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We will apply the fixed point method for proving the generalized Hyers-Ulam stability of the integral equation
(1/2𝑐) ∫

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑢(𝜏, 𝑡
0
)𝑑𝜏 = 𝑢(𝑥, 𝑡) which is strongly related to the wave equation.

1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the
mathematics club of the University of Wisconsin in which he
discussed a number of important unsolved problems. Among
those was the question concerning the stability of group
homomorphisms:

Let 𝐺
1
be a group and let 𝐺

2
be a metric group with

the metric 𝑑(⋅, ⋅). Given 𝜀 > 0, does there exist a 𝛿 >
0 such that if a function ℎ : 𝐺

1
→ 𝐺

2
satisfies the

inequality 𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺
1
,

then there exists a homomorphism 𝐻 : 𝐺
1
→ 𝐺

2

with 𝑑(ℎ(𝑥),𝐻(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐺
1
?

The case of approximately additive functions was solved
by Hyers [2] under the assumption that 𝐺

1
and 𝐺

2
are the

Banach spaces. Indeed, he proved that each solution of the
inequality ‖𝑓(𝑥+𝑦)−𝑓(𝑥)−𝑓(𝑦)‖ ≤ 𝜀, for all 𝑥 and 𝑦, can be
approximated by an exact solution, say an additive function.
In this case, the Cauchy additive functional equation, 𝑓(𝑥 +
𝑦) = 𝑓(𝑥) + 𝑓(𝑦), is said to have the Hyers-Ulam stability.

Rassias [3] attempted to weaken the condition for the
bound of the norm of the Cauchy difference as follows:

󵄩󵄩󵄩󵄩𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜀 (‖𝑥‖

𝑝

+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝

) (1)

and proved the Hyers theorem. That is, Rassias proved the
generalized Hyers-Ulam stability (or Hyers-Ulam-Rassias
stability) of the Cauchy additive functional equation. (Aoki

[4] has provided a proof of a special case of Rassias’ theorem
just for the stability of the additive function. Aoki did not
prove the stability of the linear function, which was implied
by Rassias’ theorem.) Since then, the stability of several
functional equations has been extensively investigated [5–12].

The terminologies generalized Hyers-Ulam stability,
Hyers-Ulam-Rassias stability, and Hyers-Ulam stability can
also be applied to the case of other functional equations,
differential equations, and various integral equations.

Let 𝑐 and 𝑡
0
be fixed real numbers with 𝑐 > 0. For any

differentiable function ℎ : R ×R → C, the function defined
as

𝑢 (𝑥, 𝑡) :=
1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

ℎ (𝜏, 𝑡
0
) 𝑑𝜏 (2)

is a solution of the wave equation

𝑢
𝑡𝑡
(𝑥, 𝑡) = 𝑐

2

𝑢
𝑥𝑥
(𝑥, 𝑡) , (3)

as we see

𝑢
𝑡
(𝑥, 𝑡) =

1

2𝑐

𝜕

𝜕𝑡
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

ℎ (𝜏, 𝑡
0
) 𝑑𝜏

=
1

2
ℎ (𝑥 + 𝑐𝑡, 𝑡

0
) +

1

2
ℎ (𝑥 − 𝑐𝑡, 𝑡

0
) ,

𝑢
𝑡𝑡
(𝑥, 𝑡) =

𝑐

2
ℎ
𝑥
(𝑥 + 𝑐𝑡, 𝑡

0
) −

𝑐

2
ℎ
𝑥
(𝑥 − 𝑐𝑡, 𝑡

0
) ,
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𝑢
𝑥
(𝑥, 𝑡) =

1

2𝑐
ℎ (𝑥 + 𝑐𝑡, 𝑡

0
) −

1

2𝑐
ℎ (𝑥 − 𝑐𝑡, 𝑡

0
) ,

𝑢
𝑥𝑥
(𝑥, 𝑡) =

1

2𝑐
ℎ
𝑥
(𝑥 + 𝑐𝑡, 𝑡

0
) −

1

2𝑐
ℎ
𝑥
(𝑥 − 𝑐𝑡, 𝑡

0
) ,

(4)

from which we know that 𝑢(𝑥, 𝑡) satisfies the wave equation
(3).

Conversely, we know that every solution 𝑢 : R ×R → C

of the wave equation (3) can be expressed by

𝑢 (𝑥, 𝑡) = 𝑓 (𝑥 + 𝑐𝑡) + 𝑔 (𝑥 − 𝑐𝑡) , (5)

where 𝑓, 𝑔 : R × R → C are arbitrary twice differentiable
functions. If these 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) satisfy

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑓 (𝜏) 𝑑𝜏 = 𝑓 (𝑥 + 𝑐𝑡) ,

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑔 (𝜏) 𝑑𝜏 = 𝑔 (𝑥 − 𝑐𝑡)

(6)

for all 𝑥, 𝑡 ∈ R, then 𝑢(𝑥, 𝑡) expressed by (5) satisfies the
integral equation (7). These facts imply that the integral
equation (7) is strongly connectedwith thewave equation (3).

Cădariu and Radu [13] applied the fixed point method to
the investigation of the Cauchy additive functional equation.
Using such a clever idea, they could present another proof for
the Hyers-Ulam stability of that equation [14–19].

In this paper, we introduce the integral equation:

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑢 (𝜏, 𝑡
0
) 𝑑𝜏 = 𝑢 (𝑥, 𝑡) , (7)

which may be considered as a special form of (2), and prove
the generalized Hyers-Ulam stability of the integral equation
(7) by using ideas from [13, 15, 19, 20]. More precisely, assume
that 𝜑(𝑥, 𝑡) is a given function and 𝑢(𝑥, 𝑡) is an arbitrary and
continuous function which satisfies the integral inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑢 (𝜏, 𝑡
0
) 𝑑𝜏 − 𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜑 (𝑥, 𝑡) . (8)

If there exist a function 𝑢
0
(𝑥, 𝑡) and a constant 𝐶 > 0 such

that

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑢
0
(𝜏, 𝑡
0
) 𝑑𝜏 = 𝑢

0
(𝑥, 𝑡) ,

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝜑 (𝑥, 𝑡) ,

(9)

then we say that the integral equation (7) has the generalized
Hyers-Ulam stability.

2. Preliminaries

For a nonempty set 𝑋, we introduce the definition of the
generalized metric on 𝑋. A function 𝑑 : 𝑋 × 𝑋 → [0,∞]

is called a generalized metric on𝑋 if and only if 𝑑 satisfies

(𝑀
1
) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;

(𝑀
2
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

(𝑀
3
) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

We remark that the only one difference of the generalized
metric from the usual metric is that the range of the former
is permitted to include the infinity.

We now introduce one of fundamental results of fixed
point theory. For the proof, we refer to [21].This theoremwill
play an important role in proving our main theorems.

Theorem 1. Let (𝑋, 𝑑) be a generalized complete metric space.
Assume that Λ : 𝑋 → 𝑋 is a strictly contractive operator
with the Lipschitz constant 𝐿 < 1. If there exists a nonnegative
integer 𝑘 such that 𝑑(Λ𝑘+1𝑥, Λ𝑘𝑥) < ∞ for some 𝑥 ∈ 𝑋, then
the following are true:

(a) the sequence {Λ𝑛𝑥} converges to a fixed point 𝑥∗ of Λ;
(b) 𝑥∗ is the unique fixed point of Λ in

𝑋
∗

= {𝑦 ∈ 𝑋 | 𝑑 (Λ
𝑘

𝑥, 𝑦) < ∞} ; (10)

(c) if 𝑦 ∈ 𝑋∗, then

𝑑 (𝑦, 𝑥
∗

) ≤
1

1 − 𝐿
𝑑 (Λ𝑦, 𝑦) . (11)

3. The Generalized Hyers-Ulam Stability

In the following theorem, for given real numbers 𝑎, 𝑏, 𝑐, and
𝑡
0
satisfying 𝑐 > 0, 𝑡

0
> 0, and 𝑎 + 𝑐𝑡

0
< 𝑏 − 𝑐𝑡

0
, let 𝐼 := [𝑎, 𝑏],

𝑇 := (0, 𝑡
0
], and 𝐼

0
:= [𝑎 + 𝑐𝑡

0
, 𝑏 − 𝑐𝑡

0
] be finite intervals.

Assume that 𝐿 and𝑀 are positive constants with 0 < 𝐿 < 1.
Moreover, let 𝜑 : 𝐼 × 𝑇 → (0, 1] be a continuous function
satisfying

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝜑 (𝜏, 𝑡
0
) 𝑑𝜏 ≤ 𝐿𝜑 (𝑥, 𝑡) (12)

for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇.

We denote by 𝑋 the set of all functions 𝑓 : 𝐼 × 𝑇 → C

with the following properties:

(a) 𝑓(𝑥, 𝑡) is continuous for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇;

(b) 𝑓(𝑥, 𝑡) = 0 for all 𝑥 ∈ 𝐼 \ 𝐼
0
and 𝑡 ∈ 𝑇;

(c) |𝑓(𝑥, 𝑡)| ≤ 𝑀𝜑(𝑥, 𝑡) for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇.

Moreover, we introduce a generalized metric on𝑋 as follows:

𝑑 (𝑓, 𝑔) := inf {𝐶 ∈ [0,∞] | 󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡) − 𝑔 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

≤ 𝐶𝜑 (𝑥, 𝑡) ∀𝑥 ∈ 𝐼
0
, 𝑡 ∈ 𝑇} .

(13)

Theorem 2. If a function 𝑢 ∈ 𝑋 satisfies the integral ine-
quality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑢 (𝜏, 𝑡
0
) 𝑑𝜏 − 𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜑 (𝑥, 𝑡) (14)
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for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇, then there exists a unique function

𝑢
0
∈ 𝑋 which satisfies

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑢
0
(𝜏, 𝑡
0
) 𝑑𝜏 = 𝑢

0
(𝑥, 𝑡) , (15)

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤

1

1 − 𝐿
𝜑 (𝑥, 𝑡) (16)

for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇.

Proof. First, we show that (𝑋, 𝑑) is complete. Let {ℎ
𝑛
} be a

Cauchy sequence in (𝑋, 𝑑). Then, for any 𝜀 > 0 there exists
an integer 𝑁

𝜀
> 0 such that 𝑑(ℎ

𝑚
, ℎ
𝑛
) ≤ 𝜀 for all 𝑚, 𝑛 ≥ 𝑁

𝜀
.

In view of (13), we have

∀𝜀 > 0, ∃𝑁
𝜀
∈ N, ∀𝑚, 𝑛 ≥ 𝑁

𝜀
, ∀𝑥 ∈ 𝐼

0
, ∀𝑡 ∈ 𝑇:

󵄨󵄨󵄨󵄨ℎ𝑚 (𝑥, 𝑡) − ℎ𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜀𝜑 (𝑥, 𝑡) .

(17)

If 𝑥 and 𝑡 are fixed, (17) implies that {ℎ
𝑛
(𝑥, 𝑡)} is a Cauchy

sequence in C. Since C is complete, {ℎ
𝑛
(𝑥, 𝑡)} converges for

any 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇. Thus, considering (b), we can define a

function ℎ : 𝐼 × 𝑇 → C by

ℎ (𝑥, 𝑡) := lim
𝑛→∞

ℎ
𝑛
(𝑥, 𝑡) , (𝑥 ∈ 𝐼, 𝑡 ∈ 𝑇) . (18)

Since 𝜑 is bounded on 𝐼
0
× 𝑇, (17) implies that {ℎ

𝑛
|
𝐼0×𝑇
}

converges uniformly to ℎ|
𝐼0×𝑇

in the usual topology of C.
Hence, ℎ is continuous and |ℎ| is bounded on 𝐼

0
× 𝑇 with an

upper bound𝑀𝜑(𝑥, 𝑡); that is, ℎ ∈ 𝑋. (It has not been proved
yet that {ℎ

𝑛
} converges to ℎ in (𝑋, 𝑑).)

If we let𝑚 increase to infinity, it follows from (17) that

∀𝜀 > 0, ∃𝑁
𝜀
∈ N, ∀𝑛 ≥ 𝑁

𝜀
, ∀𝑥 ∈ 𝐼

0
, ∀𝑡 ∈ 𝑇:

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑡) − ℎ𝑛 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜀𝜑 (𝑥, 𝑡) .

(19)

By considering (13), we get

∀𝜀 > 0, ∃𝑁
𝜀
∈ N, ∀𝑛 ≥ 𝑁

𝜀
: 𝑑 (ℎ, ℎ

𝑛
) ≤ 𝜀. (20)

This implies that the Cauchy sequence {ℎ
𝑛
} converges to ℎ in

(𝑋, 𝑑). Hence, (𝑋, 𝑑) is complete.
We now define an operator Λ : 𝑋 → 𝑋 by

(Λℎ) (𝑥, 𝑡) :=

{{

{{

{

1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

ℎ (𝜏, 𝑡
0
) 𝑑𝜏 (𝑥 ∈ 𝐼

0
, 𝑡 ∈ 𝑇) ,

0 (otherwise)
(21)

for all ℎ ∈ 𝑋. Then, according to the fundamental theorem of
calculus, Λℎ is continuous on 𝐼

0
× 𝑇. Furthermore, it follows

from (12), (c), and (21) that

|(Λℎ) (𝑥, 𝑡)| ≤
1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

󵄨󵄨󵄨󵄨ℎ (𝜏, 𝑡0)
󵄨󵄨󵄨󵄨 𝑑𝜏

≤
1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑀𝜑(𝜏, 𝑡
0
) 𝑑𝜏

≤ 𝑀𝐿𝜑 (𝑥, 𝑡) < 𝑀𝜑 (𝑥, 𝑡)

(22)

for any 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇. Hence, we conclude that Λℎ ∈ 𝑋.

We assert that Λ is strictly contractive on 𝑋. Given any
𝑓, 𝑔 ∈ 𝑋, let 𝐶

𝑓𝑔
∈ [0,∞] be an arbitrary constant with

𝑑(𝑓, 𝑔) ≤ 𝐶
𝑓𝑔
. That is,

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡) − 𝑔 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑓𝑔𝜑 (𝑥, 𝑡) (23)

for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇. Then, it follows from (12), (21), and

(23) that
󵄨󵄨󵄨󵄨(Λ𝑓) (𝑥, 𝑡) − (Λ𝑔) (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

=
1

2𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

(𝑓 (𝜏, 𝑡
0
) − 𝑔 (𝜏, 𝑡

0
)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑡0) − 𝑔 (𝜏, 𝑡0)
󵄨󵄨󵄨󵄨 𝑑𝜏

≤
𝐶
𝑓𝑔

2𝑐
∫
𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝜑 (𝜏, 𝑡
0
) 𝑑𝜏

≤ 𝐿𝐶
𝑓𝑔
𝜑 (𝑥, 𝑡)

(24)

for all 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇. That is, 𝑑(Λ𝑓, Λ𝑔) ≤ 𝐿𝐶

𝑓𝑔
. Hence,

we may conclude that 𝑑(Λ𝑓, Λ𝑔) ≤ 𝐿𝑑(𝑓, 𝑔) for any 𝑓, 𝑔 ∈ 𝑋
and we note that 0 < 𝐿 < 1.

We prove that the distance between the first two succes-
sive approximations ofΛ is finite. Let ℎ

0
∈ 𝑋 be given. By (b),

(c), and (13) and from the fact that Λℎ
0
∈ 𝑋, we have

󵄨󵄨󵄨󵄨(Λℎ0) (𝑥, 𝑡) − ℎ0 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨(Λℎ0) (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨ℎ0 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨

≤ 2𝑀𝜑 (𝑥, 𝑡)
(25)

for any 𝑥 ∈ 𝐼
0
and 𝑡 ∈ 𝑇. Thus, (13) implies that

𝑑 (Λℎ
0
, ℎ
0
) ≤ 2𝑀 < ∞. (26)

Therefore, it follows fromTheorem 1(a) that there exists a
𝑢
0
∈ 𝑋 such that Λ𝑛ℎ

0
→ 𝑢
0
in (𝑋, 𝑑) and Λ𝑢

0
= 𝑢
0
.

In view of (c) and (13), it is obvious that {𝑓 ∈ 𝑋 |

𝑑(ℎ
0
, 𝑓) < ∞} = 𝑋, where ℎ

0
was chosen with the property

(26). Now,Theorem 1(b) implies that 𝑢
0
is the unique element

of 𝑋 which satisfies (Λ𝑢
0
)(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) for any 𝑥 ∈ 𝐼

0
and

𝑡 ∈ 𝑇.
Finally,Theorem 1(c), together with (13) and (14), implies

that

𝑑 (𝑢, 𝑢
0
) ≤

1

1 − 𝐿
𝑑 (Λ𝑢, 𝑢) ≤

1

1 − 𝐿
, (27)

since (14) means that 𝑑(Λ𝑢, 𝑢) ≤ 1. In view of (13), we can
conclude that (16) holds for all 𝑥 ∈ 𝐼

0
and 𝑡 ∈ 𝑇.

Remark 3. Even though condition (12) seems to be strict, the
condition can be satisfied provided that 𝑎 and 𝑏 are chosen so
that |𝑏 − 𝑎| is small enough and 𝑐 is a large number.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.



4 Abstract and Applied Analysis

Acknowledgments

The author would like to express his cordial thanks to the
referees for useful remarks. This research was supported
by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by theMinistry
of Education (no. 2013R1A1A2005557).

References

[1] S.M.Ulam,ACollection ofMathematical Problems, Interscience
Publishers, New York, NY, USA, 1960.

[2] D. H. Hyers, “On the stability of the linear functional equation,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 27, no. 4, pp. 222–224, 1941.

[3] T. M. Rassias, “On the stability of the linear mapping in Banach
spaces,” Proceedings of the American Mathematical Society, vol.
72, pp. 297–300, 1978.

[4] T. Aoki, “On the stability of the linear transformation in Banach
spaces,” Journal of the Mathematical Society of Japan, vol. 2, no.
1-2, pp. 64–66, 1950.
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