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TheBonferronimean (BM) operator is an important aggregation techniquewhich reflects the correlations of aggregated arguments.
Based on the BMandharmonicmean operators,H. Sun andM. Sun (2012) developed the fuzzy Bonferroni harmonicmean (FBHM)
and fuzzy ordered Bonferroni harmonic mean (FOBHM) operators. In this paper, we study desirable properties of these operators
and extend them, by considering the correlations of any three aggregated arguments instead of any two, to develop generalized
fuzzy weighted Bonferroni harmonic mean (GFWBHM) operator and generalized fuzzy ordered weighted Bonferroni harmonic
mean (GFOWBHM) operator. In particular, all these operators can be reduced to aggregate interval or real numbers. Then based
on the GFWBHM and GFOWBHM operators, we present an approach to multiple attribute group decision making and illustrate
it with a practical example.

1. Introduction

Multiple attribute group decision making (MAGDM) is the
common phenomenon in modern life, which is to select the
optimal alternative(s) from several alternatives or to get their
ranking by aggregating the performances of each alternative
under several attributes, in which the aggregation techniques
play an important role. Considering the relationships among
the aggregated arguments, we can classify the aggregation
techniques into two categories: the ones which consider the
aggregated arguments dependently and the others which
consider the aggregated arguments independently. For the
first category, the well-known ordered weighted averaging
(OWA) operator [1, 2] is the representative, on the basis of
which, a lot of generalizations have been developed, such
as the ordered weighted geometric (OWG) operator [3–5],
the ordered weighted harmonic mean (OWHM) operator
[6], the continuous ordered weighted averaging (C-OWA)
operator [7], the continuous ordered weighted geometric
(C-OWG) operator [8]. The second category can reduce to
two subcategories: the first subcategory focuses on changing
the weight vector of the aggregation operators, such as the
Choquet integral-based aggregation operators [9], in which

the correlations of the aggregated arguments are measured
subjectively by the decision makers, and the representatives
of another subcategory are the power averaging (PA) operator
[10] and the power geometric (PG) operator [11], both of
which allow the aggregated arguments to support each other
in aggregation process, on the basis of which the weighted
vector is determined. The second subcategory focuses on the
aggregated arguments such as the Bonferroni mean (BM)
operator [12]. Yager [13] provided an interpretation of BM
operator as involving a product of each argument with the
average of the other arguments, a combined averaging and
“anding” operator. Beliakov et al. [14] presented a composed
aggregation technique called the generalized Bonferroni
mean (GBM) operator, which models the average of the
conjunctive expressions and the average of remaining. In
fact, they extended the BM operator by considering the
correlations of any three aggregated arguments instead of
any two. However, both BM operator and the GBM operator
ignore some aggregation information and the weight vector
of the aggregated arguments. To overcome this drawback,
Xia et al. [15] developed the generalized weighted Bonferroni
mean (GWBM) operator as the weighted version of the
GBM operator. Based on the GBM operator and geometric
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mean operator, they also developed the generalized Bonfer-
oni geometric mean (GWBGM) operator. The fundamental
characteristic of the GWBM operator is that it focuses
on the group opinions, while the GWBGM operator gives
more importance to the individual opinions. Because of the
usefulness of the aggregation techniques, which reflect the
correlations of arguments, most of them have been extended
to fuzzy, intuitionistic fuzzy, or hesitant fuzzy environment
[16–20].

Harmonic mean is the reciprocal of arithmetic mean
of reciprocal, which is a conservative average to be used
to provide for aggregation lying between the max and min
operators, and is widely used as a tool to aggregate central
tendency data [21]. In the existing literature, the harmonic
mean is generally considered as a fusion technique of numer-
ical data information. However, in many situations, the input
arguments take the form of triangular fuzzy numbers because
of time pressure, lack of knowledge, and people’s limited
expertise related with problem domain. Therefore, “how to
aggregate fuzzy data by using the harmonic mean?” is an
interesting research topic and is worth paying attention to. So
Xu [21] developed the fuzzy harmonic mean operators such
as fuzzy weighted harmonic mean (FWHM) operator, fuzzy
ordered weighted harmonic mean (FOWHM) operator and
fuzzy hybrid harmonic mean (FHHM) operator, and applied
them toMAGDM.Wei [22] developed fuzzy induced ordered
weighted harmonic mean (FIOWHM) operator and then,
based on the FWHM and FIOWHM operators, presented
the approach to MAGDM. H. Sun and M. Sun [23] further
applied the BM operator to fuzzy environment, introduced
the fuzzy Bonferroni harmonic mean (FBHM) operator and
the fuzzy ordered Bonferroni harmonic mean (FOBHM)
operator, and applied the FOBHM operator to multiple
attribute decisionmaking. In this paper, wewill develop some
new harmonic aggregation operators, including the general-
ized fuzzy weighted Bonferroni harmonicmean (GFWBHM)
operator and generalized fuzzy ordered weighted Bonferroni
harmonic mean (GFOWBHM) operator, and apply them to
MAGDM.

In order to do this, the remainder of this paper is
arranged in following sections. Section 2 first reviews some
aggregation operators, including the BM, GBM, and GWBM
operators. Then, some basic concepts related to triangular
fuzzy numbers and some operational laws of triangular fuzzy
numbers are introduced. The desirable properties of the
FBHM and FOBHM operators are discussed. We extend
them, by considering the correlations of any three aggre-
gated arguments instead of any two, to develop generalized
fuzzy weighted Bonferroni harmonic mean (GFWBHM)
operator and generalized fuzzy ordered weighted Bonferroni
harmonic mean (GFOWBHM) operator. In particular, all
these operators can be reduced to aggregate interval or real
numbers. Section 3 presents an approach to MAGDM based
on the GFWBHM and GFOWBHM operators. Section 4
illustrates the presented approach with a practical example,
verifies and shows the advantages of the presented approach,
and makes a comparative study to the existing approaches.
Section 5 ends the paper with some concluding remarks.

2. Generalized Fuzzy Bonferroni Harmonic
Mean Operators

The Bonferroni mean operator was initially proposed by
Bonferroni [12] and was also investigated intensively by Yager
[13].

Definition 1. Let 𝑝, 𝑞 ≥ 0 and let 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a

collection of nonnegative numbers. If

BM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = (

1

𝑛 (𝑛 − 1)

𝑛

∑

𝑖,𝑗=1

𝑖 ̸= 𝑗

𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

, (1)

then BM𝑝,𝑞 is called the Bonferroni mean (BM) operator.

Beliakov et al. [14] further extended the BM operator
by considering the correlations of any three aggregated
arguments instead of any two.

Definition 2. Let 𝑝, 𝑞, 𝑟 ≥ 0 and let 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be a

collection of nonnegative numbers. If

GBM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (
1

𝑛 (𝑛 − 1) (𝑛 − 2)

𝑛

∑

𝑖,𝑗,𝑘=1

𝑖 ̸= 𝑗 ̸= 𝑘

𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

,

(2)

then GBM𝑝,𝑞,𝑟 is called the generalized Bonferroni mean
(GBM) operator.

In particular, if 𝑟 = 0, then the GBM operator reduces to
the BM operator. However, it is noted that both BM operator
and the GBM operator do not consider the situation that
𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑖 = 𝑘, and the weight vector of the
aggregated arguments is not also considered. To overcome
this drawback, Xia et al. [15] defined the weighted version of
the GBM operator.

Definition 3. Let 𝑝, 𝑞, 𝑟 ≥ 0 and let 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) be

a collection of nonnegative numbers with the weight vector
𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 such that 𝑤

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛 and

∑
𝑛

𝑖=1
𝑤
𝑖
= 1. If

GWBM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎
𝑟

𝑘
)

1/(𝑝+𝑞+𝑟)

,

(3)

then GWBM𝑝,𝑞,𝑟 is called the generalized weighted Bonfer-
roni mean (GWBM) operator.

Some special cases can be obtained as the change of the
parameters as follows.
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(1) If 𝑟 = 0, then the GWBM operator reduces to the
following:

GWBM𝑝,𝑞,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑤
𝑗
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗

𝑛

∑

𝑘=1

𝑤
𝑘
)

1/(𝑝+𝑞)

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑤
𝑗
𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
)

1/(𝑝+𝑞)

,

(4)

which is the weighted Bonferroni mean (WBM) operator.
(2) If 𝑞 = 0 and 𝑟 = 0, then the GWBM operator reduces

to the following:

GWBM𝑝,0,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= (

𝑛

∑

𝑖,𝑗,𝑘=1

𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
𝑎
𝑝

𝑖
)

1/𝑝

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑎
𝑝

𝑖

𝑛

∑

𝑗=1

𝑤
𝑗

𝑛

∑

𝑘=1

𝑤
𝑘
)

1/𝑝

= (

𝑛

∑

𝑖=1

𝑤
𝑖
𝑎
𝑝

𝑖
)

1/𝑝

,

(5)

which is the generalized weighted averaging operator. Fur-
thermore, in this case, let us look at the GWBM operator for
some special cases of 𝑝.

(1) If 𝑝 = 1, the GWBMoperator reduces to the weighted
averaging (WA) operator.

(2) If 𝑝 → 0, then the GWBM operator reduces to the
weighted geometric (WG) operator.

(3) If 𝑝 → +∞, then the GWBMoperator reduces to the
max operator.

The previous aggregation techniques can only deal with
the situation that the arguments are represented by the
exact numerical values, but are invalid if the aggregation
information is given in other forms, such as triangular fuzzy
number [24], which is a widely used tool to deal with
uncertainty and fuzziness, described as follows.

Definition 4 (see [24]). A triangular fuzzy number 𝑎 can be
defined by a triplet [𝑎𝐿, 𝑎𝑀, 𝑎𝑈]. The membership function
𝜇
𝑎
(𝑥) is defined as

𝜇
𝑎 (𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

0, 𝑥 < 𝑎
𝐿
;

𝑥 − 𝑎
𝐿

𝑎𝑀 − 𝑎𝐿
, 𝑎
𝐿
≤ 𝑥 ≤ 𝑎

𝑀
;

𝑥 − 𝑎
𝑈

𝑎𝑀 − 𝑎𝑈
, 𝑎
𝑀
≤ 𝑥 ≤ 𝑎

𝑈
;

0, 𝑥 > 𝑎
𝑈
,

(6)

where 𝑎𝑈 ≥ 𝑎𝑀 ≥ 𝑎
𝐿
≥ 0, 𝑎𝐿, and 𝑎𝑈 stand for the lower

and upper values of 𝑎, respectively, and 𝑎𝑀 stands for the
modal value [24]. In particular, if any two of 𝑎𝐿, 𝑎𝑀, and
𝑎
𝑈 are equal, then 𝑎 reduces to an interval number; if all
𝑎
𝐿
, 𝑎
𝑀, and 𝑎𝑈 are equal, then 𝑎 reduces to a real number.

For convenience, we let Ω be the set of all triangular fuzzy
numbers.

Let 𝑎 = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] and 𝑏̂ = [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] be two trian-
gular fuzzy numbers, then some operational laws defined as
follows [24]:

(1) 𝑎 + 𝑏̂ = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] + [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] = [𝑎𝐿 + 𝑏𝐿, 𝑎𝑀 +
𝑏
𝑀
, 𝑎
𝑈
+ 𝑏
𝑈
];

(2) 𝜆𝑎 = 𝜆[𝑎𝐿, 𝑎𝑀, 𝑎𝑈] = [𝜆𝑎𝐿, 𝜆𝑎𝑀, 𝜆𝑎𝑈];
(3) 𝑎 × 𝑏̂ = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] × [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] = [𝑎𝐿𝑏𝐿, 𝑎𝑀𝑏𝑀,
𝑎
𝑈
𝑏
𝑈
];

(4) 1/𝑎 = 1/[𝑎𝐿, 𝑎𝑀, 𝑎𝑈] = [1/𝑎𝑈, 1/𝑎𝑀, 1/𝑎𝐿].

In order to compare two triangular fuzzy numbers, Xu
[21] provided the following definition.

Definition 5. Let 𝑎 = [𝑎𝐿, 𝑎𝑀, 𝑎𝑈] and let 𝑏̂ = [𝑏𝐿, 𝑏𝑀, 𝑏𝑈] be
two triangular fuzzy numbers; then the degree of possibility
of 𝑎 ≥ 𝑏̂ is defined as follows:

𝑝 (𝑎 ≥ 𝑏̂)

= 𝛿max{1 −max( 𝑏
𝑀
− 𝑎
𝐿

𝑎𝑀 − 𝑎𝐿 + 𝑏𝑀 − 𝑏𝐿
, 0) , 0}

+ (1 − 𝛿)max{1 −max( 𝑏
𝑈
− 𝑎
𝑀

𝑎𝑈 − 𝑎𝑀 + 𝑏𝑈 − 𝑏𝑀
, 0) , 0} ,

𝛿 ∈ [0, 1] ,

(7)

which satisfies the following properties:

0 ≤ 𝑝 (𝑎 ≥ 𝑏̂) ≤ 1, 𝑝 (𝑎 ≥ 𝑎) = 0.5,

𝑝 (𝑎 ≥ 𝑏̂) + 𝑝 (𝑏̂ ≥ 𝑎) = 1.

(8)

Here, 𝛿 reflects the decisionmaker’s risk-bearing attitude.
If 𝛿 > 0.5, then the decision maker is risk lover; if 𝛿 = 0.5,
then the decision maker is neutral to risk; if 𝛿 < 0.5, then the
decision maker is risk avertor.

In the following, we will give a simple procedure for
ranking of the triangular fuzzy numbers 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛).

First, by using (7), we compare each 𝑎
𝑖
with all the 𝑎

𝑗
(𝑗 =

1, 2, . . . , 𝑛); for simplicity, let 𝑝
𝑖𝑗
= 𝑝(𝑎

𝑖
≥ 𝑎
𝑗
), and then we

develop a possibility matrix [25, 26] as

𝑃 = (

𝑝
11
𝑝
12
⋅ ⋅ ⋅ 𝑝
1𝑛

𝑝
21
𝑝
22
⋅ ⋅ ⋅ 𝑝
2𝑛

...
𝑝
𝑛1
𝑝
𝑛2
⋅ ⋅ ⋅ 𝑝
𝑛𝑛

), (9)

where 𝑝
𝑖𝑗
≥ 0, 𝑝

𝑖𝑗
+ 𝑝
𝑗𝑖
= 1, 𝑝

𝑖𝑖
= 1/2, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
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Summing all elements in each line of matrix 𝑃, we have
𝑝
𝑖
= ∑
𝑛

𝑗=1
𝑝
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛. Then, in accordance with the

values of 𝑝
𝑖
(𝑖 = 1, 2, . . . , 𝑛), we rank the 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛) in

descending order.
To aggregate the triangular fuzzy correlated information,

based on the BM and weighted harmonic mean operators,
H. Sun and M. Sun [23] developed the fuzzy Bonferroni
harmonic mean operator. Because this operator considers
the weight vector of the aggregated arguments, we redefine
this operator as fuzzy weighted Bonferroni harmonic mean
operator.

Definition 6 (see [23]). Let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛)

be a collection of triangular fuzzy numbers, let 𝑤 = (𝑤
1
,

𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the weight vector of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛), where

𝑤
𝑖
indicates the importance degree of 𝑎

𝑖
, satisfying 𝑤

𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛 and ∑𝑛
𝑖=1
𝑤
𝑖
= 1. If

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝐿
𝑖
)
𝑝
(𝑎𝐿
𝑗
)
𝑞

))
1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑀
𝑖
)
𝑝
(𝑎𝑀
𝑗
)
𝑞

))
1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑈
𝑖
)
𝑝
(𝑎𝑈
𝑗
)
𝑞

))
1/(𝑝+𝑞)

]
]

]

,

(10)

where 𝑝, 𝑞 ≥ 0, then FWBHM𝑝,𝑞 is called the fuzzy weighted
Bonferroni harmonic mean (FWBHM) operator.

In particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the

FWBHM operator reduces to the following:

FBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

,

(11)

which we call the fuzzy Bonferroni harmonic mean (FBHM)
operator.

In addition, a special case can obtained as the change of
parameter. If 𝑞 = 0, then the FWBHM operator reduces to
the following:

FWBHM𝑝,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
))
1/𝑝
=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
)∑
𝑛

𝑗=1
𝑤
𝑗
)
1/𝑝

=
1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
))
1/𝑝

= [

[

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎𝐿
𝑖
)
𝑝
))
1/𝑝
,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎𝑀
𝑖
)
𝑝
))
1/𝑝
,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎𝑈
𝑖
)
𝑝
))
1/𝑝

]

]

,

(12)

which we call the fuzzy weighted generalized harmonicmean
(FWGHM) operator.

On the basis of the operational laws of triangular fuzzy
numbers, the FWBHMoperator has the following properties.

Theorem 7. Let 𝑝, 𝑞 ≥ 0, and let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 =

1, 2, . . . , 𝑛) be a collection of triangular fuzzy numbers, and the
following are valid.

(1) Idempotency. If all 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that is, 𝑎

𝑖
=

𝑎, for all 𝑖, then

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = 𝑎. (13)

(2) Boundedness. 𝑎− ≤ FWBHM𝑝,𝑞(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ≤ 𝑎

+,
where 𝑎− = [min

𝑖
{𝑎
𝐿

𝑖
},min

𝑖
{𝑎
𝑀

𝑖
},min

𝑖
{𝑎
𝑈

𝑖
}] and 𝑎+ =

[max
𝑖
{𝑎
𝐿

𝑖
},max

𝑖
{𝑎
𝑀

𝑖
},max

𝑖
{𝑎
𝑈

𝑖
}].

(3) Commutativity. Let 𝑎󸀠
𝑖
= [𝑎
󸀠𝐿

𝑖
, 𝑎
󸀠𝑀

𝑖
, 𝑎
󸀠𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers, and then

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= FWBHM𝑝,𝑞 (𝑎󸀠
1
, 𝑎
󸀠

2
, . . . , 𝑎

󸀠

𝑛
) ,

(14)

where (𝑎󸀠
1
, 𝑎
󸀠

2
, . . . , 𝑎

󸀠

𝑛
) is any permutation of (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Proof. Since (2) can be proven easily, we prove (1) and (3) as
follows.
(1) Since 𝑎

𝑖
= 𝑎, we have

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎𝑝𝑎𝑞))

1/(𝑝+𝑞)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎𝑝+𝑞))

1/(𝑝+𝑞)

=
𝑎

(∑
𝑛

𝑖=1
𝑤
𝑖
∑
𝑛

𝑗=1
𝑤
𝑗
)
1/(𝑝+𝑞)

= 𝑎.

(15)
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(3) Since (𝑎󸀠
1
, 𝑎
󸀠

2
, . . . , 𝑎

󸀠

𝑛
) is any permutation of (𝑎

1
, 𝑎
2
,

. . . , 𝑎
𝑛
), then

FWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎󸀠
𝑖
)
𝑝
(𝑎󸀠
𝑗
)
𝑞

))
1/(𝑝+𝑞)

= FWBHM𝑝,𝑞 (𝑎󸀠
1
, 𝑎
󸀠

2
, . . . , 𝑎

󸀠

𝑛
) .

(16)

In particular, if the triangular fuzzy numbers 𝑎
𝑖
= [𝑎
𝐿

𝑖
,

𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce to the interval numbers

𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛), then the FWBHM operator

(10) reduces to the uncertain weighted Bonferroni harmonic
mean (UWBHM) operator as follows:

UWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝐿
𝑖
)
𝑝
(𝑎𝐿
𝑗
)
𝑞

))
1/(𝑝+𝑞)

,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑈
𝑖
)
𝑝
(𝑎𝑈
𝑗
)
𝑞
))
1/(𝑝+𝑞)

]

]

.

(17)

If 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the UWBHM oper-

ator reduces to the uncertain Bonferroni harmonic mean
(UBHM) operator as follows:

UBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

=
[
[

[

1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/(𝑎𝐿
𝑖
)
𝑝
(𝑎𝐿
𝑗
)
𝑞

))
1/(𝑝+𝑞)

,

1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/(𝑎𝑈
𝑖
)
𝑝
(𝑎𝑈
𝑗
)
𝑞

))
1/(𝑝+𝑞)

]
]

]

.

(18)

If 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖, then the UWBHM operator

(17) reduces to the weighted Bonferroni harmonic mean
(WBHM) operator as follows:

WBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

.

(19)

In this case, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the WBHM

operator reduces to the Bonferroni harmonic mean (BHM)
operator:

BHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

.

(20)

Example 8. Given a collection of triangular fuzzy numbers:
𝑎
1
= [2, 3, 4], 𝑎

2
= [1, 2, 4], 𝑎

3
= [2, 4, 6], 𝑎

4
= [1, 3, 5], let𝑤 =

(0.3, 0.1, 0.2, 0.4)
𝑇 be the weight vector of 𝑎

𝑖
(𝑖 = 1, 2, 3, 4);

then, by FWBHM operator (10) (let 𝑝 = 𝑞 = 2), we have

FWBHM2,2 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
)

=
[
[

[

1

(∑
4

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝐿
𝑖
)
2
(𝑎𝐿
𝑗
)
2

))
1/4
,

1

(∑
4

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑀
𝑖
)
2
(𝑎𝑀
𝑗
)
2

))
1/4
,

1

(∑
4

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑈
𝑖
)
2
(𝑎𝑈
𝑗
)
2

))
1/4

]
]

]

= [1.27, 2.95, 4.64] .

(21)

Based on the OWA and FWBHM operators and
Definition 5, we define fuzzy ordered weighted Bonferroni
harmonic mean (FOWBHM) operator as follows.

Definition 9. Let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be a

collection of triangular fuzzy numbers. For 𝑝, 𝑞 ≥ 0, a fuzzy
ordered weighted Bonferroni harmonic mean (FOWBHM)
operator of dimension 𝑛 is a mapping FOWBHM𝑝,𝑞 : Ω𝑛 →
Ω, that has an associated vector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 such

that 𝜔
𝑖
≥ 0 and ∑𝑛

𝑖=1
𝜔
𝑖
= 1. Furthermore,

FOWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
))

1/(𝑝+𝑞)

=
[
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝐿
𝜎(𝑖)
)
𝑝

(𝑎𝐿
𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)
,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑀
𝜎(𝑖)
)
𝑝

(𝑎𝑀
𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)
,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑈
𝜎(𝑖)
)
𝑝

(𝑎𝑈
𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

]
]
]

]

,

(22)
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where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑀

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
] (𝑖 = 1, 2, . . . , 𝑛), and (𝜎(1),

𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛) such that
𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.

However, if there is a tie between 𝑎
𝑖
and 𝑎

𝑗
, then we

replace each of 𝑎
𝑖
and 𝑎

𝑗
by their average (𝑎

𝑖
+ 𝑎
𝑗
)/2 in

process of aggregation. If 𝑘 items are tied, then we replace
these by 𝑘 replicas of their average. The weighting vector
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 can be determined by using some

weights determining methods like the normal distribution
based method; see [27–29] for more details.

If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the FOWBHM operator
reduces to the FBHM operator; in addition, if 𝑞 = 0, then the
FOWBHM operator reduces to the following:

FOWBHM𝑝,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝜎(𝑖)
))
1/𝑝
=

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝜎(𝑖)
)∑
𝑛

𝑗=1
𝑤
𝑗
)
1/𝑝

=
1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝜎(𝑖)
))
1/𝑝

=
[
[

[

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎𝐿
𝜎(𝑖)
)
𝑝

))
1/𝑝
,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎𝑀
𝜎(𝑖)
)
𝑝

))
1/𝑝
,

1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/(𝑎𝑈
𝜎(𝑖)
)
𝑝

))
1/𝑝

]
]

]

,

(23)

which we call the fuzzy ordered weighted generalized har-
monic mean (FOWGHM) operator.

In particular, if the triangular fuzzy numbers 𝑎
𝑖
=

[𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce to the interval numbers

𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛), then the FOWBHM operator

reduces to the uncertain ordered weighted Bonferroni har-
monic mean (UOWBHM) operator as follows:

UOWBHM𝑝,𝑞 (𝑎
𝑖
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
))

1/(𝑝+𝑞)

=
[
[
[

[

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝐿
𝜎(𝑖)
)
𝑝

(𝑎𝐿
𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)
,

1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/(𝑎𝑈
𝜎(𝑖)
)
𝑝

(𝑎𝑈
𝜎(𝑗)
)

𝑞

))

1/(𝑝+𝑞)

]
]
]

]

,

(24)

where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
], and (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a

permutation of (1, 2, . . . , 𝑛) such that 𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.

If there is a tie between 𝑎
𝑖
and 𝑎
𝑗
, then we replace each of 𝑎

𝑖

and 𝑎
𝑗
by their average (𝑎

𝑖
+ 𝑎
𝑗
)/2 in process of aggregation.

If 𝑘 items are tied, then we replace these by 𝑘 replicas of their
average.

If 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖, then the UOWBHM operator

reduces to the ordered weighted Bonferroni harmonic mean
(OWBHM) operator as follows:

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

1

(∑
𝑛

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
))
1/(𝑝+𝑞)

,

(25)

where 𝑏
𝑖
is the 𝑖th largest of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛). The OWBHM

operator (25) has some special cases.

(1) If 𝜔 = (1, 0, . . . , 0)𝑇, then

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = max {𝑎

𝑖
} = 𝑏
1
. (26)

(2) If 𝜔 = (0, 0, . . . , 1)𝑇, then

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = min {𝑎

𝑖
} = 𝑏
𝑛
. (27)

(3) If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then

OWBHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
))
1/(𝑝+𝑞)

=
1

((1/𝑛2)∑
𝑛

𝑖,𝑗=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

= BHM𝑝,𝑞 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) .

(28)

Example 10. Let 𝑎
1
= [3, 4, 6], 𝑎

2
= [1, 2, 4], 𝑎

3
= [2, 4, 5],

𝑎
4
= [3, 5, 6], and 𝑎

5
= [2, 5, 7] be a collection of triangular

fuzzy numbers. To rank these triangular fuzzy numbers,
we first compare each triangular fuzzy number 𝑎

𝑖
with all

triangular fuzzy numbers 𝑎
𝑗
(𝑗 = 1, 2, 3, 4, 5) by using (7)

(without loss of generality, set 𝛿 = 0.5); let 𝑝
𝑖𝑗
= 𝑝(𝑎

𝑖
≥

𝑎
𝑗
) (𝑖, 𝑗 = 1, 2, 3, 4, 5), then we utilize these possibility degrees

to construct the following matrix 𝑃 = (𝑝
𝑖𝑗
)
5×5

:

𝑃 =(

0.500 1 0.667 0.333 0.375

0 0.500 0 0 0

0.333 1 0.500 0.125. 0.200

0.667 1 0.875 0.500 0.467

0.625 1 0.800 0.533 0.500

) . (29)

Summing all elements in each line of matrix 𝑃, we have

𝑝
1
= 2.875, 𝑝

2
= 0.500, 𝑝

3
= 2.158,

𝑝
4
= 3.509, 𝑝

5
= 3.458.

(30)

and then we rank the triangular fuzzy numbers 𝑎
𝑖
(𝑖 =

1, 2, 3, 4, 5) in descending order in accordance with the values
of 𝑝
𝑖
(𝑖 = 1, 2, 3, 4, 5) as follows:

𝑎
𝜎(1)

= 𝑎
4
, 𝑎

𝜎(2)
= 𝑎
5
, 𝑎

𝜎(3)
= 𝑎
1
,

𝑎
𝜎(4)

= 𝑎
3
, 𝑎

𝜎(5)
= 𝑎
2
.

(31)
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Suppose that the weighting vector of the FOWBHMoperator
is 𝜔 = (0.1117, 0.2365, 0.3036, 0.2365, 0.1117)

𝑇 (derived by
the normal distribution basedmethod [27]), and then by (22)
(let 𝑝 = 𝑞 = 2), we get

FOWBHM2,2 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
)

=

[
[
[
[

[

1

(∑
5

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/(𝑎𝐿
𝜎(𝑖)
)
2

(𝑎𝐿
𝜎(𝑗)
)

2

))

1/4
,

1

(∑
5

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/(𝑎𝑀
𝜎(𝑖)
)
2

(𝑎𝑀
𝜎(𝑗)
)

2

))

1/4
,

1

(∑
5

𝑖,𝑗=1
(𝜔
𝑖
𝜔
𝑗
/(𝑎𝑈
𝜎(𝑖)
)
2

(𝑎𝑈
𝜎(𝑗)
)

2

))

1/4

]
]
]
]

]

.

= [1.901, 3.632, 5.509] .

(32)

Both FWBHM and FOWBHM operators, however, can
only deal with the situation in which there are correlations
between any two aggregated arguments, but not the situation
in which there exist connections among any three aggregated
arguments. To solve this issue, motivated by Definition 3, we
define the following.

Definition 11. Let 𝑎
𝑖
= [𝑎

𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the weight vector of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛),

where 𝑤
𝑖
indicates the importance degree of 𝑎

𝑖
, satisfying

𝑤
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛 and ∑𝑛

𝑖=1
𝑤
𝑖
= 1. For 𝑝, 𝑞, 𝑟 ≥ 0, if

GFWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝐿
𝑖
)
𝑝
(𝑎𝐿
𝑗
)
𝑞

(𝑎𝐿
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑀
𝑖
)
𝑝
(𝑎𝑀
𝑗
)
𝑞

(𝑎𝑀
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑈
𝑖
)
𝑝
(𝑎𝑈
𝑗
)
𝑞

(𝑎𝑈
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

]
]

]

,

(33)

then GFWBHM𝑝,𝑞,𝑟 is called generalized fuzzy weighted
Bonferroni harmonic mean (GFWBHM) operator.

In particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the

GFWBHM operator reduces to the following:

GFBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

((1/𝑛3)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

,
(34)

which we call the generalized fuzzy Bonferroni harmonic
mean (GFBHM) operator.

In addition, some special cases can be obtained as the
change of parameters.
(1) If 𝑟 = 0, then the GFWBHM operator reduces to

GFWBHM𝑝,𝑞,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

=
1

((∑
𝑛

𝑘=1
𝑤
𝑘
)∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

=
1

(∑
𝑛

𝑖,𝑗=1
(𝑤
𝑖
𝑤
𝑗
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
))
1/(𝑝+𝑞)

,

(35)

which is the FWBHM operator.
(2) If 𝑞 = 0 and 𝑟 = 0, then the GFWBHM operator

reduces to

GFWBHM𝑝,0,0 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
))
1/𝑝

=
1

((∑
𝑛

𝑗=1
𝑤
𝑗
) (∑
𝑛

𝑘=1
𝑤
𝑘
)∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
))
1/𝑝

=
1

(∑
𝑛

𝑖=1
(𝑤
𝑖
/𝑎
𝑝

𝑖
))
1/𝑝
,

(36)

which is FWGHM operator. In this case, if 𝑝 = 1, then
FWGHM operator reduces to FWHM operator.

Similar to the FWBHMoperator, theGFWBHMoperator
has the following properties.

Theorem 12. Let 𝑝, 𝑞, 𝑟 ≥ 0, and let 𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 =

1, 2, . . . , 𝑛) be a collection of triangular fuzzy numbers, and the
following are valid.

(1) Idempotency. If all 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that is, 𝑎

𝑖
=

𝑎, for all 𝑖, then

GFWBHM 𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = 𝑎. (37)

(2) Boundedness. 𝑎− ≤ GFWBHM 𝑝,𝑞,𝑟(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ≤

𝑎
+, where 𝑎− = [min

𝑖
{𝑎
𝐿

𝑖
},min

𝑖
{𝑎
𝑀

𝑖
},min

𝑖
{𝑎
𝑈

𝑖
}] and 𝑎+ =

[max
𝑖
{𝑎
𝐿

𝑖
},max

𝑖
{𝑎
𝑀

𝑖
},max

𝑖
{𝑎
𝑈

𝑖
}].

𝑎
+
= [max

𝑖
{𝑎
𝐿

𝑖
} ,max

𝑖
{𝑎
𝑀

𝑖
} ,max

𝑖
{𝑎
𝑈

𝑖
}] . (38)
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(3) Commutativity. Let 𝑎󸀠
𝑖
= [𝑎
󸀠𝐿

𝑖
, 𝑎
󸀠𝑀

𝑖
, 𝑎
󸀠𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers, and then

GFWBHM 𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

= GFWBHM 𝑝,𝑞,𝑟 (𝑎󸀠
1
, 𝑎
󸀠

2
, . . . , 𝑎

󸀠

𝑛
) ,

(39)

where (𝑎󸀠
1
, 𝑎
󸀠

2
, . . . , 𝑎

󸀠

𝑛
) is any permutation of (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
).

In particular, if the triangular fuzzy numbers 𝑎
𝑖
=

[𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce to the interval numbers

𝑎
𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛), then the GFWBHM operator

(24) reduces to the generalized uncertain weighted Bonfer-
roni harmonic mean (GUWBHM) operator as follows:

GUWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

=
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝐿
𝑖
)
𝑝
(𝑎𝐿
𝑗
)
𝑞

(𝑎𝐿
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑈
𝑖
)
𝑝
(𝑎𝑈
𝑗
)
𝑞

(𝑎𝑈
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

]
]

]

.

(40)

If𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the GUWBHMoperator
reduces to the generalized uncertain Bonferroni harmonic
mean (GUBHM):

GUBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

((1/𝑛3)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

=
[
[

[

1

((1/𝑛3)∑
𝑛

𝑖,𝑗,𝑘=1
(1/(𝑎𝐿
𝑖
)
𝑝
(𝑎𝐿
𝑗
)
𝑞

(𝑎𝐿
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

,

1

((1/𝑛3)∑
𝑛

𝑖,𝑗,𝑘=1
(1/(𝑎𝑈
𝑖
)
𝑝
(𝑎𝑈
𝑗
)
𝑞

(𝑎𝑈
𝑘
)
𝑟
))
1/(𝑝+𝑞+𝑟)

]
]

]

.

(41)

Furthermore, if 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖, then the

GUWBHM operator reduces to the generalized weighted
Bonferroni harmonic mean (GWBHM) operator:

GWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

.
(42)

In this case, if 𝑝 = 1 and 𝑞 = 𝑟 = 0, the GWBHM operator
reduces to the weighted harmonic mean (WHM) operator.

Example 13. Consider the four triangular fuzzy numbers 𝑎
𝑖

and their weight vector 𝑤 given in Example 8. Then by the
GFWBHM operator (33) (without of generalization, let 𝑝 =
𝑞 = 𝑟 = 3), we have

GFWBHM3,3,3 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
)

=
[
[

[

1

(∑
4

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝐿
𝑖
)
3
(𝑎𝐿
𝑗
)
3

(𝑎𝐿
𝑘
)
3
))
1/9
,

1

(∑
4

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑀
𝑖
)
3
(𝑎𝑀
𝑗
)
3

(𝑎𝑀
𝑘
)
3
))
1/9
,

1

(∑
4

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑈
𝑖
)
3
(𝑎𝑈
𝑗
)
3

(𝑎𝑈
𝑘
)
3
))
1/9

]
]

]

= [1.21, 2.89, 4.59] .

(43)

Definition 14. Let 𝑎
𝑖
= [𝑎

𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) be

a collection of triangular fuzzy numbers. For 𝑝, 𝑞, 𝑟 ≥ 0,
a generalized fuzzy ordered weighted Bonferroni harmonic
mean (GFOWBHM) operator of dimension 𝑛 is a mapping
GFOWBHM𝑝,𝑞,𝑟 : Ω𝑛 → Ω, that has an associated vector
𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 such that 𝜔

𝑖
≥ 0 and ∑𝑛

𝑖=1
𝜔
𝑖
= 1.

Furthermore,

GFOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
𝑎𝑟
𝜎(𝑘)
))

1/(𝑝+𝑞+𝑟)

=
[
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎𝐿
𝜎(𝑖)
)
𝑝

(𝑎𝐿
𝜎(𝑗)
)

𝑞

(𝑎𝐿
𝜎(𝑘)
)
𝑟

))

1/(𝑝+𝑞+𝑟)
,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎𝑀
𝜎(𝑖)
)
𝑝

(𝑎𝑀
𝜎(𝑗)
)

𝑞

(𝑎𝑀
𝜎(𝑘)
)
𝑟

))

1/(𝑝+𝑞+𝑟)
,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎𝑈
𝜎(𝑖)
)
𝑝

(𝑎𝑈
𝜎(𝑗)
)

𝑞

(𝑎𝑈
𝜎(𝑘)
)
𝑟

))

1/(𝑝+𝑞+𝑟)

]
]
]

]

,

(44)

where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑀

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
] (𝑖 = 1, 2, . . . , 𝑛), and (𝜎(1),

𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛) such that
𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.

However, if there is a tie between 𝑎
𝑖
and𝑎
𝑗
, thenwe replace

each of 𝑎
𝑖
and 𝑎

𝑗
by their average (𝑎

𝑖
+ 𝑎
𝑗
)/2 in process of

aggregation. If 𝑘 items are tied, then we replace these by 𝑘
replicas of their average.
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If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the GFOWBHM

operator reduces to the GFBHM operator. Moreover, some
special cases can be obtained as the change of parameters. If
𝑟 = 0, then the GFOWBHM operator reduces to FOWBHM
operator; if 𝑟 = 0 and 𝑞 = 0, then GFOWBHM operator
reduces to FOWGHMoperator. In particular, if the triangular
fuzzy numbers 𝑎

𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑀

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛) reduce

to the interval numbers 𝑎
𝑖
= [𝑎

𝐿

𝑖
, 𝑎
𝑈

𝑖
] (𝑖 = 1, 2, . . . , 𝑛),

then the GFOWBHM operator reduces to the generalized
uncertain ordered weighted Bonferroni harmonic mean
(GUOWBHM) operator:

GUOWBHM𝑝,𝑞,𝑟 (𝑎
𝑖
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/𝑎
𝑝

𝜎(𝑖)
𝑎
𝑞

𝜎(𝑗)
𝑎𝑟
𝜎(𝑘)
))

1/(𝑝+𝑞+𝑟)

=
[
[
[

[

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎𝐿
𝜎(𝑖)
)
𝑝

(𝑎𝐿
𝜎(𝑗)
)

𝑞

(𝑎𝐿
𝜎(𝑘)
)
𝑟

))

1/(𝑝+𝑞+𝑟)
,

1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/(𝑎𝑈
𝜎(𝑖)
)
𝑝

(𝑎𝑈
𝜎(𝑗)
)

𝑞

(𝑎𝑈
𝜎(𝑘)
)
𝑟

))

1/(𝑝+𝑞+𝑟)

]
]
]

]

,

(45)

where 𝑎
𝜎(𝑖)

= [𝑎
𝐿

𝜎(𝑖)
, 𝑎
𝑈

𝜎(𝑖)
], and (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a

permutation of (1, 2, . . . , 𝑛) such that 𝑎
𝜎(𝑖−1)

≥ 𝑎
𝜎(𝑖)

for all 𝑖.
If 𝑎𝐿
𝑖
= 𝑎
𝑈

𝑖
= 𝑎
𝑖
, for all 𝑖 = 1, 2, . . . , 𝑛, then the

GUOWBHM operator reduces to the generalized ordered
weighted Bonferroni harmonicmean (GOWBHM) operator:

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

(∑
𝑛

𝑖,𝑗,𝑘=1
(𝜔
𝑖
𝜔
𝑗
𝜔
𝑘
/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
𝑏𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

,
(46)

where 𝑏
𝑖
is the 𝑖th largest of 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛). In this case, if

𝑝 = 1 and 𝑞 = 𝑟 = 0, then the GOWBHM operator reduces
to the ordered weighted harmonic mean (OWHM) operator.

The GOWBHM operator (46) has some special cases.
(1) If 𝜔 = (1, 0, . . . , 0)𝑇, then

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = max {𝑎

𝑖
} = 𝑏
1
. (47)

(2) If 𝜔 = (0, 0, . . . , 1)𝑇, then

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) = min {𝑎

𝑖
} = 𝑏
𝑛
. (48)

(3) If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then

GOWBHM𝑝,𝑞,𝑟 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

=
1

((1/𝑛3)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑏
𝑝

𝑖
𝑏
𝑞

𝑗
𝑏𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

=
1

((1/𝑛3)∑
𝑛

𝑖,𝑗,𝑘=1
(1/𝑎
𝑝

𝑖
𝑎
𝑞

𝑗
𝑎𝑟
𝑘
))
1/(𝑝+𝑞+𝑟)

,

(49)

which we call the generalized Bonferroni harmonic mean
(GBHM) operator.

Example 15. Consider the four triangular fuzzy numbers 𝑎
𝑖

and their weight vector 𝑤 given in Example 10. Then by the
GFOWBHM operator (44) (let 𝑝 = 𝑞 = 𝑟 = 3), we have

GFOWBHM3,3,3 (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
)

=

[
[
[
[

[

1

(∑
5

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝐿
𝜎(𝑖)
)
3

(𝑎𝐿
𝜎(𝑗)
)

3

(𝑎𝐿
𝜎(𝑘)
)
3

))

1/9
,

1

(∑
5

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑀
𝜎(𝑖)
)
3

(𝑎𝑀
𝜎(𝑗)
)

3

(𝑎𝑀
𝜎(𝑘)
)
3

))

1/9
,

1

(∑
5

𝑖,𝑗,𝑘=1
(𝑤
𝑖
𝑤
𝑗
𝑤
𝑘
/(𝑎𝑈
𝜎(𝑖)
)
3

(𝑎𝑈
𝜎(𝑗)
)

3

(𝑎𝑈
𝜎(𝑘)
)
3

))

1/9

]
]
]
]

]

= [1.751, 3.410, 5.422] .

(50)

In the following section, we will apply the developed opera-
tors to multiple attribute group decision making.

3. An Approach to Multiple Attribute
Group Decision Making with Triangular
Fuzzy Information

For a group decision making with triangular fuzzy informa-
tion, let𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a discrete set of 𝑛 alternatives,

let 𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑚
} be the set of 𝑚 attributes, whose

weight vector is 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 with 𝑤

𝑖
≥ 0 and

∑
𝑚

𝑖=1
𝑤
𝑖
= 1, and let𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑠
} be the set of decision

makers, whose weight vector is V = (V
1
, V
2
, . . . , V

𝑠
)
𝑇, where

V
𝑘
≥ 0 and ∑𝑠

𝑘=1
V
𝑘
= 1. Suppose that 𝐴(𝑘) = (𝑎

(𝑘)

𝑖𝑗
)
𝑚×𝑛

is the decision matrix, where 𝑎(𝑘)
𝑖𝑗

= [𝑎
𝐿(𝑘)

𝑖𝑗
, 𝑎
𝑀(𝑘)

𝑖𝑗
, 𝑎
𝑈(𝑘)

𝑖𝑗
] is

an attribute value, which takes the form of triangular fuzzy
number, of the alternative 𝑥

𝑗
∈ 𝑋with respect to the attribute

𝐺
𝑖
∈ 𝐺.
In the following, we apply the GFWBHM and

GFOWBHM operators to group decision making with
triangular fuzzy information.

Step 1. Normalize each attribute value 𝑎(𝑘)
𝑖𝑗

in the matrix 𝐴(𝑘)

into a corresponding element in the matrix 𝑅(𝑘) = (𝑟(𝑘)
𝑖𝑗
)
𝑚×𝑛

(𝑟(𝑘)
𝑖𝑗
= [𝑟
𝐿(𝑘)

𝑖𝑗
, 𝑟
𝑀(𝑘)

𝑖𝑗
, 𝑟
𝑈(𝑘)

𝑖𝑗
]) using the following formulas:

𝑟
(𝑘)

𝑖𝑗
=

𝑎
(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
(𝑘)

𝑖𝑗
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= [

[

𝑎
𝐿(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝑈(𝑘)

𝑖𝑗

,
𝑎
𝑀(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝑀(𝑘)

𝑖𝑗

,
𝑎
𝑈(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
𝑎
𝐿(𝑘)

𝑖𝑗

]

]

,

for benefit attribute 𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑠,

𝑟
(𝑘)

𝑖𝑗
=

1/𝑎
(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
(𝑘)

𝑖𝑗
)

= [

[

1/𝑎
𝑈(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
𝐿(𝑘)

𝑖𝑗
)
,

1/𝑎
𝑀(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
𝑀(𝑘)

𝑖𝑗
)
,

1/𝑎
𝐿(𝑘)

𝑖𝑗

∑
𝑛

𝑗=1
(1/𝑎
𝑈(𝑘)

𝑖𝑗
)

]

]

,

for cost attribute 𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑠.

(51)

Step 2. Utilize the GFWBHM operator (33) as follows:

𝑟
(𝑘)

𝑗
= GFWBHM𝑝,𝑞,𝑟 (𝑟(𝑘)

1𝑗
, 𝑟
(𝑘)

2𝑗
, . . . , 𝑟

(𝑘)

𝑚𝑗
)

=
1

(∑
𝑚

𝑖,ℎ,𝑙=1
(𝑤
𝑖
𝑤
ℎ
𝑤
𝑙
/(𝑟
(𝑘)

𝑖𝑗
)
𝑝

(𝑟
(𝑘)

ℎ𝑗
)
𝑞

(𝑟
(𝑘)

𝑙𝑗
)
𝑟

))
1/(𝑝+𝑞+𝑟)

=
[
[
[

[

(

𝑚

∑

𝑖,ℎ,𝑙=1

(
𝑤
𝑖
𝑤
ℎ
𝑤
𝑙

(𝑟
𝐿(𝑘)

𝑖𝑗
)
𝑝

(𝑟
𝐿(𝑘)

ℎ𝑗
)
𝑞

(𝑟
𝐿(𝑘)

𝑙𝑗
)
𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑚

∑

𝑖,ℎ,𝑙=1

(
𝑤
𝑖
𝑤
ℎ
𝑤
𝑙

(𝑟
𝑀(𝑘)

𝑖𝑗
)
𝑝

(𝑟
𝑀(𝑘)

ℎ𝑗
)
𝑞

(𝑟
𝑀(𝑘)

𝑙𝑗
)
𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑚

∑

𝑖,ℎ,𝑙=1

(
𝑤
𝑖
𝑤
ℎ
𝑤
𝑙

(𝑟
𝑈(𝑘)

𝑖𝑗
)
𝑝

(𝑟
𝑈(𝑘)

ℎ𝑗
)
𝑞

(𝑟
𝑈(𝑘)

𝑙𝑗
)
𝑟
))

−1/(𝑝+𝑞+𝑟)

]
]
]

]

,

(52)

to aggregate all the elements in the 𝑗th column of 𝑅(𝑘)

and get the overall attribute value 𝑟(𝑘)
𝑗

of the alternative 𝑥
𝑗

corresponding to the decision maker 𝑑
𝑘
.

Step 3. Utilize the GFOWBHM operator (44):

𝑟
𝑗
= GFOWBHM𝑝,𝑞,𝑟 (𝑟(1)

𝑗
, 𝑟
(2)

𝑗
, . . . , 𝑟

(𝑠)

𝑗
)

=
1

(∑
𝑠

𝑘,ℎ,𝑙=1
(𝜔
𝑘
𝜔
ℎ
𝜔
𝑙
/( ̇̂𝑟
𝜎(𝑘)

𝑗
)
𝑝

( ̇̂𝑟
𝜎(ℎ)

𝑗
)
𝑞

( ̇̂𝑟
𝜎(𝑙)

𝑗
)
𝑟

))

1/(𝑝+𝑞+𝑟)

= [

[

(

𝑠

∑

𝑘,ℎ,𝑙=1

(
𝜔
𝑘
𝜔
ℎ
𝜔
𝑙

( ̇𝑟
𝐿(𝜎(𝑘))

𝑗
)
𝑝

( ̇𝑟
𝐿(𝜎(ℎ))

𝑗
)
𝑞

( ̇𝑟
𝐿(𝜎(𝑙))

𝑗
)
𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑠

∑

𝑘,ℎ,𝑙=1

(
𝜔
𝑘
𝜔
ℎ
𝜔
𝑙

( ̇𝑟
𝑀(𝜎(𝑘))

𝑗
)
𝑝

( ̇𝑟
𝑀(𝜎(ℎ))

𝑗
)
𝑞

( ̇𝑟
𝑀(𝜎(𝑙))

𝑗
)
𝑟
))

−1/(𝑝+𝑞+𝑟)

,

(

𝑠

∑

𝑘,ℎ,𝑙=1

(
𝜔
𝑘
𝜔
ℎ
𝜔
𝑙

( ̇𝑟
𝑈(𝜎(𝑘))

𝑗
)
𝑝

( ̇𝑟
𝑈(𝜎(ℎ))

𝑗
)
𝑞

( ̇𝑟
𝑈(𝜎(𝑙))

𝑗
)
𝑟
))

−1/(𝑝+𝑞+𝑟)

]

]

,

(53)

to aggregate the overall attribute values 𝑟(𝑘)
𝑗
(𝑘 = 1, 2, . . . , 𝑠)

corresponding to the decision maker 𝑑
𝑘
(𝑘 = 1, 2, . . . , 𝑠) and

get the collective overall attribute value 𝑟
𝑗
, where ̇̂𝑟

(𝜎(𝑘))

𝑗
=

[ ̇𝑟
𝐿(𝜎(𝑘))

𝑗
, ̇𝑟
𝑀(𝜎(𝑘))

𝑗
, ̇𝑟
𝑈(𝜎(𝑘))

𝑗
] is the 𝑘th largest of the weighted

data and ̇̂𝑟
(𝑘)

𝑗
( ̇̂𝑟
(𝑘)

𝑗
= 𝑠V
𝑘
𝑟
(𝑘)

𝑗
, 𝑘 = 1, 2, . . . , 𝑠), 𝜔 = (𝜔

1
, 𝜔
2
,

. . . , 𝜔
𝑠
)
𝑇 is the weighting vector of the GFOWBHM operator,

with 𝜔
𝑘
≥ 0 and ∑𝑠

𝑘=1
𝜔
𝑘
= 1.

Step 4. Compare each 𝑟
𝑗
with all 𝑟

𝑖
(𝑖 = 1, 2, . . . , 𝑛) by using

(7), and let 𝑝
𝑖𝑗
= 𝑝(𝑟
𝑖
≥ 𝑟
𝑗
), and then construct the possibility

matrix 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

, where 𝑝
𝑖𝑗
≥ 0, 𝑝

𝑖𝑗
+ 𝑝
𝑗𝑖
= 1, 𝑝

𝑖𝑖
= 0.5,

𝑖, 𝑗 = 1, 2, . . . , 𝑛. Summing all elements in each line of matrix
𝑃, we have 𝑝

𝑖
= ∑
𝑛

𝑗=1
𝑝
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, and then reorder

𝑟
𝑗
(𝑗 = 1, 2, . . . , 𝑛) in descending order in accordance with

the values of 𝑝
𝑗
(𝑗 = 1, 2, . . . , 𝑛).

Step 5. Rank all alternatives 𝑥
𝑗
(𝑗 = 1, 2, . . . , 𝑛) by the ranking

of 𝑟
𝑗
(𝑗 = 1, 2, . . . , 𝑛), and then select the most desirable one.

Step 6. End.

4. Example Illustrations

In this section, we use a multiple attribute group deci-
sion making problem of determining what kind of air-
conditioning systems should be installed in a library (adopted
from [21, 30]) to illustrate the proposed approach.

A city is planning to build a municipal library. One of
the problems facing the city development commissioner is
to determine what kind of air-conditioning systems should
be installed in the library. The contractor offers five feasible
alternatives, whichmight be adapted to the physical structure
of the library. The alternatives 𝑥

𝑗
(𝑗 = 1, 2, 3, 4, 5) are to

be evaluated using triangular fuzzy numbers by the three
decision makers 𝑑

𝑘
(𝑘 = 1, 2, 3) (whose weight vector is

V = (0.4, 0.3, 0.3)
𝑇) under three major impacts: economic,

functional, and operational. Two monetary attributes and
six nonmonetary attributes (i.e., 𝐺

1
: owning cost ($/ft2),

𝐺
2
: operating cost ($/ft2), 𝐺

3
: performance (∗), 𝐺

4
: noise

level (Db), 𝐺
5
: maintainability (∗), 𝐺

6
: reliability (%), 𝐺

7
:

flexibility (∗), 𝐺
8
: safety (∗), where ∗ unit is from 0 to 1

scale, three attributes 𝐺
1
, 𝐺
2
, and 𝐺

4
are cost attributes, and

the other five attributes are benefit attributes, and suppose
that the weight vector of the attributes 𝐺

𝑖
(𝑖 = 1, 2, . . . , 8)

is 𝑤 = (0.05, 0.08, 0.14, 0.12, 0.18, 0.21, 0.05, 0.17)𝑇) emerged
from three impacts is Tables 1, 2, and 3.

In the following, we utilize the decision procedure to
select the best air-conditioning system.



Journal of Applied Mathematics 11

Table 1: Triangular fuzzy number decision matrix 𝐴(1).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[3.5, 4.0, 4.7] [1.7, 2.0, 2.3] [3.5, 3.8, 4.2] [3.5, 3.8, 4.5] [3.3, 3.8, 4.0]
𝐺
2

[5.5, 6.0, 6.5] [4.8, 5.1, 5.5] [4.5, 5.2, 5.5] [4.5, 4.7, 5.0] [5.5, 5.7, 6.0]
𝐺
3

[0.7, 0.8, 0.9] [0.5, 0.56, 0.6] [0.5, 0.6, 0.7] [0.7, 0.85, 0.9] [0.6, 0.7, 0.8]
𝐺
4

[35, 40, 45] [70, 73, 75] [65, 68, 70] [40, 42, 45] [50, 55, 60]
𝐺
5

[0.4, 0.45, 0.5] [0.4, 0.44, 0.6] [0.7, 0.76, 0.8] [0.9, 0.97, 1.0] [0.5, 0.54, 0.6]
𝐺
6

[95, 98, 100] [70, 73, 75] [80, 83, 90] [90, 93, 95] [85, 90, 95]
𝐺
7

[0.3, 0.35, 0.5] [0.7, 0.75, 0.8] [0.8, 0.9, 1.0] [0.6, 0.75, 0.8] [0.4, 0.5, 0.6]
𝐺
8

[0.7, 0.74, 0.8] [0.5, 0.53, 0.6] [0.6, 0.68, 0.7] [0.7, 0.8, 0.9] [0.8, 0.85, 0.9]

Table 2: Triangular fuzzy number decision matrix 𝐴(2).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[4.0, 4.3, 4.5] [2.1, 2.2, 2.4] [5.0, 5.1, 5.2] [4.3, 4.4, 4.5] [3.0, 3.3, 3.5]
𝐺
2

[6.0, 6.3, 6.5] [5.0, 5.1, 5.2] [4.5, 4.7, 5.0] [5.0, 5.1, 5.3] [7.0, 7.5, 8.0]
𝐺
3

[0.7, 0.8, 0.9] [0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.7, 0.75, 0.8] [0.7, 0.8, 0.9]
𝐺
4

[37, 38, 39] [70, 73, 75] [65, 66, 67] [40, 42, 45] [50, 52, 55]
𝐺
5

[0.4, 0.5, 0.6] [0.5, 0.55, 0.6] [0.8, 0.85, 0.9] [0.8, 0.95, 1.0] [0.4, 0.44, 0.5]
𝐺
6

[92, 93, 95] [70, 75, 80] [83, 84, 85] [90, 91, 92] [90, 93, 95]
𝐺
7

[0.4, 0.45, 0.5] [0.8, 0.85, 0.9] [0.7, 0.73, 0.8] [0.7, 0.85, 0.9] [0.4, 0.45, 0.5]
𝐺
8

[0.6, 0.7, 0.8] [0.6, 0.65, 0.7] [0.5, 0.6, 0.7] [0.7, 0.76, 0.8] [0.7, 0.8, 0.9]

Table 3: Triangular fuzzy number decision matrix 𝐴(3).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[4.3, 4.4, 4.6] [2.2, 2.4, 2.5] [4.5, 4.8, 5.0] [4.7, 4.9, 5.0] [3.1, 3.2, 3.4]
𝐺
2

[6.4, 6.7, 7.0] [5.0, 5.2, 5.5] [4.7, 4.8, 4.9] [5.5, 5.7, 6.0] [6.0, 6.5, 7.0]
𝐺
3

[0.8, 0.85, 0.9] [0.5, 0.6, 0.7] [0.6, 0.7, 0.8] [0.7, 0.8, 0.9] [0.7, 0.75, 0.8]
𝐺
4

[36, 38, 40] [72, 73, 75] [67, 68, 70] [45, 48, 50] [55, 57, 60]
𝐺
5

[0.4, 0.46, 0.5] [0.4, 0.45, 0.6] [0.8, 0.95, 1.0] [0.8, 0.85, 0.9] [0.5, 0.55, 0.6]
𝐺
6

[93, 94, 95] [77, 78, 80] [85, 87, 90] [90, 94, 95] [90, 96, 100]
𝐺
7

[0.4, 0.5, 0.6] [0.8, 0.9, 1.0] [0.8, 0.86, 0.9] [0.6, 0.7, 0.8] [0.5, 0.57, 0.6]
𝐺
8

[0.7, 0.78, 0.8] [0.5, 0.55, 0.6] [0.6, 0.68, 0.7] [0.8, 0.85, 0.9] [0.8, 0.85, 0.9]

Step 1. By using (51), we normalize each attribute value 𝑎(𝑘)
𝑖𝑗

in
the matrices𝐴(𝑘) (𝑘 = 1, 2, 3) into the corresponding element
in the matrices 𝑅(𝑘) = (𝑟

𝑖𝑗
)
8×5

(𝑘 = 1, 2, 3) (Tables 4, 5, and 6).

Step 2. Utilize theGFWBHMoperator (52) (let𝑝 = 𝑞 = 𝑟 = 3)
to aggregate all elements in the 𝑗th column 𝑅(𝑘) and get the
overall attribute value 𝑟(𝑘)

𝑗
:

𝑟
(1)

1
= [0.1390, 0.1753, 0.2187] ,

𝑟
(1)

2
= [0.1347, 0.1586, 0.1927] ,

𝑟
(1)

3
= [0.1581, 0.1852, 0.2178] ,

𝑟
(1)

4
= [0.1900, 0.2289, 0.2651] ,

𝑟
(1)

5
= [0.1565, 0.1911, 0.2311] ,

𝑟
(2)

1
= [0.1480, 0.1851, 0.2248] ,

𝑟
(2)

2
= [0.1434, 0.1706, 0.1992] ,

𝑟
(2)

3
= [0.1561, 0.1792, 0.2057] ,

𝑟
(2)

4
= [0.1927, 0.2228, 0.2477] ,

𝑟
(2)

5
= [0.1499, 0.1761, 0.2098] ,

𝑟
(3)

1
= [0.1459, 0.1811, 0.2104] ,

𝑟
(3)

2
= [0.1370, 0.1607, 0.1938] ,

𝑟
(3)

3
= [0.1679, 0.1921, 0.2173] ,

𝑟
(3)

4
= [0.1883, 0.2138, 0.2395] ,

𝑟
(3)

5
= [0.1678, 0.1922, 0.2215] .

(54)
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Table 4: Normalized triangular fuzzy number decision matrix 𝑅(1).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[0.12, 0.16, 0.21] [0.25, 0.32, 0.43] [0.14, 0.17, 0.21] [0.13, 0.17, 0.21] [0.14, 0.17, 0.22]
𝐺
2

[0.15, 0.18, 0.21] [0.18, 0.21, 0.24] [0.18, 0.20, 0.25] [0.20, 0.23, 0.25] [0.16, 0.19, 0.21]
𝐺
3

[0.18, 0.23, 0.30] [0.13, 0.16, 0.20] [0.13, 0.17, 0.23] [0.18, 0.24, 0.30] [0.15, 0.20, 0.27]
𝐺
4

[0.22, 0.26, 0.32] [0.13, 0.14, 0.16] [0.14, 0.15, 0.17] [0.22, 0.25, 0.28] [0.16, 0.19, 0.23]
𝐺
5

[0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.20, 0.24, 0.28] [0.26, 0.31, 0.34] [0.14, 0.17, 0.21]
𝐺
6

[0.21, 0.22, 0.24] [0.15, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.23] [0.19, 0.21, 0.23]
𝐺
7

[0.08, 0.11, 0.18] [0.19, 0.23, 0.29] [0.22, 0.28, 0.36] [0.16, 0.23, 0.29] [0.11, 0.15, 0.21]
𝐺
8

[0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.19, 0.21] [0.18, 0.22, 0.27] [0.21, 0.24, 0.27]

Table 5: Normalized triangular fuzzy number decision matrix 𝑅(2).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[0.15, 0.16, 0.19] [0.28, 0.32, 0.36] [0.13, 0.14, 0.15] [0.15, 0.16, 0.17] [0.19, 0.21, 0.25]
𝐺
2

[0.17, 0.18, 0.19] [0.21, 0.22, 0.23] [0.21, 0.24, 0.26] [0.20, 0.22, 0.23] [0.13, 0.15, 0.17]
𝐺
3

[0.18, 0.24, 0.30] [0.11, 0.15, 0.20] [0.13, 0.16, 0.20] [0.18, 0.22, 0.27] [0.18, 0.24, 0.30]
𝐺
4

[0.25, 0.27, 0.29] [0.13, 0.14, 0.15] [0.15, 0.15, 0.16] [0.22, 0.24, 0.27] [0.18, 0.20, 0.21]
𝐺
5

[0.11, 0.15, 0.21] [0.14, 0.17, 0.21] [0.22, 0.26, 0.31] [0.22, 0.29, 0.34] [0.11, 0.13, 0.17]
𝐺
6

[0.21, 0.21, 0.22] [0.16, 0.17, 0.19] [0.19, 0.19, 0.20] [0.20, 0.21, 0.22] [0.20, 0.21, 0.22]
𝐺
7

[0.11, 0.14, 0.17] [0.22, 0.26, 0.30] [0.19, 0.22, 0.27] [0.19, 0.26, 0.30] [0.19, 0.14, 0.17]
𝐺
8

[0.15, 0.20, 0.26] [0.15, 0.19, 0.23] [0.13, 0.17, 0.23] [0.18, 0.22, 0.26] [0.18, 0.23, 0.29]

Table 6: Normalized triangular fuzzy number decision matrix 𝑅(3).

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝐺
1

[0.15, 0.17, 0.18] [0.28, 0.30, 0.35] [0.14, 0.15, 0.17] [0.14, 0.15, 0.16] [0.20, 0.23, 0.25]
𝐺
2

[0.16, 0.17, 0.19] [0.20, 0.22, 0.24] [0.22, 0.24, 0.25] [0.18, 0.20, 0.22] [0.16, 0.17, 0.20]
𝐺
3

[0.20, 0.23, 0.27] [0.12, 0.16, 0.21] [0.15, 0.19, 0.24] [0.17, 0.22, 0.27] [0.17, 0.20, 0.24]
𝐺
4

[0.26, 0.28, 0.31] [0.14, 0.15, 0.16] [0.15, 0.16, 0.17] [0.21, 0.22, 0.25] [0.17, 0.19, 0.20]
𝐺
5

[0.11, 0.14, 0.17] [0.11, 0.14, 0.21] [0.22, 0.29, 0.34] [0.22, 0.26, 0.31] [0.14, 0.17, 0.21]
𝐺
6

[0.20, 0.21, 0.22] [0.17, 0.17, 0.18] [0.18, 0.19, 0.21] [0.20, 0.21, 0.22] [0.20, 0.21, 0.23]
𝐺
7

[0.10, 0.14, 0.19] [0.21, 0.25, 0.32] [0.21, 0.24, 0.29] [0.15, 0.20, 0.26] [0.13, 0.16, 0.19]
𝐺
8

[0.18, 0.21, 0.24] [0.13, 0.15, 0.18] [0.15, 0.18, 0.21] [0.21, 0.23, 0.26] [0.21, 0.23, 0.26]

Step 3. Utilize the GFOWBHM operator (53) (suppose that
its weight vector is 𝜔 = (0.243, 0.514, 0.243)𝑇 determined by
using the normal distribution based method [27] (let 𝛿 = 0.5
and 𝑝 = 𝑞 = 𝑟 = 3) to aggregate the overall attribute value
𝑟
(𝑘)

𝑗
(𝑘 = 1, 2, 3), corresponding to the decision maker 𝑑

𝑘
(𝑘 =

1, 2, 3), and get the collective overall attribute value 𝑟
𝑗
:

𝑟
1
= [0.1459, 0.1816, 0.2195] ,

𝑟
2
= [0.1395, 0.1649, 0.1962] ,

𝑟
3
= [0.1592, 0.1837, 0.2111] ,

𝑟
4
= [0.1909, 0.2218, 0.2493] ,

𝑟
5
= [0.1552, 0.1830, 0.2171] .

(55)

Step 4. Compare each 𝑟
𝑗
with all 𝑟

𝑖
(𝑖 = 1, 2, 3, 4, 5) by using

(7) (without loss of generality, set 𝛿 = 0.5), and let𝑝
𝑖𝑗
= 𝑝(𝑟
𝑖
≥

𝑟
𝑗
), and then construct a possibility matrix:

𝑃 =(

0.5 0.7387 0.4598 0 0.4610

0.2613 0.5 0.1638 0 0.1921

0.5402 0.8362 0.5 0 0.5010

1 1 1 0.5 1

0.5390 0.8079 0.4990 0 0.5

) (56)

Summing all elements in each line of matrix 𝑃, we have

𝑝
1
= 2.1595, 𝑝

2
= 1.1171, 𝑝

3
= 2.3774,

𝑝
4
= 4.5, 𝑝

5
= 2.3459,

(57)

and then reorder 𝑟
𝑗
(𝑗 = 1, 2, 3, 4, 5) in descending order in

accordance with the values of 𝑝
𝑗
(𝑗 = 1, 2, 3, 4, 5):

𝑟
4
> 𝑟
3
> 𝑟
5
> 𝑟
1
> 𝑟
2
. (58)

Step 5. Rank all the alternatives 𝑥
𝑗
(𝑗 = 1, 2, 3, 4, 5) by the

ranking of 𝑟
𝑗
(𝑗 = 1, 2, 3, 4, 5):

𝑥
4
≻ 𝑥
3
≻ 𝑥
5
≻ 𝑥
1
≻ 𝑥
2
, (59)

and thus the most desirable alternative is 𝑥
4
.

From the previous analysis, the results obtained by the
proposed approach are very similar to the ones obtained Xu’s
approach [21], but our approach is more flexible than that
of Xu [21] because it can provide the decision makers more
choices as parameters are assigned different values.
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Table 7: Comparison of the proposed approach with other approaches.

Xu’s approach [21] Wei’s approach [22] Sun and Sun’s approach
[23] Proposed approach

Problem type MAGDM MAGDM MADM MAGDM

Application area Air-conditioning system
selection Investment of money EPR system selection Air-conditioning system

selection

Decision information Triangular fuzzy decision
matrix

Triangular fuzzy
decision matrix

Triangular fuzzy decision
matrix

Triangular fuzzy decision
matrix

Solution method
Aggregation stage FWHM operator FIOWHM operator GFWBHM operator
Exploitation stage FHHM operator FWHM operator FOBHM operator GFOWBHM operator
Ranking stage Complementary matrix Complementary matrix Possibility matrix Possibility matrix

Final decision Ranking of alternatives Ranking of alternatives Ranking of alternatives Ranking of alternatives

5. Comparison of the Proposed Approach
with Other Approaches

In this section, we compare the proposed approachwith other
approaches. The approaches to be compared here are the
approaches proposed by Xu [21], Wei [22], and H. Sun and
M. Sun [23], respectively.

Each of methods has its advantages and disadvantages
and none of them can always perform better than the others
in any situations. It perfectly depends on how we look at
things and not on how they are themselves. The differences
in four approaches are the following.

(1) The H. Sun and M. Sun’s approach is only suit-
able for solving multiple attribute decision making
(MADM), while the proposed approach and Xu’s and
Wei’s approaches are suitable for solving MAGDM
because the approaches provide the aggregation stage
in aggregation process.

(2) The Xu’s and Wei’s approaches have simple com-
putation process than the proposed approach and
H. Sun and M. Sun’s approach, while the proposed
approach and H. Sun andM. Sun’s approach are more
flexible than Xu’s and Wei’s approaches because these
can provide the decision makers more choices as
parameters are assigned different values.

(3) The Wei’s approach uses the weights of decision
makers as the order inducing variables in aggregation
stage, while other approaches use the weights of
decision makers to determine the order positions of
the overall attribute values in exploitation stage.

Others of relative comparisonwithXu’s,Wei’s, andH. Sun
and M. Sun’s approaches are shown in Table 7.

6. Conclusions

In this paper, we have extended the GWBM operator to
the triangular fuzzy environment and developed the fuzzy
harmonic aggregation operators including the FWBHM and
GFWBHM operators. Based on the these operators and
Yager’s OWA operator, we have developed the FOWBHM

operator and the GFOWBHMoperator, respectively, and dis-
cussed their properties and special cases. It has been pointed
out that if all the input fuzzy data reduce to the interval
or numerical data, then the GFWBHM operator reduces
to the GUWBHM operator and GWBHM operator, respec-
tively; the GFOWBHMoperator reduces to the GUOWBHM
operator and GOWBHM operator, respectively. In these
situations, the WHM (resp., OWHM) operator is the special
case of the GWBHM (resp. GOWBHM) operator. Based
on the GFWBHM and GFOWBHM operators, we have
developed an approach to multiple attribute group decision
making with triangular fuzzy information and have also
applied the proposed approach to the problemof determining
what kind of air-conditioning systems should be installed in
the library. Furthermore, the comparison of the proposed
approach with other existing approaches is presented. The
merit of the proposed approach is that it is more flexible
than the classical ones because it can provide the decision
makers more choices as parameters are assigned different
values. Apparently, the proposed aggregation techniques and
decision making method can also extended to the interval-
valued triangular fuzzy environment.
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R. Yager, “Generalized Bonferroni mean operators in multi-
criteria aggregation,” Fuzzy Sets and Systems, vol. 161, no. 17, pp.
2227–2242, 2010.

[15] M. Xia, Z. Xu, and B. Zhu, “Generalized intuitionistic fuzzy
Bonferroni means,” International Journal of Intelligent Systems,
vol. 27, no. 1, pp. 23–47, 2012.

[16] C. Tan and X. Chen, “Intuitionistic fuzzy Choquet integral
operator for multi-criteria decision making,” Expert Systems
with Applications, vol. 37, no. 1, pp. 149–157, 2010.

[17] Z. Xu, “Choquet integrals of weighted intuitionistic fuzzy
information,” Information Sciences, vol. 180, no. 5, pp. 726–736,
2010.

[18] Z. Xu and R. R. Yager, “Intuitionistic fuzzy bonferroni means,”
IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41,
no. 2, pp. 568–578, 2011.

[19] D. Yu, Y. Wu, and W. Zhou, “Generalized hesitant fuzzy
bonferroni mean and its application in multi-criteria group
decision making,” Journal of Information and Computational
Science, vol. 9, no. 2, pp. 267–274, 2012.

[20] Z. Xu, “Approaches to multiple attribute group decisionmaking
based on intuitionistic fuzzy power aggregation operators,”
Knowledge-Based Systems, vol. 24, no. 6, pp. 749–760, 2011.

[21] Z. Xu, “Fuzzy harmonic mean operators,” International Journal
of Intelligent Systems, vol. 24, no. 2, pp. 152–172, 2009.

[22] G.-W. Wei, “FIOWHM operator and its application to multiple
attribute group decision making,” Expert Systems with Applica-
tions, vol. 38, no. 4, pp. 2984–2989, 2011.

[23] H. Sun and M. Sun, “Generalized Bonferroni harmonic mean
operators and their application to multiple attribute decision
making,” Journal of Computational Information Systems, vol. 8,
no. 14, pp. 5717–5724, 2012.

[24] P. J. M. van Laarhoven and W. Pedrycz, “A fuzzy extension of
Saaty’s priority theory,” Fuzzy Sets and Systems, vol. 11, no. 3, pp.
229–241, 1983.

[25] F. Chiclana, F. Herrera, and E. Herrera-Viedma, “Integrating
multiplicative preference relations in a multipurpose decision-
making model based on fuzzy preference relations,” Fuzzy Sets
and Systems, vol. 122, no. 2, pp. 277–291, 2001.

[26] Z. S. Xu and Q. L. Da, “The uncertain OWA operator,” Interna-
tional Journal of Intelligent Systems, vol. 17, no. 6, pp. 569–575,
2002.

[27] Z. Xu, “An overview ofmethods for determiningOWAweights,”
International Journal of Intelligent Systems, vol. 20, no. 8, pp.
843–865, 2005.

[28] R. R. Yager, “Centered OWA operators,” Soft Computing, vol. 11,
no. 7, pp. 631–639, 2007.

[29] X. Liu and S. Han, “Orness and parameterized RIM quantifier
aggregation with OWA operators: a summary,” International
Journal of Approximate Reasoning, vol. 48, no. 1, pp. 77–97, 2008.

[30] K. Yoon, “The propagation of errors in multiple-attribute deci-
sion analysis: a practical approach,” Journal of the Operational
Research Society, vol. 40, pp. 681–686, 1989.


