𝑛
= 0. (60)

The relation between functions 𝜎, 𝜃 of (52) and normal
components 𝜎

𝑛
, 𝜏
𝑛
looks as follows [6]:

𝜎
𝑛
= 𝜎 − 𝑘 sin 2 (𝜃 − 𝜙𝐶) , 𝜏

𝑛
= 𝑘 cos 2 (𝜃 − 𝜙𝐶) , (61)

where 𝜙𝐶 is the angle between the normal to the contour 𝐶
and 𝑥-axis.
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Figure 2: Free boundary for the contour (𝑥2/9) + 𝑦2 = 1.

Substituting (59) in (61), we have along 𝐶 (𝑚 ∈ Z)

𝜃
𝐶

= 𝜙
𝐶

±

𝜋

4

+ 𝑚𝜋, 𝜎
𝐶

= −𝑝 ± 𝑘 = const. (62)

Let us draw two characteristics

𝜉 =

𝜎
𝐶

2𝑘

− 𝜃
𝐶

𝜉
, 𝜂 =

𝜎
𝐶

2𝑘

+ 𝜃
𝐶

𝜂
, (63)

where 𝜃𝐶
𝜉
, 𝜃𝐶
𝜂
are the values of 𝜃𝐶 at points 𝑃,𝑄 ∈ 𝐶, respec-

tively.
Applying the above method we define the coordinates of

𝑀 where we have

𝜎
𝑀

= 𝑘 (𝜂 + 𝜉) = 𝜎
𝐶

+ 𝑘 (𝜙
𝐶

𝜂
− 𝜙
𝐶

𝜉
) ,

𝜃
𝑀

=

𝜂 − 𝜉

2

=

𝜙
𝐶

𝜂
+ 𝜙
𝐶

𝜉

2

±

𝜋

4

+ 𝑚𝜋.

(64)

On the other hand, given (60) we obtain

𝜎
𝑀

= ±𝑘, 𝜃
𝑀

= 𝜙
𝑀

±

𝜋

4

+ 𝑚𝜋. (65)

Equating the right-hand sides of (64), (65) we have

𝑝 = 𝑘 (𝜙
𝐶

𝜂
− 𝜙
𝐶

𝜉
) , 𝜙

𝑀

=

𝜙
𝐶

𝜂
+ 𝜙
𝐶

𝜉

2

.
(66)

As a particular example, let us consider contour 𝐶 in the
form of an ellipse (Figure 1). Equality (66) is valid, if 𝜙𝐶

𝜂
−

𝜙
𝐶

𝜉
= 𝑚𝜋. Changing the coordinates of points 𝑃, 𝑄, one can

find curve 𝑆, which will be the boundary free of stresses. In
Figure 2 some points of the free boundary for the contour𝐶 :
𝑥
2

/9 + 𝑦
2

= 1 are given for 𝑝 = 𝑘𝜋.

5. Conclusions

For all point symmetries of a three-dimensional perfect plas-
ticity system with the von Mises yield criterion the corre-
sponding conservation laws are calculated. Some of them
(conservation of the mass and of the impulse) are in the basis
of this system; however, there are new conservation laws.

Recently a rigid plasticity constitutive model with the
linear kinematic hardening has been analyzed in [14]. Focus-
ing on planar simple shear the constitutive functions were
classified according to continuous symmetry groups. It will be
interesting to consider the conservation laws of the obtained
systems.

How two linear systems for the components of conserved
currents for the system of plane stress state can be used to
determine its characteristic curves is shown.

For the perfect strain plane plasticity with Tresca-Saint-
Venant-Mises yield condition, the problem of a free boundary
for arbitrary convex cavity situated in the infinite plastic
deformedmedium is solvedwith the use of the corresponding
conservation laws.
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