
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 654059, 10 pages
http://dx.doi.org/10.1155/2013/654059

Research Article
Verification of Opacity and Diagnosability for
Pushdown Systems

Koichi Kobayashi and Kunihiko Hiraishi

School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan

Correspondence should be addressed to Koichi Kobayashi; k-kobaya@jaist.ac.jp

Received 26 February 2013; Revised 28 April 2013; Accepted 30 April 2013

Academic Editor: Guiming Luo

Copyright © 2013 K. Kobayashi and K. Hiraishi.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

In control theory of discrete event systems (DESs), one of the challenging topics is the extension of theory of finite-state DESs
to that of infinite-state DESs. In this paper, we discuss verification of opacity and diagnosability for infinite-state DESs modeled
by pushdown automata (called here pushdown systems). First, we discuss opacity of pushdown systems and prove that opacity of
pushdown systems is in general undecidable. In addition, a decidable class is clarified. Next, in diagnosability, we prove that under a
certain assumption, which is different from the assumption in the existing result, diagnosability of pushdown systems is decidable.
Furthermore, a necessary condition and a sufficient condition using finite-state approximations are derived. Finally, as one of the
applications, we consider data integration using XML (Extensible Markup Language). The obtained result is useful for developing
control theory of infinite-state DESs.

1. Introduction

To extend control theory of discrete event systems (DESs)
expressed by finite automata [1] to that of infinite-state DESs
is one of the challenging topics. Infinite automata [2] and
unbounded Petri nets [3, 4] are common models of infinite-
state DESs. In this paper, we focus on a pushdown automaton
(PDA) [5, 6], which is one of the standard classes of infinite
automata. A PDA is a finite automaton having a stack with
infinite length, and a state transition is decided by the input
symbol (event) and the stack symbol in the top of the
stack. The stack can be manipulated by the input symbol in
which the empty symbol is included. Furthermore, a visibly
pushdown automaton (VPA) has been proposed as a special
class of PDAs [7, 8]. Input symbols in a VPA are composed
of three kinds of symbols, that is, push manipulations, pop
manipulations, and internal manipulations (see Section 2.1
for further details). It is easier to analyze a VPA than a PDA.
Some examples are given as applications of PDAs and VPAs.
In the modeling of a software system, a PDA is frequently
used (see, e.g., [9]). Also in analysis of a cyber-physical system
(CPS), which has recently attracted much attention, a PDA is
used [10]. A CPS is a system featuring a combination between
computer systems and physical systems [11]. To model

the complicate behavior of such a CPS, it is important to use a
PDA. In addition, as an application of a PDA, intrusion detec-
tion in the field of computer security has been studied so far
[12]. As an application of a VPA, analysis of XML (Extensible
Markup Language), which is one of the markup languages
and is widely used in several fields [8, 13], has been studied
so far [8, 13]. Thus a PDA and a VPA have many applications,
and, developing theory of DESs using a PDA and a VPA is
important.

For DESs modeled by PDAs and VPAs (called here push-
down systems), supervisory control [9, 14] and diagnosability
verification [15] have been studied so far. Diagnosability
verification is the problem of testing if the state reaches a
given failure state under partial observations. In diagnosabil-
ity verification, it has been proven in [15] that diagnosabil-
ity of pushdown systems is in general undecidable and is
decidable under the assumption that stack manipulations are
completely observed. This assumption is very strong and is
not practical. Furthermore, it is important to approximately
verify diagnosability for pushdown systems without assump-
tions. On the other hand, in recent years, opacity in computer
security has been studied in the framework of DESs [16–22].
Opacity aims to determine if a secret behavior in the system

2 Journal of Applied Mathematics

is kept opaque to outsiders. In [17], it has been shown that
opacity verification of infinite-state systems is undecidable.
Also in [19], opacity verification of infinite-state systems has
been discussed using approximate models. However, to our
knowledge, opacity verification of pushdown systems has not
been studied so far.

In this paper, we discuss verification of opacity and diag-
nosability for pushdown systems based on basic results in
formal language theory [5, 6]. In opacity verification, it is
proven that opacity of pushdown systems is in general unde-
cidable. Furthermore, we clarify a condition such that opacity
is decidable. In diagnosability verification, first, it is proven
that if a part of observations in the system can be expressed
as a regular language, that is, a language accepted by some
finite automaton, then diagnosability is decidable. Next, a
necessary condition for the pushdown system not to be diag-
nosable is derived based on finite-state overapproximations.
In a similar way, a sufficient condition is also derived based on
finite-state underapproximations. The proposed conditions
enable us to verify diagnosability of awider class of pushdown
systems. Also, the relation among opacity verification, diag-
nosability verification, and the sensor selection problem is
discussed. Finally, as one of the applications, we consider data
integration of XML documents. In the case that documents
in databases are expressed by the XML, one of the important
problems is data integration, which is called here XML data
integration. In particular, we discuss XML data integration
with security considerations and show the effectiveness of the
proposed approach. The conference paper [23] is a prelimi-
nary version of this paper. In this paper, we provide improved
formulations and explanations, discussion on the computa-
tional complexity, and application to XML data integration.

This paper is organized as follows. In Section 2, first, the
outline of pushdown systems is explained. Next, decidable
problems and undecidable problems in PDAs and VPAs are
explained. Finally, we introduce a finite-state overapproxima-
tion of PDAs. In Section 3, opacity verification is discussed. In
Section 4, diagnosability verification is discussed, and some
diagnosability conditions are derived. In Section 5, related
topics are discussed. In Section 6, we consider an application
of the proposed approach to XML data integration. In
Section 7, we conclude this paper.

Notation. For a finite set Σ, let Σ∗ denote a set of all finite
strings, which consist of elements in Σ, including the empty
string 𝜀. Let Σ𝜔 denote a set of all infinite strings. Let |Σ|
denote the number of elements in Σ. The setN is defined as
N := {0, 1, 2, . . .}.

2. Preliminaries

In this section, first, we introduce pushdown automata and
their subclass. Next, undecidable problems in pushdown
automata are explained. Furthermore, we introduce assump-
tions that will enable the undecidable problems to become
decidable. Finally, a finite-state overapproximation used in
diagnosability verification is explained.

2.1. Pushdown Systems. Consider the following pushdown
automaton (PDA):

𝐺 = (𝑄, Σ, Γ, Δ, 𝑞
0
, 𝑍
0
, 𝐹) , (1)

where 𝑄 is the finite set of states, Σ ∪ {𝜀} is the finite set of
input symbols (events), Γ are the finite set of stack symbols,
Δ = Δ push ∪ Δ pop ∪ Δ int: transition relations, 𝑞

0
∈ 𝑄 are the

initial state, and 𝑍
0
∈ Γ is the initial stack symbol. 𝐹 ⊆ 𝑄: the

set of final states.
In theory of DESs, the empty string 𝜀 is regarded as an

unobservable event. In the PDA to be studied here, transition
relations are composed of Δ push, Δ pop, and Δ int, which are
called here a “push” manipulation, a “pop” manipulation,
and an “internal” manipulation, respectively. In the push
manipulation, a particular symbol is pushed to the top of the
stack. In the popmanipulation, the top of the stack is popped
off. In the internalmanipulation, the stack is not changed, and
only the state is changed.More precisely, threemanipulations
are given as

Δ push ⊆ (𝑄 × Σ × Γ) × 𝑄,

Δ pop ⊆ (𝑄 × Σ) × (𝑄 × (Γ − {𝑍
0
})) ,

Δ int ⊆ (𝑄 × Σ) × 𝑄,

(2)

respectively. Functional forms of 𝛿 = (𝑞, 𝜎, 𝛾, 𝑞
󸀠

) ∈ Δ push,
𝛿 = (𝑞, 𝜎, 𝑞

󸀠

, 𝛾) ∈ Δ pop, and 𝛿 = (𝑞, 𝜎, 𝑞
󸀠

) ∈ Δ int are given
as 𝛿 : (𝑞, 𝜎, 𝛾) → 𝑞

󸀠, 𝛿 : (𝑞, 𝜎) → (𝑞
󸀠

, 𝛾), and 𝛿 : (𝑞, 𝜎) →
𝑞
󸀠, respectively. If the state and the symbol sequence in the
stack are uniquely determined for given initial state and input
symbol, a given PDA is said to be deterministic.

In addition, if the state reaches some element of a subset
𝑄
󸀠

⊆ 𝑄 by an execution 𝑢 ∈ Σ
∗, then it is said that an

execution 𝑢 reaches𝑄󸀠. Furthermore, we can naturally extend
these definitions to an infinite execution. If the state reaches
some element of 𝑄󸀠 by one of the prefixes of an infinite
execution 𝑤 ∈ Σ

𝜔, then it is said that the infinite execution
𝑤 reaches 𝑄󸀠.

Let Σ
𝑜
⊆ Σ denote the set of observable events, and the set

Σ
𝑢𝑜
:= Σ
𝑜
is the set of unobservable events. Let 𝐿(𝐺) denote

the set of languages accepted by 𝐺. Then let 𝑃(𝐿(𝐺)) denote
the set of sequences of observable events; that is, the following
two relations hold:

𝑃 (𝜎) = 𝜎 if 𝜎 ∈ Σ
𝑜
,

𝑃 (𝜎) = 𝜀 if 𝜎 ∈ Σ
𝑢𝑜
.

(3)

Since 𝑃(𝜎
1
) = 𝑃(𝜎

2
) is satisfied for the two unobservable

events 𝜎
1
, 𝜎
2
∈ Σ
𝑢𝑜
, two events 𝜎

1
, 𝜎
2
are indistinguishable.

Next, we introduce visibly PDAs [7, 8] as a subclass of
PDAs.

Definition 1. A PDA (1) is said to be a visibly PDA (VPA) if
Σ comprises Σ = Σpush ∪ Σpop ∪ Σint, where Σpush, Σpop, and
Σint are input symbols corresponding toΔ push,Δ pop, andΔ int,
respectively.

Journal of Applied Mathematics 3

In VPAs, manipulations to the stack can be visualized
from Σ.

We illustrate this with a simple example.

Example 2. Consider the VPA 𝐺 in Figure 1, where

𝑄 = {𝑞
0
, 𝑞
1
, 𝑞
2
} ,

Σ = {𝑎, 𝑏, 𝑐, 𝑑} ,

Γ = {𝑍
0
, 𝑋, 𝑌} ,

Δ push = {(𝑞0, 𝑎, 𝑋, 𝑞0) , (𝑞0, 𝑎, 𝑌, 𝑞0) , (𝑞0, 𝑎, 𝑋, 𝑞1)} ,

Δ pop = {(𝑞1, 𝑏, 𝑞1, 𝑋) , (𝑞2, 𝑑, 𝑞2, 𝑌)} ,

Δ int = {(𝑞0, 𝑐, 𝑞2)} ,

𝐹 = {𝑞
1
, 𝑞
2
} ⊂ 𝑄.

(4)

In Figure 1, 𝑎/ + 𝑋 and 𝑎/ + 𝑌 express push manipulations,
𝑏/−𝑋 and 𝑑/−𝑌 express popmanipulations, and 𝑐 expresses
an internal manipulation. Since Σ = {𝑎, 𝑏, 𝑐, 𝑑} comprises

Σpush = {𝑎} , Σpop = {𝑏, 𝑑} , Σint = {𝑐} , (5)

we see that this automaton is a VPA. In addition, we have

𝐿 (𝐺) = {𝑎
𝑛

𝑏
𝑛

| 𝑛 ≥ 1} ∪ {𝑎
𝑚

𝑐𝑑
𝑚

| 𝑚 ≥ 0} , (6)

where 𝑎𝑛𝑏𝑛 corresponds to the set of event sequences such
that the state reaches 𝑞

1
. 𝑎𝑛𝑐𝑑𝑛 corresponds to the set of event

sequences such that the state reaches 𝑞
2
.

Hereafter, a discrete event system expressed by a PDA and
a VPA is called a DES-PDA and a DES-VPA, respectively. If it
is not necessary to distinguish a DES-PDA and a DES-VPA,
then these discrete event systems are called here pushdown
systems (PDSs).

2.2. Decidable Problems and Undecidable Problems in Push-
down Automata. In this subsection, we explain decidable
problems and undecidable problems in a language 𝐿(𝐺)

accepted by PDA or VPA 𝐺, that is, a context-free language
(CFL). See [5, 6] for further details.

Suppose that the two PDAs 𝐺
1
and 𝐺

2
are given. Then

𝐿(𝐺
1
) and 𝐿(𝐺

2
) are CFLs, and the following result is known.

Lemma 3. The emptiness problem of an intersection of 𝐿(𝐺
1
)

and 𝐿(𝐺
2
), that is, the problem of deciding if 𝐿(𝐺

1
)∩𝐿(𝐺

2
) = 0

holds, is undecidable.

This lemma follows from the fact that 𝐿(𝐺
1
)∩𝐿(𝐺

2
) is not

a CFL in general.The emptiness problem of an intersection of
two CFLs is decidable under a given assumption.

Lemma4. Assume that either 𝐿(𝐺
1
) or 𝐿(𝐺

2
) is given as a reg-

ular language; that is, either𝐺
1
or𝐺
2
is given as a finite autom-

aton. Then the emptiness problem of an intersection of 𝐿(𝐺
1
)

and 𝐿(𝐺
2
) is decidable. In addition, this problem can be solved

in PTIME.

𝑎/+𝑋

𝑎/+𝑋

𝑎/+𝑌

𝑞0 𝑞1

𝑏/−𝑋

𝑐

𝑞2

𝑑/−𝑌

Figure 1: Example of VDPDAs 𝐺.

Under the assumption in Lemma 4, 𝐿(𝐺
1
) ∩ 𝐿(𝐺

2
) is a

CFL, and the emptiness problem is decidable. This result in
the emptiness problem of an intersection is used in diagnos-
ability verification in Section 4.

Next, the following result on the inclusion problem has
been obtained.

Lemma 5. The inclusion problem of two PDAs, 𝐺
1
and 𝐺

2
,

that is, the problem of deciding if 𝐿(𝐺
1
) ⊆ 𝐿(𝐺

2
) holds, is

undecidable.

For VPAs, the following result has been obtained [7].

Lemma6. The inclusion problem of two VPAs𝐺
1
and𝐺

2
, that

is, the problem of deciding if 𝐿(𝐺
1
) ⊆ 𝐿(𝐺

2
) holds is decidable.

In addition, this problem can be solved in EXPTIME.

On the other hand, a class of deterministic PDAs such
that the inclusion problem is decidable is called superde-
terministic PDAs [24]. A deterministic VPA is a subclass
of the superdeterministic PDAs. This fact is clear from the
definitions in [7, 24]. As a result, the following result can be
obtained.

Lemma 7. Assume that 𝐺
1
and 𝐺

2
are given as a PDA and a

deterministic VPA, respectively.Then the problem of deciding if
𝐿(𝐺
1
) ⊆ 𝐿(𝐺

2
) is decidable. In addition, this problem can be

solved in 2-EXPTIME.

These results of the inclusion problem are used in opacity
verification in Section 3.

2.3. Finite-State Overapproximation of Pushdown Automata.
In this section, we explain the finite-state overapproximations
of PDAs. Several approximations have been proposed so far
(see, e.g., [25] for further details). In this paper, the following
finite-state overapproximation proposed in [9] is used.

4 Journal of Applied Mathematics

Definition 8. For a given PDA𝐺 of (1), the finite-state overap-
proximation of 𝐺 is defined by

𝐺
𝑜
= (𝑄, Σ.

𝑄
, Δ
𝑜
, 𝑞
0
, 𝐹) , (7)

where Σ.
𝑄
and Δ

𝑜
are defined as follows:

(i) Σ.
𝑄
= {𝜎 ⋅ 𝑞 | 𝜎 ∈ Σ, 𝑞 ∈ 𝑄}.

(ii) Δ
𝑜
is given as Δ

𝑜
⊆ (𝑄 × Σ.

𝑄
) × 𝑄. 𝛿 = (𝑞, 𝜎 ⋅ 𝑞󸀠, 𝑞󸀠) ∈

Δ
𝑜
holds if and only if one of the following three

conditions holds:

(1) 𝛿 = (𝑞, 𝜎, 𝛾, 𝑞󸀠) ∈ Δ push holds for some 𝛾 ∈ Γ;
(2) 𝛿 = (𝑞, 𝜎, 𝑞󸀠, 𝛾) ∈ Δ pop holds for some 𝛾 ∈ Γ;
(3) 𝛿 = (𝑞, 𝜎, 𝑞󸀠) ∈ Δ int holds.

Let𝐺
𝑠
denote the PDAobtained by replacing𝜎 ∈ Σwith𝜎.𝑞 ∈

Σ.
𝑄
. In the transitions of 𝐺

𝑜
, the conditions on the stack are

ignored. So 𝐿(𝐺
𝑠
) ⊆ 𝐿(𝐺

𝑜
) holds.

A finite-state overapproximation will be used in the topic
on diagnosability (see Section 4.4 for further details).

3. Opacity Verification

This section looks at opacity verification of PDSs. First, the
notion of opacity is defined. Next, after a condition for a PDS
to be opaque is derived, a decidable class of PDSs is clarified.

3.1. Definition of Opacity. First, secret states are defined. Let
𝑄
𝑠
⊂ 𝐹 denote the set of secret states. Then we define the

notion of opacity based on the definition in [20].

Definition 9. For the PDS 𝐺 of (1), suppose that the set of
secret states 𝑄

𝑠
and the set of observable events Σ

𝑜
are given.

Then the PDS is said to be opaque if for all 𝑡 ∈ 𝐿(𝐺) there
exists 𝑠 ∈ 𝐿(𝐺) − {𝑡} such that if 𝑡 reaches 𝑄

𝑠
, then 𝑠 does not

reach 𝑄
𝑠
and 𝑃(𝑠) = 𝑃(𝑡).

Several definitions of opacity have been proposed so far
(see, e.g., [17, 20–22]). In this paper, the simplest definition in
[20] is used.

3.2. Decidability of Opacity. Let 𝑉
1
denote the set of finite

event sequences such that the state reaches 𝑄
𝑠
. Let 𝑉

2
denote

the set of finite event sequences such that the state reaches
𝑄−𝑄

𝑠
. Then the opacity condition of PDSs can be derived as

follows.

Theorem 10. A PDS is opaque if and only if 𝑃(𝑉
1
) ⊆ 𝑃(𝑉

2
)

holds.

Proof. If a PDS is opaque, then 𝑃(𝑉
1
) is included in 𝑃(𝑉

2
).

Conversely, if 𝑃(𝑉
1
) ⊆ 𝑃(𝑉

2
) holds, then for any V

1
∈ 𝑃(𝑉

1
),

there exists V
2
∈ 𝑃(𝑉

2
) such that V

1
= V
2
. So the PDS is

opaque.

FromLemma 5 andTheorem 10, we can obtain the follow-
ing result immediately.

Theorem 11. Opacity of a DES-PDA is in general undecidable.

In addition, from Lemma 5 and Theorem 10, we can
obtain the following result.

Theorem 12. Opacity of a DES-VPA is in general undecidable.

Proof. Even if𝑉
1
and𝑉
2
are languages accepted byVPAs, then

𝑃(𝑉
1
) and𝑃(𝑉

2
) are in general given as languages accepted by

PDAs [15]. Then, from Lemma 5 and Theorem 10, opacity of
a DES-VPA is undecidable.

From Theorems 11 and 12, we see that opacity of a DES-
PDA and a DES-VPA are in general undecidable. On the
other hand, from Lemma 6 and Theorem 10, we see that if
observations of a DES-PDA is expressed by some VPA, then
opacity of a DES-PDAmay be decidable. Then we can obtain
the following result.

Theorem 13. Assume that 𝑃(𝑉
1
) and 𝑃(𝑉

2
) are languages

accepted by VPAs, respectively. Then the problem of deciding
if 𝑃(𝑉

1
) ⊆ 𝑃(𝑉

2
) holds is decidable; that is, opacity of a PDS is

decidable. In addition, this problem can be solved in EXPTIME.

In addition, from Lemma 7 and Theorem 10, we can
obtain the following result.

Theorem 14. Assume that 𝑃(𝑉
1
) and 𝑃(𝑉

2
) are languages

accepted by a PDA and a deterministic VPA, respectively. Then
the problem of deciding if 𝑃(𝑉

1
) ⊆ 𝑃(𝑉

2
) holds is decidable;

that is, opacity of a PDS is decidable. In addition, this problem
can be solved in 2-EXPTIME.

From Theorem 14, we see that if 𝑃(𝑉
2
) is given as a

language accepted by a deterministic VPA, then the decidable
condition is relaxed. Comparing Theorem 13 with Theo-
rem 14, the inclusion problem inTheorem 14 is more difficult
than that in Theorem 13. This is because in Theorem 14,
𝑃(𝑉
1
) may be given as a language accepted by a PDA. If an

overapproximation of a PDA can be derived as a VPA, then
we can obtain a sufficient condition of a PDS to be opaque. In
future work we plan to consider how to approximate a PDA
by a VPA. On the other hand, in recent years, VPAs have been
applied to several applications (see, e.g., [7–9]). Therefore,
Theorem 13 andTheorem 14 will be useful.

Finally, we show a simple example.

Example 15. Consider the DES-VPA in Figure 1. Assume 𝑑 =
𝑏. Suppose that Σ

𝑜
= {𝑎, 𝑏}, Σ

𝑢𝑜
= {𝑐}, and 𝑄

𝑠
= {𝑞
2
} are

given. Then we obtain
𝑃 (𝑉
1
) = 𝑃 (𝑉

2
) = 𝑎
𝑛

𝑏
𝑛

. (8)
𝑃(𝑉
1
) and𝑃(𝑉

2
) are languages accepted byVPAs, respectively,

and 𝑃(𝑉
1
) = 𝑃(𝑉

2
) holds. Therefore, this system is opaque.

4. Diagnosability Verification

In this section, first, diagnosability for the PDS (1) is defined
according to the definition in [15, 26, 27]. Next, after the exist-
ing results in [15] are explained, two kinds of diagnosability
conditions are proposed.

Journal of Applied Mathematics 5

4.1. Definition of Diagnosability. First, failure states are
defined. Let 𝑄

𝑓
⊂ 𝑄 denote the set of failure states. For 𝑄

𝑓
,

the following two assumptions are made: (i) 𝑄
𝑓
⊂ 𝐹 and

(ii) if the state reaches the set 𝑄
𝑓
, then the state stays within

𝑄
𝑓
. Since in this paper we focus on whether some failure has

occurred in the past or not, these assumptions are imposed.
These assumptions also imply that any failure is not restored
automatically. Let 𝐿

𝑓
⊂ 𝐿(𝐺) denote the set of executions

such that the state reaches some element in 𝑄
𝑠
.

Next, the notion of diagnosability for the PDS (1) is
defined according to [15, 26, 27].

Definition 16. For the PDS (1), suppose that the set of failure
states 𝑄

𝑓
and the set of observable events Σ

𝑜
are given. Then

the PDS (1) is diagnosable if the following condition holds:

(∃𝑛 ∈ N − {∞}) (∀𝑠 ∈ 𝐿
𝑓
) (∀𝑡 ∈

𝐿 (𝐺)

𝑠
)

|𝑡| ≥ 𝑛 󳨐⇒ 𝑃
−1

𝑃 (𝑠𝑡) ∩ 𝐿 (𝐺) ⊆ 𝐿
𝑓
,

(9)

where 𝐿(𝐺)/𝑠 := {𝑡 ∈ Σ
∗

| 𝑠𝑡 ∈ 𝐿(𝐺)}, and 𝑃−1𝑃(𝑠𝑡) is the set
of executions such that an observation is 𝑃(𝑠𝑡).

In this definition, 𝑃−1𝑃(𝑠𝑡) ∩ 𝐿(𝐺) ⊆ 𝐿
𝑓
implies that all

executions such that an observation is 𝑃(𝑠𝑡) are included in
𝐿
𝑓
. So a failure can be detected from a finite observation.

In other words, if there exists an unobservable infinite suffix,
then the system is not diagnosable. Furthermore, deriving 𝑛
in this definition is important, but this topic is not discussed
in this paper. In [15], under some assumptions, a method for
deriving 𝑛 has been already discussed.

Hereafter, a construction method of a diagnoser is not
focused on (see [15] for construction of a diagnoser), and a
method to test diagnosability is considered.

4.2. Existing Results. First, we introduce a necessary and suf-
ficient condition of the PDS (1) not to be diagnosable [15, 28].

Lemma17. For the PDS (1), suppose that the set of failure states
𝑄
𝑓
and the set of observable events Σ

𝑜
are given. Then the PDS

is not diagnosable if and only if there exist two indistinguishable
infinite executions𝑤

1
and𝑤

2
such that𝑤

1
reaches𝑄

𝑓
while𝑤

2

does not.

Next, the existing results [15] on diagnosability verifica-
tion are introduced.

Lemma 18. Diagnosability of a DES-PDA is in general unde-
cidable.

Lemma 19. Diagnosability of a DES-VPA is in general unde-
cidable.

These results can be obtained immediately, because the
emptiness problem for an intersection of observations of
infinite executions 𝑤

1
and 𝑤

2
such that 𝑤

1
reaches 𝑄

𝑓
while

𝑤
2
does not is undecidable from Lemma 3.
In [15], the following result has been derived.

Lemma 20. Assume Σ
𝑢𝑜
⊆ Σint. Then diagnosability of a DES-

VPA is decidable.

In Lemma 20, it is assumed that events corresponding
to push and pop manipulations of the stack are observable.
In [15], the diagnosability verification problem is reduced to
the emptiness problem of Büchi automata under Σ

𝑢𝑜
⊆ Σint.

So the property of pushdown automata is not considered. In
this paper, as another approach, we consider diagnosability
verification under other assumptions. Furthermore, approx-
imate methods for verifying diagnosability of PDSs without
assumptions are proposed.

4.3. Proposed Diagnosability Condition. First, based on
Lemma 4, we propose a diagnosability condition of PDSs.

Let𝑊
1
denote the set of finite event sequences such that

the state reaches𝑄−𝑄
𝑓
. Let𝑊

2
denote the set of finite event

sequences such that the state reaches 𝑄
𝑓
.

Then we obtain the following result.

Theorem 21. Assume that either 𝑃(𝑊
1
) or 𝑃(𝑊

2
) is given

as a language accepted by some finite automaton, that is, a
regular language. Then diagnosability of a PDS is decidable.
Furthermore, a PDS is not diagnosable if and only if 𝑃(𝑊

1
) ∩

𝑃(𝑊
2
) ̸= 0 holds. In addition, this problem can be solved in

PTIME.

Proof. From Lemma 4 and Lemma 17, this theorem is
obtained straightforwardly.

We show a simple example.

Example 22. Consider the DES-VPA in Figure 1 again. Sup-
pose that Σ

𝑜
= {𝑎, 𝑏, 𝑐}, Σ

𝑢𝑜
= {𝑑}, and 𝑄

𝑓
= {𝑞
2
} are given.

Then we obtain
𝑊
1
= 𝑎
𝑛

𝑏
𝑛

, 𝑊
2
= 𝑎
𝑚

𝑐𝑑
𝑚

, 𝑛 ≥ 1, 𝑚 ≥ 0,

𝑃 (𝑊
1
) = 𝑎
𝑛

𝑏
𝑛

, 𝑃 (𝑊
2
) = 𝑎
𝑚

𝑐, 𝑛 ≥ 1, 𝑚 ≥ 0.

(10)

Since 𝑃(𝑊
2
) is a regular language, diagnosability of this DES-

VPA is decidable. In fact, we see that 𝑃(𝑊
1
) ∩ 𝑃(𝑊

2
) ̸= 0

does not hold, and the defect can be detected by observing
the event 𝑐. This example is very simple. However, we note
that diagnosability of this system is undecidable in the case
using the existing result in [15]. This is because this system
does not satisfy the assumption in Lemma 20; that is, the
unobservable event 𝑑 is not an internal manipulation and is
a pop manipulation.

From this example, we can indicate that even if 𝑊
1
, 𝑊
2

are CFLs, then 𝑃(𝑊
1
), 𝑃(𝑊

2
) are generally neither CFLs nor

regular languages. In the above example, 𝑊
2
is a CFL, but

𝑃(𝑊
2
) is a regular language. So we may consider to directly

approximate 𝑃(𝑊
1
), 𝑃(𝑊

2
) by a regular language. From this

viewpoint, we propose diagnosability conditions using the
finite-state over/under-approximations.

4.4. Proposed Diagnosability Conditions Using Finite-State
Approximations. Now, we show a diagnosability condition
using a finite-state overapproximation in Definition 8.

6 Journal of Applied Mathematics

Theorem 23. Suppose that either 𝑃(𝑊
1
) or 𝑃(𝑊

2
) is approx-

imated by a finite-state overapproximation in Definition 8.
Let 𝑃

1
and 𝑃

2
denote approximated 𝑃(𝑊

1
) and 𝑃(𝑊

2
),

respectively. Then a necessary condition for a PDS to be not
diagnosable is that either 𝑃

1
∩ 𝑃(𝑊

2
) ̸= 0 or 𝑃(𝑊

1
) ∩ 𝑃
2
̸= 0

holds. In addition, this condition can be solved in PTIME.

Proof. From Theorem 21, 𝑃(𝑊
1
) ⊆ 𝑃

1
, and 𝑃(𝑊

2
) ⊆ 𝑃

2
, we

obtain the theorem immediately.

Theorem 23 provides a necessary condition.
On the other hand, it is also important to obtain a

sufficient condition. Then a finite-state underapproximation
must be considered. A simple method to derive a finite-state
underapproximation is that the length of the stack in a PDS
is limited to a given finite length. See Example 25 below
for further details. So we assume that a finite-state under-
approximation of either 𝑃(𝑊

1
) or 𝑃(𝑊

2
) is given.

Then we obtain the following result.

Theorem 24. Suppose that either 𝑃(𝑊
1
) or 𝑃(𝑊

2
) is approx-

imated by a finite-state under-approximation. Let 𝑃
1
and 𝑃

2

denote approximated 𝑃(𝑊
1
) and 𝑃(𝑊

2
), respectively. Then a

sufficient condition for a PDS to be not diagnosable is that
either 𝑃

1
∩ 𝑃(𝑊

2
) ̸= 0 or 𝑃(𝑊

1
) ∩ 𝑃
2
̸= 0 holds. In addition,

this condition can be solved in PTIME.

Proof. From Theorem 21, 𝑃
1
⊆ 𝑃(𝑊

1
), and 𝑃

2
⊆ 𝑃(𝑊

2
), we

obtain the theorem immediately.

From Theorems 23 and 24, we see that diagnosability of
a PDS can be approximately verified in PTIME. SoTheorems
23 and 24 are simple but can be applied to several systems
such as software systems.

Example 25. Suppose that 𝑃(𝑊
1
) and 𝑃(𝑊

2
) are given as

𝑃 (𝑊
1
) = {𝑎

𝑛

𝑏
𝑛

𝑐
𝑖

| 𝑛 ≥ 1, 𝑖 ≥ 1} ,

𝑃 (𝑊
2
) = {𝑎

𝑖

𝑏
𝑛

𝑐
𝑛

| 𝑛 ≥ 1, 𝑖 ≥ 1} ,

(11)

respectively. Then 𝑃(𝑊
1
) ∩ 𝑃(𝑊

2
) = {𝑎

𝑛

𝑏
𝑛

𝑐
𝑛

| 𝑛 ≥ 1} ̸= 0

is obtained, and we see that this system is not diagnosable.
However, 𝑃(𝑊

1
) ∩ 𝑃(𝑊

2
) is not a CFL (see [6] for further

details).
Next, we verify diagnosability using Theorem 23. In this

example, we approximate 𝑃(𝑊
1
) by a regular language. The

PDA 𝐺
1
accepting 𝑃(𝑊

1
) is given by

𝐺
1
= (𝑄, Σ, Γ, Δ, 𝑞

0
, 𝑍
0
, 𝐹) ,

𝑄 = {𝑞
0
, 𝑞
1
, 𝑞
2
} ,

Σ = {𝑎, 𝑏, 𝑐} ,

Γ = {𝑍
0
, 𝑋} ,

Δ = Δ push ∪ Δ pop ∪ Δ int,

Δ push = {(𝑞0, 𝑎, 𝑋, 𝑞0) , (𝑞0, 𝑎, 𝑋, 𝑞1)} ,

Δ pop = {(𝑞1, 𝑏, 𝑞1, 𝑋)} ,

Δ int = {(𝑞1, 𝑐, 𝑞2) , (𝑞2, 𝑐, 𝑞2)} ,

𝐹 = {𝑞
2
} ⊂ 𝑄.

(12)

See also Figure 2. Consider to derive the finite-state overap-
proximation in Definition 8. Then Σ.

𝑄
is given as

Σ.
𝑄
= {𝑎 ⋅ 𝑞

0
, 𝑎 ⋅ 𝑞
1
, 𝑎 ⋅ 𝑞
2
, 𝑏 ⋅ 𝑞
0
, 𝑏 ⋅ 𝑞
1
, 𝑏 ⋅ 𝑞
2
,

𝑐 ⋅ 𝑞
0
, 𝑐 ⋅ 𝑞
1
, 𝑐 ⋅ 𝑞
2
} .

(13)

Next, we derive Δ
𝑜
. From Δ push, we obtain

𝛿
1
= (𝑞
0
, 𝑎 ⋅ 𝑞
0
, 𝑞
0
) , 𝛿

2
= (𝑞
0
, 𝑎 ⋅ 𝑞
1
, 𝑞
1
) . (14)

From Δ pop, we obtain

𝛿
3
= (𝑞
1
, 𝑏.𝑞
1
, 𝑞
1
) . (15)

From Δ int, we obtain

𝛿
4
= (𝑞
1
, 𝑐.𝑞
2
, 𝑞
2
) , 𝛿

5
= (𝑞
2
, 𝑐.𝑞
2
, 𝑞
2
) . (16)

So Δ
𝑜
= {𝛿
1
, 𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
5
} is obtained. Thus we can obtain

the finite-state overapproximation 𝐺
1
of the PDA 𝐺

1
(see

Figure 3). Using Σ = {𝑎, 𝑏, 𝑐}, the language accepted by 𝐺
1

is obtained by

𝐿 (𝐺
1
) = {𝑎

∗

𝑎𝑏
∗

𝑐𝑐
∗

} . (17)

From the obtained 𝐿(𝐺
1
), we see that 𝑃(𝑊

1
) ⊆ 𝐿(𝐺

1
) holds.

Furthermore, since 𝐿(𝐺
1
) ∩ 𝑃(𝑊

2
) ̸= 0 holds, the necessary

condition inTheorem 23 is satisfied.

Next, we verify diagnosability using Theorem 24. By
limiting the length of the stack in 𝑃(𝑊

1
) to 𝑛 = 2, the finite-

state under-approximation 𝑃
1
can be obtained as

𝑃
1
= {𝑎𝑎𝑏𝑏𝑐𝑐

∗

} ⊆ 𝑃 (𝑊
1
) . (18)

𝑃
1
is accepted by the finite automaton in Figure 4. Since

𝑃
1
∩ 𝑃(𝑊

2
) ̸= 0 holds, the sufficient condition inTheorem 24

is satisfied.

5. Discussions

5.1. Relationship between Opacity and Diagnosability Verifi-
cations. Opacity and diagnosability are closely related con-
cepts. We can interpret that opacity is the converse notion of
diagnosability. However, decidability conditions are different.

In opacity verification, if 𝑃(𝑉
1
) and 𝑃(𝑉

2
) are languages

accepted by someVPA, respectively, then opacity is decidable
(see also Theorem 13). That is, opacity can be discussed only
in the framework of VPAs.

On the other hand, in diagnosability verification, if either
𝑃(𝑊
1
) or𝑃(𝑊

2
) is a language accepted by somefinite automa-

ton, then diagnosability is decidable (see Section 4.3). Thus
approximations such as finite-state approximations described
in Section 2.3 are required.

Journal of Applied Mathematics 7

𝑎/+𝑋

𝑎/+𝑋𝑞0 𝑞1 𝑞2
𝑐

𝑐𝑏/−𝑋

Figure 2: PDA 𝐺
1
.

𝑞0 𝑞1 𝑞2

𝑎 · 𝑞0

𝑎 · 𝑞1

𝑏 · 𝑞1 𝑐 · 𝑞2

𝑐 · 𝑞2

Figure 3: Finite-state overapproximation 𝐺
1
of 𝐺
1
.

𝑎 𝑎 𝑏 𝑏 𝑐

𝑐

Figure 4: Finite automaton accepting 𝑃
1
.

From these results, the difference between opacity veri-
fication and diagnosability verification is clarified from the
theoretical viewpoint. However, it is known that the compu-
tational complexity of the inclusion problem of VPAs is
EXPTIME-complete and that of finite automata is PSPACE-
complete [7]. Thus, from the computational viewpoint, it
may be desirable to use finite-state approximations in opacity
verification.

5.2. Optimal Sensor Selection. The optimal sensor selection
problem, that is, the problem of minimizing the number of
sensors which observe events, such that the system is diag-
nosable has been discussed in [29, 30]. Further, in opacity, the
sensor selection problem has been discussed in [18]. One of
the trivial solutions to the sensor selection problem in opacity
is that the number of sensors should be zero, but this is not
practical. So it is important to consider the optimal sensor
selection problem such that the system is opaque and diag-
nosable simultaneously under 𝑄

𝑠
̸= 𝑄
𝑓
. Then we can derive

an optimal solution of this problem according to the results
in Sections 4 and 3. This is one of the challenges to be under-
taken in the future, that is, to develop an efficient algorithm.

5.3. Extension to Higher-Order Pushdown Systems. Higher-
order pushdown automata (HPAs) [31, 32] have been pro-
posed as one of the extensions of PDAs. HPAs are defined by
using higher-order stacks, that is, a nested “stack of stacks”
structures. HPAs are closely related to infinite graph theory
and higher-order logic programming. Decidable problems
and undecidable problems in HPAs are basically similar to
those in PDAs. Thus our proposed approach will be applied
to HPAs. In fact, the conditions that diagnosability of discrete

event systems modeled by HPAs is decidable have been
obtained in [15]. Since one of the conditions is Σ

𝑢𝑜
⊆ Σint, the

conditions obtained can be regarded as a natural extension of
Lemma 20.

6. Application to XML Data Integration

In this section, we consider XML data integration as an appli-
cation. The XML (Extensible Markup Language) is a markup
language that defines a set of rules for encoding data and
documents and is widely used in several fields such as data
and documents on the Web and medical databases. In cases
where documents in databases are expressed by the XML,
one of the important problems is data integration, which is
called here XML data integration. In XML data integration,
first, XML documents are extracted frommultiple databases.
Next, the extracted XML documents are integrated as one
XML document. Here, we assume the existence of a database
where the integrated XML document is indistinguishable
from its extracted components. The XML document in such
a database is called here the target XML document. Then we
consider the following problems:

Problem 1. Suppose that an integrated XML document and a
target XML document are given. Then

(i) can the integrated XML document be indistinguish-
able from the target XML document?

(ii) by masking particular data in the integrated XML
document, can the integrated XML document be
indistinguishable from the target XML document?

These problems are important from the viewpoint of security.
In addition, this problem is closely related to opacity verifica-
tion of PDSs in Section 3. This is because in recent years, a
method for expressing XML documents as a VPA has been
studied in, for example, [8, 13].

Hereafter, the relation between VPAs and XML docu-
ments will be explained. Next, by using a simple example, we
explain how to solve the above problems.

6.1. Relation between Pushdown Systems and XML Docu-
ments. First, an example of XML documents expressing
information about books is shown as follows:

<book>
< title>
Introduction to Discrete Event Systems

</title>
<author> C. G. Cassandras </author>
<author> S. Lafortune </author>
< ISBN> 978-0-387-33332-8 </ISBN>

</book>

TheXML scheme in the above example is based on the exam-
ple in [13]. In addition, the above example implies informa-
tion about the book of [1]. <book>, <title>, <author>, and

8 Journal of Applied Mathematics

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑞5𝑞6𝑞7𝑞8

/+𝑏 /+𝑡 /−𝑡 /+𝑎

/+𝑎/−𝑎

/−𝑏 /−𝑖 /+𝑖
book

book title title author

author author

isbnisbn

Figure 5: VPA 𝑆
1
expressing the XML document (information

about books).

<ISBN> are open tags. </book>, </title>, </author>, and
</ISBN> are close tags. Actual data such as “978-0-387-
33332-8” is called a local symbol. Since in this paper we
focus on XML schemas, we omit local symbols. The above
XML document can then be expressed as the VPA 𝑆

1
=

(𝑄, Σ, Γ, Δ push ∪ Δ pop ∪ Δ int, 𝑞0, 𝑍0, 𝐹), where

𝑄 = {𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, 𝑞
5
, 𝑞
6
, 𝑞
7
, 𝑞
8
} ,

Σ = {book, book, title, title, author, author, isbn, isbn} ,

Γ = {𝑍
0
, 𝑎, 𝑏, 𝑖, 𝑡} ,

Δ push = {(𝑞
0
, book, 𝑏, 𝑞

1
) , (𝑞
1
, title, 𝑡, 𝑞

2
) ,

(𝑞
3
, author, 𝑎, 𝑞

4
) , (𝑞
5
, author, 𝑎, 𝑞

4
) ,

(𝑞
5
, isbn, 𝑖, 𝑞

6
)} ,

Δ pop = {(𝑞
2
, title, 𝑞

3
, 𝑡) , (𝑞

4
, author, 𝑞

5
, 𝑎) ,

(𝑞
6
, isbn, 𝑞

7
, 𝑖) , (𝑞

7
, isbn, 𝑞

8
, 𝑏)} ,

Δ int = 0,

𝐹 = {𝑞
8
} ⊂ 𝑄.

(19)

Close tags are expressed by ⋅ . See also Figure 5. Thus a
given XML document can be expressed by a VPA.

6.2. XML Data Integration with Security Considerations.
Next, suppose that a VPA expressing information about
publishers is given as 𝑆

2
in Figure 6, where pub, pname,

and addr imply “publisher,” “publisher name,” and “address,”
respectively. Consider how to integrate the VPA 𝑆

1
with the

VPA 𝑆
2
. One of the simple methods is to connect 𝑆

1
with 𝑆

2

in series. Then we can obtain the VPA 𝑆
3
in Figure 7.

Here, suppose that a target XML document is given as
the VPA in Figure 8, where “#” implies a wild-card event or
a wild-card stack symbol. We consider Problem 1 (i). That
is, we must check if 𝐿(𝑆

3
) ⊆ 𝐿(𝑇) is satisfied. This is the

same as opacity verification. In this example, 𝐿(𝑆
3
) ⊆ 𝐿(𝑇)

is not satisfied, because by observing “country,” the VPA 𝑆
3

is distinguishable from the VPA 𝑇. Therefore, a solution of
Problem 1 (i) is “no.” In other words, the integrated XML
document is not opaque. FromTheorem 13, it is assumed that
this problem is decidable in general cases. We remark that in
this case, Σ = Σ

𝑜
holds.

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑞5𝑞6𝑞7𝑞8

/+𝑝 /+𝑐 /−𝑐

/−𝑛

/−𝑑/−𝑝

/+𝑑

/+𝑑

/+𝑛

pub

pub

country country pname

pname

addraddr

addr

Figure 6: VPA 𝑆
2
expressing information about publishers.

/+𝑏 /−𝑏/+𝑠 /+𝑝 /−𝑝 /−𝑠

𝑆1 𝑆2

· · · · · ·

book bookbp bppubpub

Figure 7: VPA 𝑆
3
obtained by integrating 𝑆

1
with 𝑆

2
.

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑞5𝑞6𝑞7𝑞8

/+𝑠

/−𝑠

/+𝑏 /−𝑏 /+𝑝

/−𝑝 /−𝑛

/+𝑛

#/+#

#/+##/−#

#/−#

book bookbp

bp pub

pub

pname

pname

Figure 8: VPA 𝑇 expressing a target XML document.

Next, consider Problem 1 (ii). Suppose that the set of
unobservable events Σ

𝑢𝑜
is given as Σ

𝑢𝑜
= {country}. Then

the VPA 𝑆
3
is indistinguishable from the VPA 𝑇. Therefore, a

solution of Problem 1 (i) is “yes.” In other words, we can say
that the integratedXMLdocument becomes opaque bymask-
ing “country.” Also in general cases, this problem is decidable.
On the other hand, it is one part of the future work, that is,
to develop an efficient algorithm for finding masked events.
Since this problem is the converse notion of the optimal sen-
sor selection problem for diagnosability, there is a possibility
that the existing result on sensor selection can be applied.

7. Conclusion and Future Work

In this paper, opacity and diagnosability of discrete event
systems expressed by pushdown automata (called here push-
down systems, PDSs) have been discussed based on formal
language theory. In opacity verification, we have not only
proven that opacity of a PDS is in general undecidable,
but also characterized the condition such that opacity is
decidable. We have also clarified that depending on a
class of observations, the computational complexity is dif-
ferent. In diagnosability verification, we have proposed a
new diagnosability condition, based on the fact that an
intersection of a context-free language and a regular lan-
guage is derived as a context-free language. In addition,
we have derived diagnosability conditions using finite-state
over/under-approximations of observations. Also we have

Journal of Applied Mathematics 9

clarified that the proposed diagnosability conditions can be
solved in PTIME. In particular, since diagnosability condi-
tions using approximations can be applied to a general class
of PDSs and can be efficiently solved, several applications
will be able to be considered. Finally, as an application, we
have considered XML data integration.The obtained result is
valuable as the basis of verification of PDSs and will be the
first step toward development of control theory for infinite-
state discrete event systems.

In future work, there are many open problems, for exam-
ple, implementation using amodel checker and decentralized
diagnosis [33]. In addition, the result on diagnosability anal-
ysis of unbounded Petri nets has been obtained in [4]. Also,
for recursive tile systems, which are a class of infinite discrete
event systems, the result on opacity and diagnosability has
been obtained in [34]. It is important to clarify the relation
between our result and these results. Finally, in order to show
the effectiveness of our proposed method, it is important to
consider several applications.

Acknowledgment

This work was partially supported by Grant-in-Aid for Young
Scientists (B) 23760387.

References

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete
Event Systems, Springer, 2nd edition, 2008.

[2] W. Thomas, “A short introduction to infinite automata,” in
Developments in Language Theory, vol. 2295 of Lecture Notes in
Computer Science, pp. 130–144, 2002.

[3] M. P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu, “Diagnos-
ability analysis of unbounded Petri nets,” in Proceedings of the
Joint 48th IEEE Conference on Decision and Control and 28th
Chinese Control Conference, pp. 1267–1272, 2009.

[4] M. P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu, “A new
approach for diagnosability analysis of Petri nets using verifier
nets,” IEEE Transactions on Automatic Control, vol. 57, no. 12,
pp. 3104–3117, 2012.

[5] J.-M. Autebert, J. Berstel, and L. Boasson, “Context-free lan-
guages and pushdown automata,” in Handbook of Formal Lan-
guages, vol. 1, pp. 111–174, Springer, 1997.

[6] J. E. Hopcroft and J. D. Ullman, Introduction to AutomataTheo-
ry, Languages, and Computation, Addison-Wesley, 3rd edition,
1979.

[7] R. Alur and P. Madhusudan, “Visibly pushdown languages,” in
Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pp. 202–211, ACM, 2004.

[8] V. Kumar, P. Madhusudan, andM. Viswanathan, “Visibly push-
down automata for streaming XML,” in Proceedings of the 16th
International Conference on World Wide Web, pp. 1053–1062,
2007.

[9] K. Hiraishi and P. Kucera, “Applications of DES theory to verifi-
cation of software components,” IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences,
vol. 92, no. 2, pp. 604–610, 2009.

[10] N. Saeedloei andG.Gupta, “Verifying complex continuous real-
time systemswith coinductive CLP(R),” in Proceedings of the 4th
International Conference on Language andAutomataTheory and

Applications, vol. 6031 of Lecture Notes in Computer Science, pp.
536–548, 2010.

[11] E. Lee, “Cyber physical systems: design challenges,” in Proceed-
ings of the 11th International Symposium on Object Oriented
Real-Time Distributed Computing, pp. 363–369, 2008.

[12] D.Wagner andD.Dean, “Intrusion detection via static analysis,”
in Proceedings of the IEEE Symposium on Security and Privacy,
pp. 156–168, 2001.

[13] A. Thomo and S. Venkatesh, “Rewriting of visibly pushdown
languages for XML data integration,”Theoretical Computer Sci-
ence, vol. 412, no. 39, pp. 5285–5297, 2011.

[14] C. Griffin, “A note on the properties of the supremal control-
lable sublanguage in pushdown systems,” IEEE Transactions on
Automatic Control, vol. 53, no. 3, pp. 826–829, 2008.

[15] C. Morvan and S. Pinchinat, “Diagnosability of pushdown sys-
tems,” in Proceedings of the Haifa Verification Conference 2009,
vol. 6405 of Lecture Notes in Computer Science, pp. 21–33, 2011.

[16] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 17, no. 4, pp. 425–446,
2007.

[17] J. W. Bryans, M. Koutny, L. Mazare, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” International Journal of
Information Security, vol. 7, no. 6, pp. 421–435, 2008.

[18] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque
systems with static and dynamic masks,” Formal Methods in
System Design, vol. 40, no. 1, pp. 88–115, 2012.

[19] J. Dubreil, “Opacity and abstractions,” in Proceedings of the 1st
International Workshop on Abstractions for Petri Nets and Other
Models of Concurrency, 2009.

[20] A. Saboori andC.N.Hadjicostis, “Notions of security and opac-
ity in discrete event systems,” in Proceedings of the 46th IEEE
Conference on Decision and Control, pp. 5056–5061, 2007.

[21] A. Saboori and C. N. Hadjicostis, “Verification of infinite-step
opacity and complexity considerations,” IEEE Transactions on
Automatic Control, vol. 57, no. 5, pp. 1265–1269, 2012.

[22] A. Saboori andC.N.Hadjicostis, “Verification of K-step opacity
and analysis of its complexity,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 8, no. 3, pp. 549–559, 2011.

[23] K. Kobayashi and K. Hiraishi, “On opacity and diagnosability
in discrete event systems modeled by pushdown automata,” in
Proceedings of the 8th IEEE International Conference on Auto-
mation Science and Engineering, pp. 658–663, 2012.

[24] S. A. Greibach and E. P. Friedman, “Superdeterministic PDAs:
a subcase with a decidable inclusion problem,” Journal of the
Association for Computing Machinery, vol. 27, no. 4, pp. 675–
700, 1980.

[25] M. Mohri and M. J. Nederhof, “Regular approximation of
context-free grammars through transformation,” in Robustness
in Language and Speech Technology, J.-C. Junqua and G. van
Noord, Eds., chapter 6, pp. 153–163, 2000.

[26] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. C. Teneketzis, “Diagnosability of discrete-event systems,”
IEEETransactions onAutomatic Control, vol. 40, no. 9, pp. 1555–
1575, 1995.

[27] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. C. Teneketzis, “Failure diagnosis using discrete-event mod-
els,” IEEE Transactions on Control Systems Technology, vol. 40,
no. 2, pp. 105–124, 1996.

[28] T. Jeron, H.Marchand, S. Pinchinat, andM.-O. Cordier, “Super-
vision patterns in discrete event systems diagnosis,” in Proceed-
ings of the 8th Workshop on Discrete Event Systems, 2006.

10 Journal of Applied Mathematics

[29] S. Jiang, R. Kumar, and H. E. Garcia, “Optimal sensor selec-
tion for discrete-event systems with partial observation,” IEEE
Transactions on Automatic Control, vol. 48, no. 3, pp. 369–381,
2003.

[30] T.-S. Yoo and S. Lafortune, “NP-completeness of sensor selec-
tion problems arising in partially observed discrete-event sys-
tems,” IEEE Transactions on Automatic Control, vol. 47, no. 9,
pp. 1495–1499, 2002.

[31] A. Carayol and S. Wöhrle, “The Caucal hierarchy of infinite
graphs in terms of logic and higher-order pushdown automata,”
in Proceedings of the Foundations of Software Technology and
Theoretical Computer Science, vol. 2914 of Lecture Notes in
Computer Science, pp. 112–123, 2003.

[32] T. Knapik, D. Niwinski, and P. Urzyczyn, “Higher-order push-
down trees are easy,” in Proceedings of the 5th International
Conference on Foundations of Software Science andComputation
Structures, vol. 2303 of Lecture Notes in Computer Science, pp.
205–222, 2002.

[33] W. Qiu and R. Kumar, “Decentralized failure diagnosis of dis-
crete event systems,” IEEE Transactions on Systems, Man and
Cybernetics A, vol. 36, no. 2, pp. 384–395, 2006.

[34] S. Chédor, C.Morvan, S. Pinchinat, andH.Marchand, “Analysis
of partially observed recursive tile systems,” in Proceedings of the
11th International Workshop on Discrete Event Systems, pp. 265–
271, 2012.

