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We present the analytical and multishaped solitary wave solutions for extended reduced Ostrovsky equation (EX-ROE). The exact
solitary (traveling) wave solutions are expressed by three types of functions which are hyperbolic function solution, trigonometric
function solution, and rational solution. These results generalized the previous results. Multishape solitary wave solutions such as
loop-shaped, cusp-shaped, and hump-shaped can be obtained as well when the special values of the parameters are taken. The
(𝐺󸀠/𝐺)-expansion method presents a wide applicability for handling nonlinear partial differential equations.

1. Introduction

The well-known Ostrovsky equation [1]
(𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

)
𝑥
= 𝛾𝑢, (1)

where 𝑐
0
is the velocity of dispersiveness linear waves, 𝛼 is the

nonlinear coefficient, and 𝛽 and 𝛾 are dispersion coefficients,
is a model for weakly nonlinear surface and internal waves in
a rotating ocean.

For long waves, for which high-frequency dispersion is
negligible, 𝛽 = 0, and (1) becomes the so-called reduced
Ostrovsky equation (ROE) [2]

(𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
)
𝑥
= 𝛾𝑢. (2)

Parkes [3] has studied (2) and found its periodic and
solitary traveling wave solutions.

In fact, by applying the following transformation [4]:

𝑢 󳨀→
𝑢

𝛼
, 𝑡 󳨀→

𝑡

√
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

, 𝑥 󳨀→
(𝑥 + 𝑐

0
𝑡)

√
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

(3)

to (2), we obtain the ROE in the neat form
𝜕

𝜕𝑥
D𝑢 + 𝛿𝑢 = 0,

where D :=
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
, 𝛿 =

𝛾
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨
= ±1.

(4)

Just as itmentioned in [5] and the reference therein, when 𝛿 =
−1, (4) is referred to the Ostrovsky-Hunter equation (OHE).
When 𝛿 = 1, (4) is referred to the Vakhnenko equation
(VE), which is in order to model the propagation of waves
in a relaxing medium [6, 7]. Parkes [3] pointed out that (4) is
invariant under the transformation

𝑢 󳨀→ −𝑢, 𝑡 󳨀→ −𝑡, 𝛿 󳨀→ −𝛿, (5)

so that the solutions of theOHEandVE are related in a simple
way.

Thepurpose of this paper is to study the extended reduced
Ostrovsky equation (EX-ROE):

𝜕

𝜕𝑥
(D
2
𝑢 +

1

2
𝑝𝑢
2
+ 𝛽𝑢) + 𝑞D𝑢 = 0, (6)

whereD is defined previous,𝑝, 𝑞, and𝛽 are arbitrary nonzero
constants. It is originally derived by Morrison and Parkes
[8] which dubbed it as modified generalized Vakhnenko
equation (mGVE) when 𝑝 = 2𝑞. They found that not only
does it have loop soliton solutions, hump-like and cusp-like
soliton solutions, but it also has𝑁-soliton solutions.
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In order to investigatemGVE’s𝑁-soliton solution,Morri-
son and Parkes [8] considered aHirota-Satsuma-type shallow
water wave equation [9] of the form

𝑈
𝑋𝑋𝑇

+ 𝑝𝑈𝑈
𝑇
− 𝑞𝑈
𝑋
∫
∞

𝑋

𝑈
𝑇
(𝑋
󸀠
, 𝑇) d𝑋󸀠 + 𝛽𝑈

𝑇
+ 𝑞𝑈
𝑋
= 0,

(7)

where 𝑝 ̸= 0, 𝑞 ̸= 0, and 𝛽 is arbitrary constant. By using the
transformation

𝑥 = 𝑇 + ∫
𝑋

−∞

𝑈
𝑇
(𝑋
󸀠
, 𝑇) d𝑋󸀠 + 𝑥

0
,

𝑡 = 𝑋, 𝑢 (𝑥, 𝑡) = 𝑈 (𝑋, 𝑇) ,

(8)

where 𝑥
0
is a constant, (7) yields (6). So (6) and (7) are equiv-

alent to each other under the transformation (8). Specifically,
in (7), when 𝑝 = 2𝑞 and 𝛽 = −1, it was discussed by Ablowitz
et al. [10] and was shown to be integrable by inverse scatting
method. When 𝑝 = 𝑞 and 𝛽 = −1, it was discussed by
Hirota and Satsuma [11] andwas shown to be integrable using
Hirota’s bilinear technique. In [12], the authors referred to (6)
with 𝑝 = 𝑞 = 1 and 𝛽 an arbitrary nonzero constant as the
generalized Vakhnenko equation (GVE). In fact, when 𝑝 = 𝑞
and 𝛽 = 0, (6) can be written as

(
𝜕𝑢

𝜕𝑥
+D)(

𝜕

𝜕𝑥
D𝑢 + 𝑝𝑢) = 0. (9)

Clearly, solutions of the ROE are also solutions of (9) with
𝑝 = ±1. So for arbitrary 𝑝, 𝑞, and 𝛽, if we obtain the solutions
of EX-ROE, thenwe can also obtain the solutions ofVE,GVE,
mGVE, ROE, and OHE by taking the special values of 𝑝, 𝑞,
and 𝛽.

The EX-ROE has been studied by several researchers. For
example, Liu et al. [13] used Jacobi elliptic function method
to obtain exact double periodic wave solutions and solitary
wave solutions. Parkes [4] constructed periodic and solitary
wave solutions of EX-ROE and gave the categorization of
the solutions. Xie and Cai [14] used the bifurcation method
of dynamic systems and simulation method of differential
equations to get exact compacton and generalized kink wave
solutions of EX-ROE. Stepanyants [15] applied the qualitative
theory of differential equations to give a full classification of
its solutions.

Recently, there are many methods being proposed to
study the traveling wave solutions of nonlinear partial differ-
ential equations which are derived from physics, for example,
[16–27]. As well as these methods, there are still many other
methods; we cannot list all of them.Herewewill usemodified
(𝐺
󸀠/𝐺)-expansionmethod to investigate EX-ROE.As a result,

three types of traveling wave solutions are were obtained.
When the special values of the parameters are taken, they are
reduced to some previous results which obtained by an other
method.

The rest of the paper is organized as follows. In Section 2,
we present a methodology of the modified (𝐺󸀠/𝐺)-expansion
method. In Section 3, we apply the method to the extended
reduced Ostrovsky equation. In Section 4, some conclusions
are given.

2. Description of the Modified
(𝐺
󸀠
/𝐺)-Expansion Method

The (𝐺󸀠/𝐺)-expansion method is first proposed by Wang
et al. [28]. The useful (𝐺󸀠/𝐺)-expansion method is then
widely used by many authors [29–32]. Then it is modified in
[33–35]. The main steps are as follows.

Suppose that a nonlinear equation is given by

𝑃
1
(𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (10)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function and 𝑃 is a poly-
nomial in 𝑢 = 𝑢(𝑥, 𝑡) and its partial derivatives, in which the
highest-order derivatives and nonlinear terms are involved.
In the following we give the main steps of the (𝐺

󸀠/𝐺)-
expansion method.

Step 1. The traveling wave variable 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑐𝑡,
where 𝑐 is a constant, permits us to reduce (10) to an ODE for
𝑢 = 𝑢(𝜉) in the form

𝑃
2
(𝑢, −𝑐𝑢

󸀠
, 𝑢
󸀠
, 𝑐
2
𝑢
󸀠󸀠
, −𝑐𝑢
󸀠󸀠
, 𝑢
󸀠󸀠
, . . .) = 0. (11)

Step 2. Suppose that the solution of (10) can be expressed by
a polynomial in (𝐺󸀠/𝐺) as follows:

𝑢 (𝜉) = 𝛼
−𝑚
(
𝐺󸀠

𝐺
)

−𝑚

+ 𝛼
−(𝑚−1)

(
𝐺󸀠

𝐺
)

−(𝑚−1)

+ ⋅ ⋅ ⋅

+ 𝛼
𝑚−1

(
𝐺󸀠

𝐺
)

𝑚−1

+ 𝛼
𝑚
(
𝐺󸀠

𝐺
)

𝑚

,

(12)

where 𝐺 = 𝐺(𝜉) satisfies the second-order linear ordinary
differential equation (LODE) in the form

𝐺
󸀠󸀠
+ 𝜆𝐺
󸀠
+ 𝜇𝐺 = 0, (13)

where 𝛼
−𝑚
, . . . , 𝛼

𝑚
, 𝜆, and 𝜇 are constants to be determined

later.Theunwritten part in (12) is also a polynomial in (𝐺󸀠/𝐺),
but the degree of which is generally equal to or less than𝑚−1.
The positive integer𝑚 can be determined by considering the
homogeneous balance between the highest-order derivatives
and nonlinear terms appearing in (11).

Step 3. Substituting (12) into (11) and using (13), collecting
all terms with the same order of (𝐺󸀠/𝐺) together, and then
equating each coefficient of the resulting polynomial to zero
yields a set of algebraic equations for 𝛼

𝑚
, 𝛼
𝑚−1

, . . . , 𝛼
−𝑚

, 𝑐, 𝜆,
and 𝜇.

Step 4. Since the general solutions of (13) have been well
known for us, then substituting 𝛼

𝑚
, 𝛼
𝑚−1

, . . . , 𝛼
−𝑚

and 𝑐 and
the general solutions of (13) into (12) we have more traveling
wave solutions of the nonlinear differential equation (10).

The main idea of (𝐺󸀠/𝐺)-expansion method is to use
an integrable ODE to expand a solution to a nonlinear
partial differential equation (PDE) as a polynomial or rational
function of the solution of the ODE. However, such an idea
was also presented in [36–38].Themethod used in this paper
can be also thought of as the application of transformed
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rational function method used in [37] in some sense. Maybe
the similar results can be obtained by using these very closely
related methods. We plan to further study the EX-ROE in
near future by using the methods proposed in [36–38]. We
hope we can find much more interesting properties and new
phenomenon of this equation.

3. Exact Traveling Wave Solutions of
the Extended Reduced Ostrovsky Equation

In this section, we will use the (𝐺󸀠/𝐺)-expansion method
to the extended reduced Ostrovsky equation to get exact
traveling wave solutions.

First, in order to get traveling wave solutions, we need
some transformation. Recall that in Section 1 we have stated
that EX-ROE is equivalent to a Hirota-Satsuma-type shallow
water wave equation (7) under the transformation of (8). So
here we introduce a new variable𝑊 defined by

𝑈 = 𝑊
𝑋
. (14)

Substituting (14) into (7) yields

𝑊
𝑋𝑋𝑋𝑇

+ 𝑝𝑊
𝑋
𝑊
𝑋𝑇

+ 𝑞𝑊
𝑋𝑋
𝑊
𝑇
+ 𝛽𝑊
𝑋𝑇

+ 𝑞𝑊
𝑋𝑋

= 0.

(15)

Now giving the traveling wave transformation 𝑊(𝑋, 𝑇) =

𝑊(𝜉), 𝜉 = 𝑋 − 𝑐𝑇, where 𝑐 is wave speed. Substituting them
into (15) and integrating once, we have

𝑐
1
+ 𝑐𝑊
3𝜉
+
1

2
𝑐 (𝑝 + 𝑞)𝑊

2

𝜉
+ (𝑐𝛽 − 𝑞)𝑊

𝜉
= 0, (16)

where 𝑐
1
is integral constant that is to be determined later.

Considering the homogeneous balance between𝑊
3𝜉
and

𝑊2
𝜉
, we have

𝑚 + 3 = 2𝑚 + 2 󳨐⇒ 𝑚 = 1. (17)

We suppose that

𝑊(𝜉) = 𝛼
−1
(
𝐺󸀠

𝐺
)

−1

+ 𝛼
0
+ 𝛼
1
(
𝐺󸀠

𝐺
) , (18)

where the 𝐺 = 𝐺(𝜉) satisfies the second-order LODE,

𝐺
󸀠󸀠
+ 𝜆𝐺
󸀠
+ 𝜇𝐺 = 0, (19)

and 𝛼
−1
, 𝛼
0
, 𝛼
1
, 𝜆, and 𝜇 are constants to be determined later.

By using (18) and (19), it is derived that

𝑊
𝜉
= 𝜇𝛼
−1
(
𝐺󸀠

𝐺
)

−2

+ 𝜆𝛼
−1
(
𝐺󸀠

𝐺
)

−1

+ 𝛼
−1

− 𝛼
1
𝜇 − 𝜆𝛼

1
(
𝐺󸀠

𝐺
) − 𝛼

1
(
𝐺󸀠

𝐺
)

2

,

(20)

𝑊
2

𝜉
= 𝜇
2
𝛼
2

−1
(
𝐺󸀠

𝐺
)

−4

+ 2𝜆𝛼
2

−1
𝜇(

𝐺󸀠

𝐺
)

−3

+ (2𝛼
2

−1
𝜇 + 𝜆
2
𝛼
2

−1
− 2𝜇𝛼

−1
𝛼
−
1)(

𝐺󸀠

𝐺
)

−2

+ (2𝜆𝛼
2

−1
− 4𝜇𝜆𝛼

−1
𝛼
1
)(

𝐺󸀠

𝐺
)

−1

+ 𝛼
2

−1
− 4𝜇𝛼

−1
𝛼
1

− 2𝜆
2
𝛼
−1
𝛼
1
+ 𝛼
2

1
𝜇
2
+ 2𝜆𝛼

2

1
𝜇(

𝐺󸀠

𝐺
)

+ (2𝛼
2

1
𝜇 + 𝜆
2
𝛼
2

1
)(

𝐺󸀠

𝐺
)

2

+ 2𝜆𝛼
2

1
(
𝐺󸀠

𝐺
)

3

+ 𝛼
2

1
(
𝐺󸀠

𝐺
)

4

,

(21)

𝑊
3𝜉
= 6𝛼
−1
𝜇
3
(
𝐺󸀠

𝐺
)

−4

+ 12𝛼
−1
𝜆𝜇
2
(
𝐺󸀠

𝐺
)

−3

− (8𝜇
2
𝛼
−1
+ 7𝛼
−1
𝜆
2
𝜇)(

𝐺󸀠

𝐺
)

−2

− (8𝛼
−1
𝜆𝜇 + 𝛼

−1
𝜆
3
)(

𝐺
󸀠

𝐺
)

−1

− (2𝛼
−1
𝜇 + 𝜆
2
𝛼
−1
) − (2𝛼

1
𝜇
2
+ 𝜆
2
𝛼
1
𝜇)

− (8𝛼
1
𝜆𝜇 + 𝛼

1
𝜆
3
)(

𝐺󸀠

𝐺
) − (8𝜇𝛼

1
+ 7𝛼
1
𝜆
2
)(

𝐺󸀠

𝐺
)

2

− 12𝛼
1
𝜆(

𝐺󸀠

𝐺
)

3

− 6𝛼
1
(
𝐺󸀠

𝐺
)

4

.

(22)

By substituting (20)–(22) into (16) and collecting all terms
with the same power of (𝐺󸀠/𝐺) together, the left-hand sides of
(16) are converted into the polynomials in (𝐺󸀠/𝐺). Equating
the coefficients of the polynomials to zero yields a set of
simultaneous algebraic equations for 𝛼

−1
, 𝛼
0
, 𝛼
1
, 𝜆, 𝑐, 𝑐

1
, and

𝜇 as follows (denote 𝐴 for (𝐺󸀠/𝐺)):

𝐴
−4: 6𝑐𝛼

−1
𝜇
3
+
𝑐 (𝑝 + 𝑞) 𝜇2𝛼2

−1

2
= 0,

𝐴
−3: 12𝑐𝜆𝜇2𝛼

−1
+ 𝑐 (𝑝 + 𝑞) 𝜆𝜇𝛼

2

−1
= 0,
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𝐴
−2: (𝑞 − 𝑐𝛽) 𝜇𝛼

−1

−
𝑐 (𝑝 + 𝑞) (𝜆2𝛼2

−1
+ 2𝜇𝜆2

−1
− 2𝜇2𝛼

1
𝛼
−1
)

2

− 𝑐 (7𝜆
2
𝜇𝛼
−1
+ 8𝜇
2
𝛼
−1
) = 0,

𝐴
−1: (𝑐𝛽 − 𝑞) 𝜆𝛼

−1
𝜆 + 𝑐 (𝑝 + 𝑞) (𝜆𝛼

2

−1
− 2𝜆𝜇𝛼𝛼

−1
)

+ 𝑐 (𝜆
3
𝛼
−1
+ 8𝜆𝜇𝛼

−1
) = 0,

𝐴
0: 𝑐
1
+ 𝑐 (𝜆

2
𝛼
−1
+ 2𝜇𝛼

−1
)

−
𝑐 (2𝛼
1
𝜇2 + 𝜆2𝛼

1
𝜇) + 𝑐 (𝑝 + 𝑞) 𝛼2

−1

2

− 2𝑐𝜇𝛼𝛼
−1
(𝑝 + 𝑞) +

𝑐𝛼2
1
𝜇2 (𝑝 + 𝑞)

2
− (𝑐𝛽 − 𝑞) 𝜇𝛼

1

− 𝑐𝜆
2
𝛼
1
𝛼
−1
(𝑝 + 𝑞) + 𝛼

−1
(𝑐𝛽 − 𝑞) = 0,

𝐴
1: (𝑞 − 𝑐𝛽) 𝛼

1
𝜆 + 𝑐 (𝑝 + 𝑞) (𝜆𝜇𝛼

2

1
− 2𝜆𝛼

1
𝛼
−1
)

− 𝑐 (𝜆
3
𝛼
1
+ 8𝜆𝜇𝛼

1
) = 0,

𝐴
2: (𝑞 − 𝑐𝛽) 𝛼

1
+ 𝑐 (𝑝 + 𝑞)

× (𝜆
2
𝛼
2

1
+ 2𝑎𝛼

2

1
𝜇 − 2𝛼

1
𝛼
−1
− 𝑐 (7𝜆

2
𝛼
1
+ 8𝜇𝛼

1
))

= 0,

𝐴
3: − 12𝑐𝜆𝛼

1
+ 𝑐 (𝑝 + 𝑞) 𝜆𝛼

2

1
= 0,

𝐴
4: − 6𝑐𝛼

1
+
𝑐 (𝑝 + 𝑞) 𝛼2

1

2
= 0.

(23)

Solving the algebraic equations above yields

𝛼
1
=

12

(𝑝 + 𝑞)
,

𝑐 =
𝑞

(𝛽 + 𝜆2 − 4𝜇)
,

𝑐
1
= 0, 𝛼

−1
= 0,

(24)

or

𝛼
−1
= −

12𝜇

(𝑝 + 𝑞)
,

𝑐 =
𝑞

(𝛽 + 𝜆2 − 4𝜇)
,

𝑐
1
= 0, 𝛼

1
= 0.

(25)

Substituting system (24) and (25) into (18), we have the
formula of the solutions of (15) as follows:

𝑊(𝑋, 𝑇) = 𝑊 (𝜉) =
12

(𝑝 + 𝑞)
(
𝐺
󸀠

𝐺
) + 𝛼

0
, (26)

or

𝑊(𝑋, 𝑇) = 𝑊 (𝜉) = −
12𝜇

(𝑝 + 𝑞)
(
𝐺
󸀠

𝐺
)

−1

+ 𝛼
0
, (27)

where 𝐺 satisfies (19), 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆2 − 4𝜇), and 𝛼
0
is an

arbitrary constant.
Since the general solutions 𝐺 = 𝐺(𝜉) (hence 𝐺󸀠 =

d𝐺/d𝜉) of ODE (19) have been known for us, substituting
the solutions of (19) into (24) and (25), we have the general
traveling wave solutions of (15) as follows.

Case 1. When 𝜆2 − 4𝜇 > 0, then we have the following exact
traveling wave solution of (15):

𝑊
1
(𝑋, 𝑇)

= 𝑊
1
(𝜉) =

6√𝜆2 − 4𝜇

𝑝 + 𝑞

× ((𝐴
1
cosh (1

2
√𝜆2 − 4𝜇𝜉))

+𝐴
2
sinh(1

2
√𝜆2 − 4𝜇𝜉))

× (𝐴
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

−1

)

−
6𝜆

(𝑝 + 𝑞) + 𝛼
0

(28)

or

𝑊
2
(𝑋, 𝑇)

= 𝑊
2
(𝜉)

= −24𝜇 × ( (𝑝 + 𝑞)

× (√𝜆2 − 4𝜇

× ((𝐴
1
cosh (1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
sinh(1

2
√𝜆2 − 4𝜇𝜉))

× (𝐴
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

−1

)

−𝜆))

−1

+ 𝛼
0
,

(29)
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where 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆2 − 4𝜇) and 𝛼
0
, 𝐴
1
, 𝐴
2
are arbitrary

constants.

Case 2. When 𝜆2 − 4𝜇 < 0, then we have the following exact
traveling wave solution of (15):

𝑊
3
(𝑋, 𝑇)

= 𝑊
3
(𝜉) =

6√4𝜇 − 𝜆2

𝑝 + 𝑞

× ((−𝐴
1
sin(1

2
√4𝜇 − 𝜆2𝜉) + 𝐴

2
cos(1

2
√4𝜇 − 𝜆2𝜉))

× (𝐴
1
cos(1

2
√4𝜇 − 𝜆2𝜉)

+𝐴
2
sin(1

2
√4𝜇 − 𝜆2𝜉))

−1

)

−
6𝜆

(𝑝 + 𝑞) + 𝛼
0

(30)

or

𝑊
4
(𝑋, 𝑇)

= 𝑊
4
(𝜉)

= −24𝜇

× ((𝑝 + 𝑞) (√𝜆2 − 4𝜇

× ((−𝐴
1
sin(1

2
√4𝜇 − 𝜆2𝜉)

+𝐴
2
cos(1

2
√4𝜇 − 𝜆2𝜉))

× (𝐴
1
cos(1

2
√4𝜇 − 𝜆2𝜉)

+𝐴
2
sin(1

2
√4𝜇 − 𝜆2𝜉))

−1

)

− 𝜆))

−1

+ 𝛼
0
,

(31)

where 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆2 − 4𝜇) and 𝛼
0
, 𝐴
1
, 𝐴
2
are arbitrary

constants.

Case 3. When 𝜆2 − 4𝜇 = 0, then we have the following exact
rational solution of (15):

𝑊
5
(𝑋, 𝑇) = 𝑊

5
(𝜉) =

12

𝑝 + 𝑞
(

𝐴
2

𝐴
1
+ 𝐴
2
𝜉
) −

6𝜆

(𝑝 + 𝑞)
+ 𝛼
0

(32)

or

𝑊
6
(𝑋, 𝑇) = 𝑊

6
(𝜉) = −

24𝜇 (𝐴
1
+ 𝐴
2
𝜉)

(𝑝 + 𝑞) [2𝐴
2
− 𝜆 (𝐴

1
+ 𝐴
2
𝜉)]

+ 𝛼
0
,

(33)

where 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆2 − 4𝜇) and 𝛼
0
, 𝐴
1
, 𝐴
2
are arbitrary

constants.
Now we will show how to get exact traveling wave

solutions of (6). From (8) and (14), the solution of EX-ROE
(6) is given in parametric form, with 𝑇 as the parameter, by

𝑢 (𝑥, 𝑡) = 𝑈 (𝑡, 𝑇) , 𝑥 = 𝜃 (𝑡, 𝑇) , (34)

where

𝜃 (𝑋, 𝑇) = 𝑇 +𝑊(𝑋, 𝑇) + 𝑥
0
. (35)

So by using (8), (14), (34), (35), (28), and (29), we obtain
a parameterized hyperbolic-function-type traveling wave
solution of (6) as follows:

𝑢
1
(𝑥, 𝑡)

= 3 (𝐴
2

2
− 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ( (𝑝 + 𝑞)

× (𝐴
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

2

)

−1

,

𝑥 = 𝑇 +𝑊
1
(𝑡, 𝑇) + 𝑥

0
,

(36)

or

𝑢
2
(𝑥, 𝑡)

= −12𝜇 (𝐴
2

2
− 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ( (𝑝 + 𝑞)

× [(𝐴
1
√𝜆2 − 4𝜇 − 𝐴

2
𝜆) cosh (1

2
√𝜆2 − 4𝜇𝜉)

+ (𝐴
2
√𝜆2 − 4𝜇 − 𝐴

1
𝜆)

× sinh(1
2
√𝜆2 − 4𝜇𝜉)]

2

)

−1

,

𝑥 = 𝑇 +𝑊
2
(𝑡, 𝑇) + 𝑥

0
,

(37)

where 𝜉 = 𝑡−𝑞𝑇/(𝛽+𝜆2−4𝜇) and 𝑥
0
is an arbitrary constant.
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By using (8), (14), (34), (35), (30), and (31), we obtain
a parameterized trigonometric-function-type traveling wave
solution of (6) as follows:

𝑢
3
(𝑥, 𝑡)

= −3 (𝐴
2

2
+ 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ((𝑝 + 𝑞)

× (𝐴
1
cos(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
sin(1

2
√𝜆2 − 4𝜇𝜉))

2

)

−1

,

𝑥 = 𝑇 +𝑊
3
(𝑡, 𝑇) + 𝑥

0
,

(38)

or

𝑢
4
(𝑥, 𝑡)

= −12𝜇 (𝐴
2

2
− 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ( (𝑝 + 𝑞)

× [ (−𝐴
2
√𝜆2 − 4𝜇 + 𝐴

1
𝜆) cos(1

2
√𝜆2 − 4𝜇𝜉)

+ (𝐴
1
√𝜆2 − 4𝜇 + 𝐴

2
𝜆)

× sin(1
2
√𝜆2 − 4𝜇𝜉)]

2

)

−1

,

𝑥 = 𝑇 +𝑊
4
(𝑡, 𝑇) + 𝑥

0
,

(39)

where 𝜉 = 𝑡−𝑞𝑇/(𝛽+𝜆2−4𝜇) and 𝑥
0
is an arbitrary constant.

By using (8), (14), (34), (35), (32), and (33), we obtain a
parameterized rational-type traveling wave solution of (6) as
follows:

𝑢
5
(𝑥, 𝑡) = −

12𝐴2
2

(𝑝 + 𝑞) (𝐴
1
+ 𝐴
2
𝜉)
2
,

𝑥 = 𝑇 +𝑊
5
(𝑡, 𝑇) + 𝑥

0
,

(40)

or

𝑢
6
(𝑥, 𝑡) = −

48𝜇𝐴2
2

(𝑝 + 𝑞) (𝜆𝐴
1
+ (−2 + 𝜆𝜉)𝐴

2
)
2
,

𝑥 = 𝑇 +𝑊
6
(𝑡, 𝑇) + 𝑥

0
,

(41)

where 𝜉 = 𝑡−𝑞𝑇/(𝛽+𝜆2−4𝜇) and 𝑥
0
is an arbitrary constant.

To our knowledge, these solutions are presented for the first
time; they are new exact solutions of EX-ROE.

If we take 𝐴
1
= 0, 𝜇 = 0, 𝐴

2
̸= 0 and 𝜆 > 0, then (36)

yields the following solitary wave solution of (6):

𝑢 (𝑥, 𝑡) =
3𝜆
2

𝑝 + 𝑞
sech2 [1

2
𝜆(𝑡 −

𝑞

𝛽 + 𝜆2
𝑇)] ,

𝑥 = 𝑇 +
6𝜆

(𝑝 + 𝑞)
tanh [1

2
𝜆(𝑡 −

𝑞

𝛽 + 𝜆2
𝑇)] + 𝑥

0
.

(42)

Now we will give some discussion of the solitary wave
solution (42). Let 𝜆 = 2𝑘, 𝑥

0
= 0; the solution (42) is reduced

to the solution of (3.26) in [13] after correcting some minor
errors [4]. Now from (35), we introduce a new variable:

𝜒 = 𝑥 − V𝑡 = −V (𝑋 − 𝑐𝑇) +
6𝜆

𝑝 + 𝑞
tanh [1

2
𝜆 (𝑋 − 𝑐𝑇)] + 𝑥

0
,

(43)

where V = 1/𝑐 = (𝜆2 + 𝛽)/𝑞. In [8], the authors considered
EX-ROE with 𝑝 = 2𝑞, 𝛽 ̸= 0 as mGVE and obtained 1-soliton
solution. In fact, if we take 𝑝 = 2𝑞, 𝜆 = 2𝑘, the solitary wave
solution (42) with (43) is reduced to the soliton solution (4.4)
and (4.5) in [8]. From the above we can see that the solitary
wave solution (3.26) in [4] and the 1-soliton solution ofmGVE
are just a special case of the solution (42) in this paper.

4. Multishaped Solitary Wave Solutions

In [8, 13], the authors showed that the solutions of (4.4) and
(4.5), (3.26) and (3.28) may be of different types, namely,
loops, cusps, or humps for different values of parameters 𝛽,
𝑘, 𝑝. Here we also show that by choosing different values of
the parameters 𝛽, 𝜆, 𝑝, 𝑞, different shape wave solutions can
be obtained. As it is stated in Section 1, (9) reduces to VE
when 𝑝 = 𝑞 = 1, 𝛽 = 0. Taking solution (42) with (43), for
example, let 𝑝 = 𝑞 = 1, 𝛽 = 0, 𝜆 = 2𝑘; then it is reduced to
one-loop soliton solution (3.4) and (3.5) in [39]. On the other
hand, because the solutions of OHE and VE are connected in
a particularly simple way, if we take𝑝 = 𝑞 = −1,𝛽 = 0, 𝜆 = 2𝑘
in (42), we can obtain one-loop soliton solution of OHE.

From above analysis, one can clearly see that the solutions
obtained in this paper are generalized for the previous results
because here we only take the special case 𝐴

1
= 0, 𝜇 = 0,

𝐴
2
̸= 0, 𝜆 > 0 and give special discussion of solution (42).

We conclude that if we take different values of the parameters
𝐴
1
, 𝐴
2
, 𝜆, 𝜇, 𝑝, 𝑞, abundancy of types of exact solutions can

be obtained from solutions (36), (38), and (40). Here we omit
the detailed discussion.

Instead, we give some discussion about solution (37). Sci-
ence from this solution, multishaped solitary wave solutions
can be obtained. Suppose 𝐴

1
̸= 0, 𝜇 < 0, 𝐴

2
= 0, 𝜆 = 0; we

reduce solution (37) to

𝑢 (𝑥, 𝑡) =
12𝜇

𝑝 + 𝑞
sech2 [√−𝜇(𝑡 −

𝑞

𝛽 − 4𝜇
𝑇)] ,

𝑥 = 𝑇 +
24√−𝜇

(𝑝 + 𝑞)
tanh [√−𝜇(𝑡 −

𝑞

𝛽 − 4𝜇
𝑇)] + 𝑥

0
.

(44)

We show that for different values of 𝛽, 𝜇, and 𝑝, the solution
(44) may be of different types. It also owns the property of
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Figure 1: The profile of solution (44) with 𝑝 = 3, 𝑞 = 1.5, 𝑡 = 0, and 𝑥
0
= 0. For (a) loop-shaped 𝛽 = 0.005, 𝜇 = −0.5, (b) cusp-shaped

𝛽 = 0.05, 𝜇 = −1, and (c) hump-shaped 𝛽 = 0.5, 𝜇 = −1.

being loop-shaped, cusp-shaped and hump-shaped, as shown
in Figure 1.

5. Conclusion

In this paper, we use (𝐺󸀠/𝐺)-expansion method to study
extended reduced Ostrovsky equation. Several pairs of gen-
eralized traveling wave solutions are given directly. These
solutions extend the previous results tomore general cases. At
the same time, multishaped wave solutions can be obtained if
the different parameters values are chosen.These explicit soli-
tary wave solutions own the property of being loop-shaped,
cusp-shaped, and hump-shaped. These exact traveling wave
solutions are also helpful to further study this nonlinear
equation which has their physical meaning.Themethod used
in this paper has more advantages. It is direct and con-
cise. Much tedious algebraic calculations can be finished by
computer program such as MATHEMATICA and MAPLE.
Many well-known nonlinear wave equations can be handled
by this method.
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