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A delayed modified Leslie-Gower predator prey system with nonlinear harvesting is considered. The existence conditions that an
equilibrium is Bogdanov-Takens (BT) or triple zero singularity of the system are given. By using the center manifold reduction, the
normal form theory, and the formulae developed by Xu and Huang, 2008 and Qiao et al., 2010, the normal forms and the versal
unfoldings for this singularity are presented. The Hopf bifurcation of the system at another interior equilibrium is analyzed by
taking delay (small or large) as bifurcation parameter.

1. Introduction

For a more detailed study on the properties of the predator
prey systems, the multiple bifurcations for some systems
(ODE) withmore interior equilibria are investigated bymany
authors, see [1–4] for example. To deal with this type of
systems, the more difficult problem is how to obtain the
normal form of the system at its degenerate equilibrium, that
is, BT bifurcation.

When introducing the time delay into this type of sys-
tems, using themethods developed by [5], the authors in [6, 7]
have researched the BT bifurcation of some predator prey
systems (DDE). Their results show that time delay may have
an effect or not on the BT bifurcation.

Recently, papers [8–10] have considered the triple zero
bifurcation of some delay differential equations, depending
on the parameters in the original system; some interesting
bifurcation results are obtained. But we find that there are
few results about the triple zero bifurcation for predator prey
systems.

Summarizing the above references, we will consider the
following predator prey system with Michaelis-Menten type
(nonlinear) prey harvesting:

𝑥̇ = 𝑟𝑥 (1 −

𝑥

𝐾

) −

𝑎

1
𝑥𝑦

𝑛 + 𝑥

−

𝑞𝐸𝑥

𝑘

1
𝐸 + 𝑘

2
𝑥

,

̇𝑦 = 𝑠

1
𝑦(1 −

𝑎

2
𝑦 (𝑡 − 𝜏)

𝑛 + 𝑥 (𝑡 − 𝜏)

) ,

(1)

where 𝑥 and 𝑦 denote the prey and predator populations,
respectively. 𝜏 represents the negative feedback of the preda-
tor’s density. For complete reason, we give the biological
meaning of the parameters, one can be seeing them in
[11]. 𝑟 and 𝐾 are intrinsic growth rate and environmen-
tal carrying capacity for the prey, respectively. 𝑎

1
is the

maximum value of the per capita reduction rate of prey,
𝑛 measures the extent to which the environment provides
protection to prey and predator respectively, 𝑠

1
measures

the growth rate of the predator species, and 𝑠
1
𝑎

2
is the

maximum value of the per capita reduction rate of predator.
𝑝(𝑥) = 𝑞𝐸𝑥/(𝑘

1
𝐸 + 𝑘

2
𝑥) represents Michaelis-Menten type

harvesting, 𝑞 is the catchability coefficient, 𝐸 is the effort
applied to harvest the prey species, and 𝑘

1
and 𝑘
2
are suitable

constants.
The authors in [12, 13] have studied system (1) with-

out prey harvesting 𝑝(𝑥), respectively, in [12], the global
stability and persistence of the system are investigated. In
[13], by using the Hopf bifurcation theorem and taking
the delay as a parameter of bifurcation for small and large
cases, the existence of the bifurcated limit cycle around a
boundary equilibrium or an interior equilibrium is mainly
considered.

For system (1) with 𝜏 = 0, the authors in [11] have
given detailed analysis about the existence of the multiple
bifurcations (including BT bifurcation) depending on the
parameters of the system.



2 Abstract and Applied Analysis

For computation simplicity, we first rescale system (1).
Let 𝑡 = 𝑟𝑡, 𝑥(𝑡) = 𝑥(𝑡)/𝐾, 𝑦(𝑡) = 𝑎

1
𝑦(𝑡)/𝐾, and 𝜏 = 𝑟𝜏;

then dropping the bars we obtain

𝑥̇ = 𝑥 (1 − 𝑥 −

𝛼𝑦

𝑚 + 𝑥

−

ℎ

𝑐 + 𝑥

) ,

̇𝑦 = 𝜌𝑦(1 −

𝛽𝑦 (𝑡 − 𝜏)

𝑚 + 𝑥 (𝑡 − 𝜏)

) ,

(2)

where 𝛼 = 1/𝑟, 𝛽 = 𝑎
2
/𝑎

1
, 𝑚 = 𝑛/𝐾, 𝜌 = 𝑠

1
/𝑟, ℎ = 𝑞𝐸/𝑟𝑘

2
𝐾,

and 𝑐 = 𝑘
1
𝐸/𝑘

2
𝐾.

System (2) with initial conditions is

̃

𝜙 (𝜗) ⩾ 0,
̃
𝜓 (𝜗) ⩾ 0,

𝜗 ∈ [−𝜏, 0) ,

̃

𝜙 (0) > 0,
̃
𝜓 (0) > 0,

(3)

where ̃𝜙(𝜗) and ̃𝜓(𝜗) are all continuous bounded functions in
the interval [−𝜏, 0).

From [11], we know that (2) has interior equilibrium 𝐸 =
(𝑥, 𝑦) if

ℎ = ℎ

∗
=

1

4

(1 −

𝛼

𝛽

+ 𝑐)

2

= (𝑐 + 𝑥)

2
,

𝛼

𝛽

+ 𝑐 < 1,
(4)

where 𝑥 = (1/2)(1 − 𝑐 − 𝛼/𝛽), 𝑦 = (𝑚 + 𝑥)/𝛽 and interior
equilibrium 𝐸

∗
= (𝑥

∗
, 𝑦

∗
) if ℎ < ℎ∗, where 𝑥∗ = (1/2)(1 −

𝑐 − 𝛼/𝛽 +
√
Δ), 𝑦∗ = (𝑚 + 𝑥∗)/𝛽, and Δ = (𝛼/𝛽 + 𝑐 − 1)2 −

4𝑐(𝛼/𝛽 + ℎ/𝑐 − 1).
In this paper, for system (2), we will mainly consider the

BT and triple zero bifurcations at 𝐸 and the Hopf bifurcation
at 𝐸∗. It is easy to see that this system is with six parameters
which will let our work become more challenging. When
dealing with the BT and triple bifurcations of the delay
systems, the core problem is to change delay systems as
ordinary differential systems (ODEs).

The concrete organization of the paper is as follows:
in Section 2, we will give the conditions under which the
equilibrium 𝐸 is a BT singularity, and a universal unfolding
will be exhibited; in Section 3, when 𝐸 is a triple zero, the
universal unfolding will be presented, and in Section 4, some
Hopf bifurcation results at 𝐸∗ will be obtained.

2. Bogdanov-Takens Bifurcation

System (2) also can be written as

𝑥̇ = 𝜏𝑥(1 − 𝑥 −

𝛼𝑦

𝑚 + 𝑥

−

ℎ

𝑐 + 𝑥

) ,

̇𝑦 = 𝜏𝜌𝑦(1 −

𝛽𝑦 (𝑡 − 1)

𝑚 + 𝑥 (𝑡 − 1)

) .

(5)

Linearizing system (5) at 𝐸 yields the following linear system

𝑥̇

1
=

𝜏𝛼𝑥

𝛽 (𝑚 + 𝑥)

𝑥

1
(𝑡) −

𝜏𝛼𝑥

𝑚 + 𝑥

𝑥

2
(𝑡) ,

𝑥̇

2
=

𝜏𝜌

𝛽

𝑥

1
(𝑡 − 1) − 𝜏𝜌𝑥

2
(𝑡 − 1) ,

(6)

the corresponding characteristic equation is

𝐹 (𝜆) = 𝜆

2
+ (𝜏𝜌𝑒

−𝜆
−

𝜏𝛼𝑥

𝛽 (𝑚 + 𝑥)

) 𝜆. (7)

Evidently, 𝜆 = 0 is a double zero eigenvalue if

𝜏 ̸=

1

𝜌

, 𝜌 =

𝛼𝑥

𝛽 (𝑚 + 𝑥)

; (8)

𝜆 = 0 is a triple zero eigenvalue if

𝜏 =

1

𝜌

, 𝜌 =

𝛼𝑥

𝛽 (𝑚 + 𝑥)

. (9)

It is easy to prove that in the above two cases the rest
eigenvalues all have negative real parts.

Under the conditions (4) and (8), let 𝑥
1
= 𝑥 − 𝑥, and let

𝑥

2
= 𝑦 − 𝑦; then the Taylor expansion system (5) at 𝐸 is

𝑥̇

1
= 𝜏𝜌𝑥

1
(𝑡) − 𝜏𝛽𝜌𝑥

2
(𝑡) + ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(1)

𝑖𝑗
𝑥

𝑖

1
(𝑡) 𝑥

𝑗

2
(𝑡) ,

𝑥̇

2
=

𝜏𝜌

𝛽

𝑥

1
(𝑡 − 1) − 𝜏𝜌𝑥

2
(𝑡 − 1)

+ ∑

𝑖+𝑗+𝑘≥2

1

𝑖!𝑗!𝑘!

𝑓

(2)

𝑖𝑗𝑘
𝑥

𝑖

1
(𝑡 − 1) 𝑥

𝑗

2
(𝑡 − 1) 𝑥

𝑘

2
(𝑡) ,

(10)

where 𝑖, 𝑗, 𝑘 ≥ 0, 𝑓(1)
𝑖𝑗

= (𝜕

𝑖+𝑗
𝑓

(1)
/𝜕

𝑖
𝑥𝜕

𝑗
𝑦)|

(𝑥,𝑦)
, 𝑓(2)
𝑖𝑗𝑘

=

(𝜕

𝑖+𝑗+𝑘
𝑓

(2)
/𝜕

𝑖
𝑥𝜕

𝑗
𝑦𝜕

𝑘
𝑦

0
)|

(𝑥,𝑦)
, 𝑓(1) = 𝜏𝑥(1 − 𝑥 − 𝛼𝑦/(𝑚 + 𝑥) −

ℎ/(𝑐 + 𝑥)), 𝑓(2) = 𝜏𝑦
0
(1 − 𝛽𝑦/(𝑚 + 𝑥)).

In the following, we first give the normal form of the sys-
tem (10) at the singularity (0, 0). Reference [6], we first rewrite
system (10) as ̇

𝑋(𝑡) = 𝐿(𝑋

𝑡
), here 𝑋(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡)),

𝐿(𝜙) = 𝐿 (

𝜙
1
(−1)

𝜙
2
(0)
), and 𝜙 = (𝜙

1
, 𝜙

2
). By the normal form

theory developed by Faria andMagalhaes [5], one can obtain
the center manifold of this system at the origin which is two-
dimensional and system can be reduced to an ODE in the
plane.

Define 𝐴
0
to be the infinitesimal generator of system.

Consider 𝜆 = {0} and let 𝑃 denote the invariant space of
𝐴

0
associated with the eigenvalue 𝜆 = 0, using the formal

adjoint theory in [5], the phase space 𝐶
1
can be decomposed

by 𝜆 as 𝐶
1
= 𝑃 ⊕ 𝑄. Let Φ and Ψ be the bases for 𝑃 and 𝑃∗,

respectively, and be let themnormalized such that ⟨Ψ,Φ⟩ = 𝐼,
̇

Φ = Φ𝐽,and ̇

Ψ = −𝐽Ψ, where Φ and Ψ are 2 × 2 matrices,
where 𝐽 = ( 0 1

0 0
).

Next, we will find the Φ(𝜃) and Ψ(𝑠) based on the
techniques developed by [14].

Lemma 1 (see Xu and Huang [14]). The bases of 𝑃 and their
dual space 𝑃∗ have the following representations:

𝑃 = spanΦ, Φ (𝜃) = (𝜑

1
(𝜃) , 𝜑

2
(𝜃)) , −1 ≤ 𝜃 ≤ 0,

𝑃

∗
= spanΨ, Ψ (𝑠) = col (𝜓

1
(𝑠) , 𝜓

2
(𝑠)) , 0 ≤ 𝑠 ≤ 1,

(11)
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where 𝜑
1
(𝜃) = 𝜑

0

1
∈ 𝑅

𝑛
\ {0}, 𝜑

2
(𝜃) = 𝜑

0

2
+ 𝜑

0

1
𝜃, 𝜑

0

2
∈ 𝑅

𝑛, and
𝜓

2
(𝑠) = 𝜓

0

2
∈ 𝑅

𝑛∗
\ {0}, 𝜓

1
(𝑠) = 𝜓

0

1
− 𝑠𝜓

0

2
, 𝜓0
1
∈ 𝑅

𝑛∗, which
satisfy

(1) (𝐴 + 𝐵)𝜑0
1
= 0,

(2) (𝐴 + 𝐵)𝜑0
2
= (𝐵 + 𝐼)𝜑

0

1
,

(3) 𝜓0
2
(𝐴 + 𝐵) = 0,

(4) 𝜓0
1
(𝐴 + 𝐵) = 𝜓

0

2
(𝐵 + 𝐼),

(5) 𝜓0
2
𝜑

0

2
− (1/2)𝜓

0

2
𝐵𝜑

0

1
+ 𝜓

0

2
𝐵𝜑

0

2
= 1,

(6) 𝜓0
1
𝜑

0

2
− (1/2)𝜓

0

1
𝐵𝜑

0

1
+ 𝜓

0

1
𝐵𝜑

0

2
+ (1/6)𝜓

0

2
𝐵𝜑

0

1
−

(1/2)𝜓

0

2
𝐵𝜑

0

2
= 0.

By system (6), we know that

𝐴 = (

𝜏𝛼𝑥

𝛽 (𝑚 + 𝑥)

−

𝜏𝛼𝑥

𝑚 + 𝑥

0 0

) = (

𝜏𝜌 −𝜏𝛽𝜌

0 0

) ,

𝐵 = (

0 0

𝜏𝜌

𝛽

−𝜏𝜌

) .

(12)

By Lemma 1, we have

Φ (𝜃) = (

𝛽

𝛽 [2 − (𝜏𝜌 − 2)

2

]

2𝜏𝜌 (𝜏𝜌 − 1)

+ 𝛽𝜃

1

2 − 𝜏𝜌

2 (𝜏𝜌 − 1)

+ 𝜃

)

≜ (

𝛽 𝑚

1
+ 𝛽𝜃

1 𝑚

2
+ 𝜃

) , −1 ≤ 𝜃 ≤ 0,

Ψ (𝑠) = (

−

𝜏𝜌

𝛽 (1 − 𝜏𝜌)

𝑠 1 −

𝜏𝜌

𝜏𝜌 − 1

𝑠

𝜏𝜌

𝛽 (1 − 𝜏𝜌)

𝜏𝜌

𝜏𝜌 − 1

) , 0 ≤ 𝑠 ≤ 1,

(13)

where𝑚
1
= 𝛽[2−(𝜏𝜌−2)

2
]/2𝜏𝜌(𝜏𝜌−1),𝑚

2
= (2−𝜏𝜌)/2(𝜏𝜌−

1),

Φ (𝜃) 𝑧 = (

𝛽 𝑚

1
+ 𝛽𝜃

1 𝑚

2
+ 𝜃

)(

𝑧

1

𝑧

2

) = (

𝛽𝑧

1
+ (𝑚

1
+ 𝛽𝜃) 𝑧

2

𝑧

1
+ (𝑚

2
+ 𝜃) 𝑧

2

) ,

(14)

therefore,

𝜙

1
(0) = 𝛽𝑧

1
+ 𝑚

1
𝑧

2
, 𝜙

2
(0) = 𝑧

1
+ 𝑚

2
𝑧

2
,

𝜙

1
(−1) = 𝛽𝑧

1
+ (𝑚

1
− 𝛽) 𝑧

2
,

𝜙

2
(−1) = 𝑧

1
+ (𝑚

2
− 1) 𝑧

2
.

(15)

Taking a similar theory in [6], system (6) in the center
manifold is

𝑧̇ = 𝐽𝑧 + Ψ (0) 𝐹 (Φ𝑧) , (16)

where

𝐹 (𝜙) = (

𝜏 ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(1)

𝑖𝑗
[𝜙

1
(0)]

𝑖

[𝜙

2
(0)]

𝑗

𝜏𝜌 ∑

𝑖+𝑗+𝑘≥2

1

𝑖!𝑗!𝑘!

𝑓

(2)

𝑖𝑗𝑘
𝜙

𝑖

1
(−1) 𝜙

𝑗

2
(−1) 𝜙

𝑘

2
(0)

) .

(17)

Using (10) and (15), system (16) also can be written as

𝑧̇

1
= 𝑧

2
+

𝛽 (𝜏𝜌 − 1)

𝜏𝜌 (𝑚 + 𝑥)

𝑧

2

2
+ h.o.t,

𝑧̇

2
= 𝑔

1
𝑧

2

1
+ 𝑔

2
𝑧

1
𝑧

2
+ 𝑔

3
𝑧

2

2
+ h.o.t,

(18)

where 𝑔
1
= −𝜏

2
𝛽𝜌𝑥/(1 − 𝜏𝜌)(𝑐 + 𝑥), 𝑔

2
= 𝜏𝛼𝑚/(1 −

𝜏𝜌)(𝑚 + 𝑥)

2
− 2𝑚

1
𝜌𝜏

2
𝑥/(1 − 𝜏𝜌)(𝑐 + 𝑥), 𝑔

3
= (𝜏𝜌/𝛽(1 −

𝜏𝜌))[𝛼𝑚

1
𝑚/𝜌(𝑚+𝑥)

2
− 𝜏𝑥𝑚

2

1
/(𝑐 + 𝑥)] + 𝛽/(𝑚+𝑥). Through

a series of transformation, system (18) becomes

𝑧̇

1
= 𝑧

2
+ h.o.t,

𝑧̇

2
= 𝑑

1
𝑧

2

1
+ 𝑑

2
𝑧

2

2
+ h.o.t,

(19)

where 𝑑
1
= 𝑔

1
and 𝑑

2
= 𝑔

2
. If 𝑑
1
𝑑

2
̸= 0, we have the following

theorem.

Theorem 2. Let (4), (8), and 𝜏 ̸= 𝛽𝑚(𝑐 + 𝑥)/2𝑚

1
𝑥

2
(𝑚 + 𝑥)

hold. Then, the equilibrium 𝐸 of system (5) is a BT singularity.

Next, we are interested in giving a versal unfolding for
system (5) at BT singularity. Choosing ℎ and 𝜌 as bifurcation
parameters and incorporating ℎ+𝜆

1
and 𝜌+𝜆

2
to system (5),

where 𝜆
1
and 𝜆

2
vary in a small neighborhood of (0, 0), we

obtain

𝑥̇ = 𝜏𝑥(1 − 𝑥 −

𝛼𝑦

𝑚 + 𝑥

−

ℎ + 𝜆

1

𝑐 + 𝑥

) ,

̇𝑦 = 𝜏 (𝜌 + 𝜆

2
) 𝑦 (1 −

𝛽𝑦 (𝑡 − 1)

𝑚 + 𝑥 (𝑡 − 1)

) .

(20)

Let 𝑦
1
= 𝑥−𝑥 and 𝑦

2
= 𝑦−𝑦. Then, system (20) becomes

̇𝑦

1
= −

𝜏𝑥𝜆

1

𝑐 + 𝑥

+ 𝜏 [

𝛼𝑥

𝛽 (𝑚 + 𝑥)

+

𝑥𝜆

1

ℎ

−

𝜆

1

𝑐 + 𝑥

] 𝑦

1
(𝑡)

−

𝜏𝛼𝑥

𝑚 + 𝑥

𝑦

2
(𝑡) + [

𝜏𝛼𝑚

𝛽(𝑚 + 𝑥)

2
+

𝜏 (𝑐𝜆

1
− ℎ𝑥)

ℎ (𝑐 + 𝑥)

] 𝑦

2

1
(𝑡)

−

𝜏𝛼𝑚

(𝑚 + 𝑥)

2
𝑦

1
(𝑡) 𝑦

2
(𝑡) + h.o.t,

̇𝑦

2
= 𝜏 (𝜌

∗
+ 𝜆

2
)

× [

1

𝛽

𝑦

1
(𝑡 − 1) − 𝑦

2
(𝑡 − 1) +

1

𝑚 + 𝑥

𝑦

1
(𝑡 − 1) 𝑦

2
(𝑡)

+

1

𝑚 + 𝑥

𝑦

1
(𝑡 − 1) 𝑦

2
(𝑡 − 1) −

1

𝛽 (𝑚 + 𝑥)

𝑦

2

1
(𝑡 − 1)

−

𝛽

𝑚 + 𝑥

𝑦

2
(𝑡) 𝑦

2
(𝑡 − 1)] + h.o.t.

(21)
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Then, system (21) can be decomposed as

𝑧̇ = 𝐵

1
+ 𝐵

2
𝑧 + Ψ

0
𝐺 (Φ𝑧 + 𝑢) ,

𝑢̇ = 𝐴

𝑄
󸀠𝑢 + (𝐼 − 𝜋)𝑋

0

× [𝐵

0
+ 𝐵

2
(Φ

0
𝑧 + 𝑢 (0)) + 𝐺 (Φ𝑧 + 𝑢)] ,

(22)

where

𝑋

0
(𝜃) = {

𝐼, 𝜃 = 0

0, −1 ≤ 𝜃 < 0,

𝐵

0
= (

−

𝜏𝑥𝜆

1

𝑐 + 𝑥

0

) ,

𝐵

1
= Ψ (0) 𝐵

0
= (

0 1

𝜏𝜌

𝛽 (1 − 𝜏𝜌)

𝜏𝜌

𝜏𝜌 − 1

)(

−

𝜏𝑥𝜆

1

𝑐 + 𝑥

0

)

= (

0

−

𝜏

2
𝜌𝑥𝜆

1

𝛽 (𝑐 + 𝑥) (1 − 𝜏𝜌)

) ,

𝐺 (𝜙)

= (

𝜏 ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑔

(1)

𝑖𝑗
[𝜙

1
(0)]

𝑖

[𝜙

2
(0)]

𝑗

𝜏 (𝜌 + 𝜆

2
) ∑

𝑖+𝑗+𝑘≥2

1

𝑖!𝑗!𝑘!

𝑔

(2)

𝑖𝑗𝑘
𝜙

𝑖

1
(−1) 𝜙

𝑗

2
(−1) 𝜙

𝑘

2
(0)

) ,

𝑔

(1)

𝑖𝑗
=

𝜕

𝑖+𝑗
𝑔

(1)

𝜕

𝑖
𝑥𝜕

𝑗
𝑦

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨(𝑥,𝑦,𝜆
1
)

, 𝑔

(2)

𝑖𝑗𝑘
=

𝜕

𝑖+𝑗+𝑘
𝑓

(2)

𝜕

𝑖
𝑥𝜕

𝑗
𝑦𝜕

𝑘
𝑦

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨(𝑥,𝑦)

,

𝑔

(1)
= 𝑥(1 − 𝑥 −

𝛼𝑦

𝑚 + 𝑥

−

ℎ

∗
+ 𝜆

1

𝑐 + 𝑥

) ,

𝑔

(2)
= 𝑦

0
(1 −

𝛽𝑦

𝑚 + 𝑥

) ,

𝐵

2
= (

0 1 +

𝜆

2

𝜌

𝜏

2
𝜌𝑐𝜆

1

ℎ (𝜏𝜌 − 1)

𝜏

2
𝜌

𝜏𝜌 − 1

(

𝑐𝑚

1
𝜆

1

ℎ𝛽

+

𝜆

2

𝜏𝜌

)

) .

(23)

Then, the normal form of system (21) at𝐸 is 𝑧̇ = 𝐵
1
+𝐵

2
𝑧+

Ψ(0)𝐺(Φ𝑧); that is,

𝑧̇

1
= 𝑧

2
+

𝜆

2

𝜌

𝑧

2
+

𝛽 (𝜌 + 𝜆

2
) (𝜏𝜌 − 1)

𝜏𝜌

2
(𝑚 + 𝑥)

𝑧

2

2
+ h.o.t,

𝑧̇

2
= −

𝜏

2
𝑥𝜌𝜆

1

𝛽 (𝑐 + 𝑥) (1 − 𝜏𝜌)

+

𝜏

2
𝑐𝜌𝜆

1

ℎ (𝜏𝜌 − 1)

𝑧

1

+

𝜏

2
𝜌

𝜏𝜌 − 1

(

𝑐𝑚

1
𝜆

1

ℎ𝛽

+

𝜆

2

𝜏𝜌

) 𝑧

2
+ 𝑃

1
𝑧

2

1

+ 𝑃

2
𝑧

1
𝑧

2
+ 𝑃

3
𝑧

2

2
+ h.o.t,

(24)

where

𝑃

1
=

𝜏

2
𝛽𝜌 (𝑐𝜆

1
− ℎ𝑥)

ℎ (1 − 𝜏𝜌) (𝑐 + 𝑥)

,

𝑃

2
=

𝜏𝛼𝑚

(1 − 𝜏𝜌) (𝑚 + 𝑥)

2
+

2𝑚

1
𝜌𝜏

2
(𝑐𝜆

1
− ℎ𝑥)

ℎ (1 − 𝜏𝜌) (𝑐 + 𝑥)

,

𝑃

3
=

𝜏𝜌

𝛽 (1 − 𝜏𝜌)

[

𝛼𝑚

1
𝑚

𝜌(𝑚 + 𝑥)

2
+

𝜏 (𝑐𝜆

1
− ℎ𝑥)𝑚

2

1

ℎ (𝑐 + 𝑥)

]

+

𝛽 (𝜌 + 𝜆

2
)

𝜌 (𝑚 + 𝑥)

.

(25)

Following the normal form formula in Kuznetsov [15],
system (24) can be reduced to

𝑧̇

1
= 𝑧

2
+ h.o.t,

𝑧̇

2
= 𝛾

1
+ 𝛾

2
𝑧

1
+ 𝑑

1
𝑧

2

1
+ 𝑑

2
𝑧

1
𝑧

2
+ h.o.t,

(26)

where

𝛾

1
= −

𝜏

2
𝑥𝜌𝜆

1

𝛽 (𝑐 + 𝑥) (1 − 𝜏𝜌)

,

𝛾

2
= [

2𝜏

2
𝑥

𝑐 + 𝑥

(

2𝛽

2
𝑥

2
− 𝜏𝑐𝑚

1
𝛼𝑥

2
(𝑐 + 𝑥)

𝜌𝑚𝛽

2
(𝑐 + 𝑥) − 2𝑚

1
𝜏𝛼𝑥

3
)

+

𝜌

3
𝜏

3
(𝑚

1
𝑚𝛽

2
− 𝜏𝑚

2

1
𝛼𝑥

3
(𝑐 + 𝑥))

𝛼𝑥𝛽

2
(1 − 𝜏𝜌)

2

(𝑐 + 𝑥)

] 𝜆

1

−

2𝛼𝜏

2
𝑥

3

𝜌 (1 − 𝜏𝜌) [𝑚𝛽 (𝑐 + 𝑥) − 2𝑚

1
𝜏𝑥

2
(𝑚 + 𝑥)]

𝜆

2
.

(27)

Then, system (5) exists in the following bifurcation curves
in a small neighborhood of the origin in the (𝜆

1
, 𝜆

2
) plane.

Theorem 3. Let (4), (8), and 𝜏 ̸= 𝛽𝑚(𝑐 + 𝑥)/2𝑚

1
𝑥

2
(𝑚 + 𝑥)

hold. System (5) admits the following bifurcations:

(i) a saddle-node bifurcation curve SN = {(𝜆

1
, 𝜆

2
); 𝛾

1
=

(1/4𝑑

1
)𝛾

2

2
};

(ii) a Hopf bifurcation curve 𝐻 = {(𝜆

1
, 𝜆

2
); 𝜆

2
= 0, 𝛾

2
<

0};

(iii) a homoclinic bifurcation curve 𝐻𝐿 = {(𝜆
1
, 𝜆

2
); 𝛾

1
=

−(6/25𝑑

1
)𝛾

2

2
, 𝛾

2
< 0}.

3. Triple-Zero Bifurcation

From Section 2, we know that under the conditions (4) and
(9) the equilibrium 𝐸 of system (5) is a triple zero singularity.
In the following reference, from the work of [8, 9] we will give
the triple zero bifurcation at 𝐸.
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Let 𝑥
1
= 𝑥 − 𝑥 and 𝑥

2
= 𝑦 − 𝑦; then, system (5) becomes

𝑥̇

1
= 𝜏

[

[

(1 − 2𝑥 −

𝛼𝑚

𝛽 (𝑚 + 𝑥)

−

ℎ𝑐

(𝑐 + 𝑥)

2
)𝑥

1
(𝑡)

−𝜌𝛽𝑥

2
(𝑡) + ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(1)

𝑖𝑗
𝑥

𝑖

1
(𝑡) 𝑥

𝑗

2
(𝑡)

]

]

,

𝑥̇

2
= 𝜏𝜌

[

[

1

𝛽

𝑥

1
(𝑡 − 1) − 𝑥

2
(𝑡 − 1)

+ ∑

𝑖+𝑗+𝑘≥2

1

𝑖!𝑗!𝑘!

𝑓

(2)

𝑖𝑗𝑘
𝑥

𝑖

1
(𝑡 − 1) 𝑥

𝑗

2
(𝑡 − 1) 𝑥

𝑘

2
(𝑡)

]

]

.

(28)

To determine a versal unfolding for the original system
(28) at 𝐸, we choose 𝜏, 𝜌, and ℎ as bifurcation parameters,
and let them become 𝜏 + 𝜇

1
, 𝜌 + 𝜇

2
, and ℎ + 𝜇

3
, respectively,

where 𝜇
1
, 𝜇

2
, and 𝜇

3
vary in a small neighborhood of (0, 0, 0);

then (28) can be written as
𝑥̇

1
= (𝜏 + 𝜇

1
)

× [ (𝜌 −

𝑐𝜇

3

ℎ

) 𝑥

1
(𝑡) − 𝜌𝛽𝑥

2
(𝑡)

+ (

𝛼𝑚

𝛽(𝑚 + 𝑥)

2
+

(𝑐𝜇

3
− ℎ𝑥)

ℎ (𝑐 + 𝑥)

)𝑥

2

1
(𝑡)

−

𝛼𝑚

(𝑚 + 𝑥)

2
𝑥

1
(𝑡) 𝑥

2
(𝑡)] + h.o.t,

𝑥̇

2
= (𝜏 + 𝜇

1
) (𝜌 + 𝜇

2
)

× [

1

𝛽

𝑥

1
(𝑡 − 1) − 𝑥

2
(𝑡 − 1) +

1

𝑚 + 𝑥

𝑥

1
(𝑡 − 1) 𝑥

2
(𝑡)

+

1

𝑚 + 𝑥

𝑥

1
(𝑡 − 1) 𝑥

2
(𝑡 − 1)

−

1

𝛽 (𝑚 + 𝑥)

𝑥

2

1
(𝑡 − 1) −

𝛽

𝑚 + 𝑥

𝑥

2
(𝑡) 𝑥

2
(𝑡 − 1)]

+ h.o.t.
(29)

Next, we need to find the expressions of Φ(𝜃) and Ψ(𝑠)
based on the techniques developed by [9].

Lemma 4 (see Qiao et al. [9]). The bases of 𝑃 and their dual
space 𝑃∗ have the following representations:

𝑃 = spanΦ, Φ (𝜃) = (𝜑

1
(𝜃) , 𝜑

2
(𝜃) , 𝜑

3
(𝜃)) ,

− 1 ≤ 𝜃 ≤ 0,

𝑃

∗
= spanΨ, Ψ (𝑠) = col (𝜓

1
(𝑠) , 𝜓

2
(𝑠) , 𝜓

3
(𝑠)) ,

0 ≤ 𝑠 ≤ 1,

(30)

where 𝜑
1
(𝜃) = 𝜑

0

1
∈ 𝑅

𝑛
\ {0}, 𝜑

2
(𝜃) = 𝜑

0

2
+ 𝜑

0

1
𝜃, 𝜑
3
(𝜃) =

𝜑

0

3
𝜑

0

2
𝜃 + (1/2)𝜑

0

1
𝜃

2, 𝜑0
2
, 𝜑

0

3
∈ 𝑅

𝑛, and 𝜓
3
(𝑠) = 𝜓

0

3
∈ 𝑅

𝑛∗
\ {0},

𝜓

2
(𝑠) = 𝜓

0

2
− 𝑠𝜓

0

3
, 𝜓
1
(𝑠) = 𝜓

0

1
− 𝑠𝜓

0

2
+ (1/2)𝑠

2
𝜓

0

3
, 𝜓0
1
, 𝜓

0

2
∈ 𝑅

𝑛∗,
which satisfy

(1) (𝐴 + 𝐵)𝜑0
1
= 0,

(2) (𝐴 + 𝐵)𝜑0
2
= (𝐵 + 𝐼)𝜑

0

1
,

(3) (𝐴 + 𝐵)𝜑0
3
= (𝐵 + 𝐼)𝜑

0

2
− (1/2)𝐵𝜑

0

1
,

(4) 𝜓0
3
(𝐴 + 𝐵) = 0,

(5) 𝜓0
2
(𝐴 + 𝐵) = 𝜓

0

3
(𝐵 + 𝐼),

(6) 𝜓0
1
(𝐴 + 𝐵) = 𝜓

0

2
(𝐵 + 𝐼) − (1/2)𝜓

0

3
𝐵,

(7) 𝜓0
3
(𝐵 + 𝐼)𝜑

0

3
− (1/2)𝜓

0

3
𝐵𝜑

0

2
+ (1/6)𝜓

0

3
𝐵𝜑

0

1
= 1,

(8) 𝜓0
2
(𝐵+𝐼)𝜑

0

3
−(1/2)𝜓

0

2
𝐵𝜑

0

2
+(1/6)𝜓

0

2
𝐵𝜑

0

1
−(1/2)𝜓

0

3
𝐵𝜑

0

3
+

(1/6)𝜓

0

3
𝐵𝜑

0

2
− (1/24)𝜓

0

3
𝐵𝜑

0

1
= 0,

(9) 𝜓0
1
(𝐵 + 𝐼)𝜑

0

3
− (1/2)𝜓

0

1
𝐵𝜑

0

2
+ (1/6)𝜓

0

1
𝐵𝜑

0

1
−

(1/2)𝜓

0

2
𝐵𝜑

0

3
+ (1/6)𝜓

0

2
𝐵𝜑

0

2
− (1/24)𝜓

0

2
𝐵𝜑

0

1
+

(1/6)𝜓

0

3
𝐵𝜑

0

3
− (1/24)𝜓

0

3
𝐵𝜑

0

2
+ (1/120)𝜓0

3
𝐵𝜑

0

1
= 0.

For system (29), one can see that

𝐴 + 𝐵 = 𝜏𝜌(

1 −𝛽

1

𝛽

−1

) = (

1 −𝛽

1

𝛽

−1

) . (31)

By Lemma 4, we can obtain

Φ (𝜃) = (

𝛽 𝛽𝜃 𝛽(1 +

1

2

𝜃

2
)

1 −1 + 𝜃 1 − 𝜃 +

1

2

𝜃

2

), −1 ≤ 𝜃 ≤ 0,

Ψ (𝑠) =

(

(

−

17

18𝛽

−

2𝑠

3𝛽

+

𝑠

2

𝛽

35

18

+

2𝑠

3

− 𝑠

2

2

3𝛽

−

2𝑠

𝛽

−

2

3

+ 2𝑠

2

𝛽

−2

)

)

,

0 ≤ 𝑠 ≤ 1,

(32)

such that ⟨Ψ,Φ⟩ = 𝐼, ̇Φ = Φ𝐽, and ̇

Ψ = −𝐽Ψ, where 𝐽 is given
by 𝐽 = ( 0 1 00 0 1

0 0 0

).
Using the similar methods as used in [9], system (29) can

be rewritten as

𝑥̇ (𝑡) = 𝐴 (𝜇) 𝑥 (𝑡) + 𝐵 (𝜇) 𝑥 (𝑡 − 1) + 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 1) , 𝜇) ,

(33)

where 𝜇 = (𝜇
1
, 𝜇

2
, 𝜇

3
) ∈ 𝑅

3 is a parameter vector, 𝑥 ∈ 𝑅2. Let

̂

𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 1) , 𝜇)

= (𝐴 (𝜆) − 𝐴 (0)) 𝑥 (𝑡) + (𝐵 (𝜇) − 𝐵 (0)) 𝑥 (𝑡 − 1)

+ 𝐹 (𝑥 (𝑡) , 𝑥 (𝑡 − 1) , 𝜇) ,

(34)



6 Abstract and Applied Analysis

then, we can expand ̂

𝐹(𝑥(𝑡), 𝑥(𝑡 − 1), 𝜇) = 𝐴

1
𝜇

1
𝑥(𝑡) +

𝐴

2
𝜇

2
𝑥(𝑡) + 𝐴

3
𝜇

3
𝑥(𝑡) + 𝐵

1
𝜇

1
𝑥(𝑡 − 1) + 𝐵

2
𝜇

2
𝑥(𝑡 − 1) +

𝐵

3
𝜇

3
𝑥(𝑡−1)+𝐸

1
𝑥

1
(𝑡)𝑥(𝑡−1)+𝐸

2
𝑥

2
(𝑡)𝑥(𝑡−1)+𝐹

1
𝑥

1
(𝑡)𝑥(𝑡)+

𝐹

2
𝑥

2
(𝑡)𝑥(𝑡) +𝐺

1
𝑥

1
(𝑡−1)𝑥(𝑡−1) +𝐺

2
𝑥

2
(𝑡−1)𝑥(𝑡−1) + h.o.t,

where

𝐴

1
= (

𝜌 −𝛽𝜌

0 0

) , 𝐴

2
= (

0 0

0 0

) , 𝐴

3
= (

−

𝑐𝜏

ℎ

0

0 0

) ,

𝐵

1
= (

0 0

𝜌

𝛽

−𝜌

) , 𝐵

2
= (

0 0

𝜏

𝛽

−𝜏

) , 𝐵

3
= (

0 0

0 0

) ,

𝐸

1
= (

0 0

0 0

) , 𝐸

2
= (

0 0

1

𝑚 + 𝑥

−

𝛽

𝑚 + 𝑥

) ,

𝐹

1
= (

𝜏𝛼𝑚

𝛽(𝑚 + 𝑥)

2
−

𝜏𝑥

𝑐 + 𝑥

−

𝜏𝛼𝑚

2(𝑚 + 𝑥)

2

0 0

) ,

𝐹

2
= (

−

𝜏𝛼𝑚

2(𝑚 + 𝑥)

2
0

0 0

) ,

𝐺

1
= (

0 0

−

1

𝛽 (𝑚 + 𝑥)

1

2 (𝑚 + 𝑥)

) ,

𝐺

2
= (

0 0

1

2 (𝑚 + 𝑥)

0

) ,

𝜑

0

1
= (

𝛽

1

) , 𝜑

0

2
= (

0

−1

) , 𝜑

0

3
= (

𝛽

1

) ,

𝜓

0

1
= (
−

17

18𝛽

35

18

) ,

𝜓

0

2
= (

2

3𝛽

−

2

3

) , 𝜓

0

3
= (

2

𝛽

−2
) .

(35)

Following the formula of Theorem 3.1 in [9], the normal
form with versal unfolding of system (29) on the center
manifold takes the following form:

𝑧̇

1
= 𝑧

2
,

𝑧̇

2
= 𝑧

3
,

𝑧̇

3
= 𝑙

1
𝑧

1
+ 𝑙

2
𝑧

2
+ 𝑙

3
𝑧

3
+ 𝜂

1
𝑧

2

1
+ 𝜂

2
𝑧

2

2

+ 𝜂

3
𝑧

1
𝑧

2
+ 𝜂

4
𝑧

1
𝑧

3
+ h.o.t,

(36)

where

𝑙

1
= −

2𝑐𝜏

ℎ

𝜇

3
, 𝑙

2
= −4𝜏𝜇

2
−

2𝑐𝜏

3ℎ

𝜇

3
,

𝑙

3
= 2𝜌𝜇

1
+

4𝜏

3

𝜇

2
−

19𝑐𝜏

18ℎ

𝜇

3
,

𝜂

1
= −

2𝜏𝑥𝛽

𝑐 + 𝑥

, 𝜂

2
=

17𝜏𝑥𝛽

9 (𝑐 + 𝑥)

+

2𝜏𝛼𝑚

3(𝑚 + 𝑥)

2
,

𝜂

3
= −

4𝜏𝑥𝛽

3 (𝑐 + 𝑥)

+

2𝜏𝛼𝑚

(𝑚 + 𝑥)

2
,

𝜂

4
=

2𝜏𝛼𝑚

3(𝑚 + 𝑥)

2
−

19𝜏𝑥𝛽

9 (𝑐 + 𝑥)

.

(37)

Referring [8], we know that if

(

𝜕 (𝑙

1
, 𝑙

2
, 𝑙

3
)

𝜕 (𝜇

1
, 𝜇

2
, 𝜇

3
)

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜇=0

̸= 0, 𝜂

1
𝜂

2
𝜂

3
𝜂

4
̸= 0, (38)

that is,

𝜌 ̸=

2𝑥

2
(𝑚 + 𝑥)

3𝑚 (𝑐 + 𝑥)

, 𝜌 ̸=

19𝑥

2
(𝑚 + 𝑥)

6𝑚 (𝑐 + 𝑥)

,
(39)

for the unfolding normal form (36) then there exist the
following results.

Theorem 5. Let (4), (9), and (39) hold. For the parameters
𝜇

1
, 𝜇

2
, and 𝜇

3
are sufficiently small,

(i) system (36) undergoes a transcritical bifurcation at the
origin on the curve

𝑇 = {(𝜇

1
, 𝜇

2
, 𝜇

3
) : 𝜇

3
= 0} , (40)

(ii) system (36) undergoes a Hopf bifurcation at the origin
on the curve

𝐻

1
= {(𝜇

1
, 𝜇

2
, 𝜇

3
) :

2𝛼𝑥

𝛽 (𝑚 + 𝑥)

𝜇

1

=

19𝑐𝜏

18(𝑐 + 𝑥)

2
𝜇

3
−

4𝜏

3

𝜇

2

+

3𝑐𝜇

3

6(𝑐 + 𝑥)

2
𝜇

2
+ 𝑐𝜇

3

,

𝜇

2
> −

𝑐

6(𝑐 + 𝑥)

2
𝜇

3
} ,

(41)

(iii) system (36) undergoes a Hopf-bifurcation at the non-
trivial equilibrium point on the curve

𝐻

2

={(𝜇

1
, 𝜇

2
, 𝜇

3
) : 𝑙

3
= (

𝜂

4

𝜂

1

−

𝜂

1

𝜂

3
𝑙

1
− 𝜂

1
𝑙

2

) 𝑙

1
,

𝜂

1

𝜂

3
𝑙

1
− 𝜂

1
𝑙

2

>0} ,

(42)

(iv) system (36) undergoes a Bogdanov-Takens bifurcation
at the origin on the curve

𝐵 = {(𝜇

1
, 𝜇

2
, 𝜇

3
) : 𝜇

3
= 0, 𝜇

2
= −

𝑐

6(𝑐 + 𝑥)

2
𝜇

3
} , (43)
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(v) system (36) undergoes a zero-Hopf bifurcation at the
origin on the curve

𝐻

3

= {(𝜇

1
, 𝜇

2
, 𝜇

3
) : 𝜇

3
= 0, 𝜇

1
=

2𝜏𝛽 (𝑚 + 𝑥)

3𝛼𝑥

𝜇

2
, 𝜇

2
> 0} .

(44)

4. Hopf Bifurcation

The Jacobian matrix of system (2) at 𝐸∗ takes the following
form:

𝐽 (𝐸

∗
)

= (

𝑥

∗
(−1 +

𝛼𝑦

∗

(𝑚 + 𝑥

∗
)

2
+

ℎ

(𝑐 + 𝑥

∗
)

2
) −

𝛼𝑥

∗

𝑚 + 𝑥

∗

𝜌

𝛽

𝑒

−𝜆𝜏
−𝜌𝑒

−𝜆𝜏
),

(45)

then, the characteristic equation is

𝐹 (𝜆) = 𝜆

2
+ 𝜆𝑥

∗
(1 −

𝛼

𝛽 (𝑚 + 𝑥

∗
)

−

ℎ

(𝑐 + 𝑥

∗
)

2
)

+ (𝜌𝜆 + 𝜌𝑥

∗
(1 −

ℎ

(𝑐 + 𝑥

∗
)

2
)) 𝑒

−𝜆𝜏

= 𝜆

2
+ 𝜆𝑥

∗
(

√
Δ

𝑐 + 𝑥

∗
−

𝛼

𝛽 (𝑚 + 𝑥

∗
)

)

+ (𝜌𝜆 +

𝜌𝑥

∗
√
Δ

𝑐 + 𝑥

∗
) 𝑒

−𝜆𝜏
.

(46)

When 𝜏 = 0, by Routh-Hurwitz criterion, all roots of (46)
have negative real part if

𝜌 > 𝑥

∗
(

𝛼

𝛽 (𝑚 + 𝑥

∗
)

−

√
Δ

𝑐 + 𝑥

∗
) . (47)

Using the formula in Theorem 2.4 of [13] or Lemma 2.2 of
[16], we have the following theorem.

Theorem 6. Let (47) hold. Then, there exist

𝑤

0
=

√
2

2

√

𝜌

2
− 𝐴

2
+

√

(𝜌

2
− 𝐴

2
)

2

+ 4𝐵

2
,

𝜏

𝑘
=

1

𝑤

0

arccos
(𝐵 − 𝐴𝜌)𝑤

2

0

𝐵

2
+ 𝜌

2
𝑤

2

0

+

2𝑘𝜋

𝑤

0

, 𝑘 = 0, 1, . . .

(48)

such that the positive equilibrium𝐸∗ is asymptotically stable for
0 ⩽ 𝜏 < 𝜏

0
, moreover, system (2) undergoes Hopf bifurcation at

𝐸

∗ for 𝜏 = 𝜏
𝑘
, where 𝐴 = 𝜌 + 𝑥∗(√Δ/(𝑐 + 𝑥∗) − 𝛼/𝛽(𝑚 + 𝑥∗))

and 𝐵 = 𝜌𝑥∗√Δ/(𝑐 + 𝑥∗).

In the following, using the Hopf bifurcation theorem for
a retarded differential system introduced by [17], the Hopf

bifurcations at 𝐸∗ for small delay and large delay are pre-
sented.

Using the samemethods as the ones used in [13], for small
delay, let 𝑒−𝜆𝜏 ≃ 1 − 𝜆𝜏, together with (46), the following
bifurcation results can be obtained.

Theorem 7. Let 0 < 𝜏 < 𝜏 = 1/𝜌, 𝜌 < 𝛼𝑥∗/𝛽(𝑚 + 𝑥∗),
𝜏

𝑠
= 𝐴/𝐵 and 𝑤

𝑠
= √𝐵/(1 − 𝜌𝜏

𝑠
). Then, there exists 𝜖

𝑠
> 0

such that for each 0 ⩽ 𝜖 < 𝜖
𝑠
, system (2) near 𝐸∗ has a family

or periodic solutions 𝛾
𝑠
(𝜖) with period 𝑇

𝑠
= 𝑇

𝑠
(𝜖) for 𝜏 = 𝜏(𝜖)

such that 𝛾
𝑠
(0) = 𝐸

∗, 𝑇
𝑠
(0) = 2𝜋/𝑤

𝑠
, and 𝜏(0) = 𝜏

𝑠
.

For large delay, by [13] we have the following results.

Theorem 8. Let (47) hold. Then there exists 𝜖
0
> 0 such that

for each 0 ⩽ 𝜖 < 𝜖
0
system (2) near 𝐸∗ has a family or periodic

solutions 𝛾
𝑙
(𝜖) with period 𝑇

𝑙
= 𝑇

𝑙
(𝜖) for 𝜏 = 𝜏(𝜖) such that

𝛾

𝑙
(0) = 𝐸

∗, 𝑇
𝑙
(0) = 2𝜋/𝑤

0
and 𝜏(0) = 𝜏

0
.

Remark. Because the proofs ofTheorems 7 and 8 are the same
as the proofs of Theorems 3.4 and 3.5 in [13], we omit them
here.
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