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The aim of this paper is to show the use of the coupled quasisolutions method as a useful technique when dealing with ordinary
differential equations with functional arguments of bounded variation. We will do this by looking for solutions for a first-order
ordinary differential equation with an advanced argument of bounded variation.Themain trick is to use the Jordan decomposition
of this argument in a nondecreasing part and a nonincreasing one. As a necessary step, we will also talk about coupled fixed points
of multivalued operators.

1. Introduction

In the paper [1], we proved a new result on the existence of
coupled fixed points for multivalued operators, and then we
used it to guarantee the existence of coupled quasisolutions
and solutions to a certain first-order ordinary differential
equation with state-dependent delay. In that paper, the
nonlinearity was allowed to have both nondecreasing and
nonincreasing arguments and the existence of solutions was
obtained under strong Lipschitz conditions. We pointed out
there that this tool could be useful when working with
arguments of bounded variation, but no literature about this
was written since then. So, the main goal in the present paper
is to develop the application of the coupled quasisolutions
technique in the framework of arguments of bounded vari-
ation, and we do it in an appropriate way, in order to take
advantage of the Jordan decomposition and avoid the use of
strong assumptions, as Lipschitz-continuity.

To show the application of this technique, we will study
throughout this paper the existence of solutions for the
following first-order problem:

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼 = [𝑎, 𝑏] ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

(1)

where 𝑟 ≥ 0, 𝜏 is a measurable function such that 𝜏(𝑡) ≥ 𝑡 for
a.a. 𝑡; that is, 𝜏 is an advanced argument, and 𝜙 is a bounded
function which represents the final state of the solution. By a
solution of (1), we mean a function 𝑥 ∈ C[𝑎, 𝑏 + 𝑟] such that
𝑥
|𝐼
∈ 𝐴𝐶(𝐼) and 𝑥 satisfies both the differential equation (a.e.

on 𝐼) and the final condition. We refer the readers to papers
[2–4] to see more results on the existence of solutions and
some applications of first-order problems with advance.

This paper is organized as follows. In Section 2, we gather
some preliminary concepts and results involving functions of
bounded variation and coupled fixed points of multivalued
operators. These preliminaries are used later, in Section 3,
to prove the existence of quasisolutions and solutions for
problem (1). In Section 4, we show how our results can be
adapted to deal with delay problems. Finally, in Section 5,
some examples of application are available.

2. Preliminaries on Bounded
Variation and Coupled Fixed Points of
Multivalued Operators

In this section, we introduce some preliminaries that we will
use throughout this work. First, we remember some concepts



2 Abstract and Applied Analysis

about functions of bounded variation. The reader can see
more about this in the monographs [5, 6].

Definition 1. Given a function 𝑓 : 𝐼 = [𝑎, 𝑏] ⊂ R → R and a
partition 𝑃 = {𝑥

0
, . . . , 𝑥

𝑛
} of 𝐼, one defines the variation of 𝑓

relative to the partition 𝑃 as the number

𝑉 (𝑓, 𝑃) =

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖−1
)
󵄨
󵄨
󵄨
󵄨
, (2)

and one defines the total variation of 𝑓 on 𝐼 as

𝑉
𝑏

𝑎
(𝑓) = sup

𝑃∈P

𝑉 (𝑓, 𝑃) , (3)

whereP = {𝑃 : 𝑃 is a partition of 𝐼}.
One says that 𝑓 is a function of bounded variation on 𝐼 if

𝑉
𝑏

𝑎
(𝑓) < +∞. In that case, one writes 𝑓 ∈ BV(𝐼).

Functions of bounded variation satisfy the followingwell-
known result, which becomes essential now for our purposes.

Proposition 2 (Jordan decomposition). A function 𝑓 is of
bounded variation on 𝐼 if and only if there exist a nondecreasing
function, 𝑔, and a nonincreasing one, ℎ, such that

𝑓 (𝑡) = 𝑔 (𝑡) + ℎ (𝑡) , ∀𝑡 ∈ 𝐼. (4)

The proof of Proposition 2 uses the fact that the function
𝑡 ∈ 𝐼 → 𝑉

𝑡

𝑎
(𝑓) is nondecreasing and 𝑡 → 𝑓(𝑡) − 𝑉

𝑡

𝑎
(𝑓) is

nonincreasing, and thus the desired decomposition is

𝑓 (𝑡) = 𝑉
𝑡

𝑎
(𝑓) + 𝑓 (𝑡) − 𝑉

𝑡

𝑎
(𝑓) . (5)

We remark that this decomposition is not unique. Finally,
notice that, as a consequence of this result, every function of
bounded variation is a.e. differentiable.

The set BV(𝐼) is an algebra which is included neither in
the set of continuous functions nor in its complementary.
Indeed, if𝑓 ismonotone on [𝑎, 𝑏], then𝑉𝑏

𝑎
(𝑓) = |𝑓(𝑏)−𝑓(𝑎)|,

and thus 𝑓 ∈ BV(𝐼). Then, there exist discontinuous func-
tions which are of bounded variation (e.g., step function). In
fact, it is also a well-known fact that if 𝑓 ∈ BV(𝐼), then 𝑓 has
only “jump” discontinuities. On the other hand, there exist
continuous functions which are not of bounded variation, as
(see [5, Example 6.3.1])

𝑓 (𝑡) =

{

{

{

𝑡 cos( 𝜋
2𝑡

) if 0 < 𝑡 ≤ 1,

0 if 𝑡 = 0.

(6)

To obtain our main result, we will use a generalized mon-
otone method in presence of lower and upper solutions.
This is a very well-known tool which is extensively used in
the literature of ordinary differential equations. The classical
version of this technique uses a pair of monotone sequences
which will converge to the extremal solutions of the problem.
The generalized version of this technique was developed in
[7], and it is used when the nonlinearity has discontinuous
arguments and therefore the pair of monotone sequences is

replaced by a monotone operator. As a novelty which respect
to themethod developed in [7] and related references, we will
use here a multivalued operator (i.e., a set-valued mapping)
defined in a product space and then we will look for coupled
fixed points. We concrete this idea in the following lines.

Definition 3. A metric space 𝑋 equipped with a partial
ordering ≤ is an ordered metric space if the intervals [𝑥) =
{𝑦 ∈ 𝑋 : 𝑥 ≤ 𝑦} and (𝑥] = {𝑦 ∈ 𝑋 : 𝑦 ≤ 𝑥} are closed for
every 𝑥 ∈ 𝑋. Let 𝑃 be a subset of an ordered metric space.
An operator 𝐴 : 𝑃 × 𝑃 → 𝑃 is said to be mixed monotone
if 𝐴(⋅, 𝑥) is nondecreasing and 𝐴(𝑥, ⋅) is nonincreasing for
each 𝑥 ∈ 𝑃. One says that 𝐴 satisfies the mixed monotone
convergence property (m.m.c.p.) if (𝐴(V

𝑗
, 𝑤
𝑗
))
∞

𝑗=1
converges

in 𝑋 whenever (V
𝑗
)
∞

𝑗=1
and (𝑤

𝑗
)
∞

𝑗=1
are sequences in 𝑃, one

being nondecreasing and the other nonincreasing.

Definition 4. Let𝑋 be a subset of an ordered metric space𝑋.
One defines a multivalued operator in the product 𝑋 × 𝑋 as
a mapping

A : 𝑋 × 𝑋 󳨀→ 2
𝑋
\ 0. (7)

We say that V, 𝑤 ∈ 𝑋 are coupled fixed points of A if V ∈

A(V, 𝑤) and 𝑤 ∈ A(𝑤, V). We say that V
∗
, 𝑤∗ ∈ 𝑋 are the

extremal coupled fixed points ofA in𝑋 if V
∗
,𝑤∗ are coupled

fixed points ofA and if V, 𝑤 ∈ 𝑋 are another pair of coupled
fixed points ofA; then V

∗
≤ V and 𝑤 ≤ 𝑤

∗.

Theorem 5 (see [1, Theorem 2.1]). Let 𝑌 be a subset of an
ordered metric space 𝑋, [𝛼, 𝛽] be a nonempty closed interval
in 𝑌, and A : [𝛼, 𝛽] × [𝛼, 𝛽] → 2

[𝛼,𝛽]
\ 0 be a multivalued

operator.
If for all V, 𝑤 ∈ [𝛼, 𝛽], there exist

𝐴
∗
(V, 𝑤) = minA (V, 𝑤) ∈ [𝛼, 𝛽] ,

𝐴
∗

(V, 𝑤) = maxA (V, 𝑤) ∈ [𝛼, 𝛽] ,
(8)

and the (single-valued) operators 𝐴
∗
and 𝐴∗ are mixed mon-

otone and satisfy the m.m.c.p., then A has the extremal
coupled fixed points in [𝛼, 𝛽], V

∗
, V∗. Moreover, they satisfy the

following characterization:

(V
∗
, 𝑤
∗
) = min
⪯

{(V, 𝑤) : (𝐴
∗
(V, 𝑤) , 𝐴∗ (𝑤, V)) ⪯ (V, 𝑤)} ,

(9)

where

(V, 𝑤) ⪯ (V, 𝑤) ⇐⇒ V ≤ V, 𝑤 ≥ 𝑤. (10)

3. Main Result

Now, we develop our generalized monotone method applied
to problem (1). To do this, throughout this section, we will
assume the following.

(𝐻
1
) There exists a closed interval 𝐽 ⊂ R, such that for a.a.
𝑡 ∈ 𝐼 and all𝑥 ∈ R the function𝑓(𝑡, 𝑥, ⋅) is of bounded
variation on 𝐽.
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Assumption (𝐻
1
) implies that there exists a nondecreas-

ing function, 𝑔, and a nonincreasing one, ℎ, such that

𝑓 (𝑡, 𝑥, ⋅) = 𝑔 (𝑡, 𝑥, ⋅) + ℎ (𝑡, 𝑥, ⋅) , (11)

for all (𝑡, 𝑥) ∈ 𝐼 ×R.
Now, we define what we mean by lower and upper solu-

tions for problem (1).

Definition 6. One says that 𝛼, 𝛽 ∈ C[𝑎, 𝑏+𝑟] are, respectively,
a lower and upper solutions for problem (1), and if 𝛼

|𝐼
, 𝛽
|𝐼
∈

𝐴𝐶(𝐼),

[ min
𝑡∈[𝑎,𝑏+𝑟]

𝛼 (𝑡) , max
𝑡∈[𝑎,𝑏+𝑟]

𝛽 (𝑡)] ⊂ 𝐽, (12)

the compositions

𝑡 󳨃󳨀→ 𝑓 (𝑡, 𝛼 (𝑡) , 𝑦) , 𝑡 󳨃󳨀→ 𝑓 (𝑡, 𝛽 (𝑡) , 𝑦) (13)

are measurable for all 𝑦 ∈ 𝐽 and the following inequalities
hold:

𝛼
󸀠

(𝑡) ≥ 𝑔 (𝑡, 𝛼 (𝑡) , 𝛽 (𝜏 (𝑡))) + ℎ (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛼 (𝑡) ≤ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

𝛽
󸀠

(𝑡) ≤ 𝑔 (𝑡, 𝛽 (𝑡) , 𝛼 (𝜏 (𝑡))) + ℎ (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛽 (𝑡) ≥ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] .

(14)

Remark 7. Notice that, under the previous definition, the
lower and the upper solutions appear “coupled.” On the other
hand, it is assumed that

min
𝑡∈[𝑎,𝑏+𝑟]

𝛼 (𝑡) ≤ max
𝑡∈[𝑎,𝑏+𝑟]

𝛽 (𝑡) . (15)

This is not a strong assumption, taking into account that, as
usual, we will ask the lower and the upper solutions to be well
ordered in the whole interval [𝑎, 𝑏 + 𝑟].

On the other hand, the fact that 𝑡 󳨃→ 𝑓(𝑡, 𝛼(𝑡), 𝑦) and 𝑡 ∈
𝐼 󳨃→ 𝑓(𝑡, 𝛽(𝑡), 𝑦) are being measurable for all 𝑦 ∈ 𝐽 implies
that the compositions

𝑡 ∈ 𝐼 󳨃󳨀→ 𝑔 (𝑡, 𝛼 (𝑡) , 𝛽 (𝜏 (𝑡))) + ℎ (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) ,

𝑡 ∈ 𝐼 󳨃󳨀→ 𝑔 (𝑡, 𝛽 (𝑡) , 𝛼 (𝜏 (𝑡))) + ℎ (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (t)))
(16)

aremeasurable too, because 𝑔 and ℎ are beingmonotonewith
respect to their last variables.

As we said in the Introduction, an essential tool in our
work is the use of coupled quasisolutions. So, we introduce
now this concept.

Definition 8. One says that two functions 𝑥
∗
, 𝑥
∗

∈

C[𝑎, 𝑏 + 𝑟]are coupled quasisolutions of problem (1), and if

𝑥
∗|𝐼
, 𝑥
∗

|𝐼
∈ 𝐴𝐶(𝐼), 𝑥

∗
(𝑡) = 𝑥

∗
(𝑡) = 𝜙(𝑡) for all 𝑡 ∈ [𝑏, 𝑏+𝑟] and

for a.a. 𝑡 ∈ 𝐼, they satisfy

𝑥
󸀠

∗
(𝑡) = 𝑔 (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗

(𝜏 (𝑡))) + ℎ (𝑡, 𝑥
∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡))) ,

𝑥
∗󸀠

(𝑡) = 𝑔 (𝑡, 𝑥
∗

(𝑡) , 𝑥
∗
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

∗

(𝑡) , 𝑥
∗

(𝜏 (𝑡))) .

(17)

We say that these coupled quasisolutions are extremal in a
subset𝑋 ⊂ C[𝑎, 𝑏+𝑟] if 𝑥

∗
, 𝑥∗ ∈ 𝑋 and 𝑥

∗
(𝑡) ≤ 𝑥

1
(𝑡), 𝑥
2
(𝑡) ≤

𝑥
∗
(𝑡) whenever 𝑥

1
, 𝑥
2
∈ 𝑋 is another pair of quasisolutions.

We need the following maximum principle related to
problems with advance, as an auxiliar tool, for proving our
main result. Compare it with [3, Lemma 3.2], [4, Lemma 1].

Lemma 9. Let 𝜏 : 𝐼 → [𝑎, 𝑏 + 𝑟] be a measurable function
such that 𝜏(𝑡) ≥ 𝑡 for a.a. 𝑡 ∈ 𝐼 and assume that 𝑝 ∈ C[𝑎, 𝑏+𝑟]

such that 𝑝
|𝐼
∈ 𝐴𝐶(𝐼) and satisfies

𝑝
󸀠

(𝑡) ≥ 𝐾 (𝑡) 𝑝 (𝑡) − 𝐿 (𝑡) 𝑝 (𝜏 (𝑡)) for a.a. 𝑡 ∈ 𝐼,

𝑝 (𝑡) = 0, ∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

(18)

where𝐾, 𝐿 ∈ 𝐿1(𝐼) and 𝐿 ≥ 0 a.e.
If

∫

𝑏

𝑎

(𝐾
−
(𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (19)

where𝐾
−
= max{−𝐾, 0}, then 𝑝(𝑡) ≤ 0 for all 𝑡 ∈ [𝑎, 𝑏 + 𝑟].

Proof. Let 𝑡
1
∈ [𝑎, 𝑏 + 𝑟] such that

𝑝 (𝑡
1
) = max
𝑡∈[𝑎,𝑏+𝑟]

𝑝 (𝑡) (20)

and assume by contradiction that 𝑝(𝑡
1
) > 0. Then, 𝑡

1
∈ [𝑎, 𝑏).

Now, let 𝑡
2
∈ (𝑡
1
, 𝑏] such that 𝑝(𝑡

2
) = 0 and 𝑝(𝑡) ≥ 0 for all

𝑡 ∈ [𝑡
1
, 𝑡
2
]. Now, integrating 𝑡

1
and 𝑡
2
, we obtain

𝑝 (𝑡
1
) = −∫

𝑡
2

𝑡
1

𝑝
󸀠

(𝑡) 𝑑𝑡

≤ −∫

𝑡
2

𝑡
1

𝐾 (𝑡) 𝑝 (𝑡) 𝑑𝑡 + ∫

𝑡
2

𝑡
1

𝐿 (𝑡) 𝑝 (𝜏 (𝑡)) 𝑑𝑡

≤ 𝑝 (𝑡
1
) ∫

𝑡
2

𝑡
1

(𝐾
−
(𝑡) + 𝐿 (𝑡)) 𝑑𝑡,

(21)

and then condition (49) provides the contradiction 𝑝(𝑡
1
) <

𝑝(𝑡
1
).

The main result on this paper concerns the existence of
extremal quasisolutions and solutions for problem (1). It is as
follows.

Theorem 10. Assume (𝐻
1
) and that there exist 𝛼, 𝛽 ∈ C[𝑎, 𝑏+

𝑟]which are, respectively, lower andupper solutions for problem
(1) such that 𝛼(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎, 𝑏 + 𝑟] and

𝐸 = [ min
𝑡∈[𝑎,𝑏+𝑟]

𝛼 (𝑡) , max
𝑡∈[𝑎,𝑏+𝑟]

𝛽 (𝑡)] ⊂ 𝐽. (22)
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Assume moreover that the following conditions hold:

(𝐻
2
) for each 𝛾

1
, 𝛾
2
∈ [𝛼, 𝛽] = {𝛾 ∈ C[𝑎, 𝑏+𝑟] : 𝛼(𝑡) ≤

𝛾(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎, 𝑏+𝑟]}, the final value problem

(𝑃
𝛾
1
,𝛾
2

)

{
{
{
{

{
{
{
{

{

𝑥
󸀠
(𝑡) = 𝐹

𝛾
2
,𝛾
1
(𝑡, 𝑥 (𝑡))

:= 𝑔 (𝑡, 𝑥 (𝑡) , 𝛾
2
(𝜏 (𝑡)))

+ℎ (𝑡, 𝑥 (𝑡) , 𝛾
1
(𝜏 (𝑡))) , 𝑓𝑜𝑟 𝑎.𝑎. 𝑡 ∈ 𝐼,

𝑥 (𝑏) = 𝜙 (𝑏)

(23)

has the extremal solutions in [𝛼, 𝛽];
(𝐻
3
) there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for

a.a. 𝑡 ∈ 𝐼, all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all 𝑦
1
, 𝑦
2
∈

[𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))], one has
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑥, 𝑦

1
) + ℎ (𝑡, 𝑥, 𝑦

2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜓 (𝑡) ; (24)

(𝐻
4
) there exists 𝐾

1
, 𝐾
2
, 𝐿
1
, 𝐿
2
∈ 𝐿
1
(𝐼) such that 𝐿

1
,

𝐿
2
≥ 0 a.e. and

𝑔 (𝑡, 𝑥, 𝑦) − 𝑔 (𝑡, 𝑥, 𝑦) ≥ 𝐾
1
(𝑡) (𝑥 − 𝑥) − 𝐿

1
(𝑡) (𝑦 − 𝑦) ,

ℎ (𝑡, 𝑥, 𝑦) − ℎ (𝑡, 𝑥, 𝑦) ≥ 𝐾
2
(𝑡) (𝑥 − 𝑥) − 𝐿

2
(𝑡) (𝑦 − 𝑦)

(25)

whenever 𝛼(𝑡) ≤ 𝑥 ≤ 𝑥 ≤ 𝛽(𝑡) and

min
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) − ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠

≤ 𝑦 ≤ 𝑦 ≤ max
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) + ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠.

(26)

Moreover,

∫

𝑏

𝑎

(𝐾
−
(𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (27)

where 𝐾 = 𝐾
1
+ 𝐾
2
, 𝐿 = 𝐿

1
+ 𝐿
2
and 𝐾

−
(𝑡) =

max{−𝐾(𝑡), 0}.

In these conditions, problem (1) has a unique solution in
[𝛼, 𝛽].

Proof. We consider the space 𝑋 = C[𝑎, 𝑏 + 𝑟] endowed with
the ordering

𝛾
1
≤ 𝛾
2
⇐⇒ 𝛾

1
(𝑡) ≤ 𝛾

2
(𝑡) , ∀𝑡 ∈ [𝑎, 𝑏 + 𝑟] , (28)

and we define a multivalued operator

A : [𝛼, 𝛽] × [𝛼, 𝛽] ⊂ 𝑋 × 𝑋 󳨀→ 2
[𝛼,𝛽]

\ 0 (29)

as follows: for each 𝛾
1
, 𝛾
2
∈ [𝛼, 𝛽], we have𝑥 ∈ A(𝛾

1
, 𝛾
2
) if and

only if 𝑥 ∈ [𝛼, 𝛽], 𝑥
𝐼
is a solution of (𝑃

𝛾
1
,𝛾
2

) and 𝑥
|[𝑏,𝑏+𝑟]

= 𝜙.

Step 1. Operator A has the extremal coupled fixed points in
[𝛼, 𝛽]. By virtue of condition (𝐻

2
), operatorA is well defined

and there exist

𝐴
∗
= minA (𝛾

1
, 𝛾
2
) , 𝐴

∗
= maxA (𝛾

1
, 𝛾
2
) . (30)

We will show now that 𝐴
∗
, 𝐴∗ are mixed monotone and

satisfy m.m.c.p. So, let

𝛾
1
, 𝛾
1
, 𝛾
2
, 𝛾
2
∈ [𝛼, 𝛽] (31)

such that 𝛾
1
≤ 𝛾
1
, 𝛾
2
≤ 𝛾
2
and put

𝑥
1
= 𝐴
∗
(𝛾
1
, 𝛾
2
) , 𝑥

1
= 𝐴
∗
(𝛾
1
, 𝛾
2
) , 𝑥

2
= 𝐴
∗
(𝛾
1
, 𝛾
2
) .

(32)

Then, for all 𝑡 ∈ [𝑏, 𝑏 + 𝑟], we have that 𝑥
1
(𝑡) = 𝑥

1
(𝑡) = 𝑥

2
(𝑡),

and for a.a. 𝑡 ∈ 𝐼, we have

𝑥
󸀠

1
(𝑡) = 𝑔 (𝑡, 𝑥

1
(𝑡) , 𝛾
2
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

1
, 𝛾
1
(𝜏 (𝑡)))

≤ 𝑔 (𝑡, 𝑥
1
(𝑡) , 𝛾
2
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

1
, 𝛾
1
(𝜏 (𝑡))) .

(33)

And so, 𝑥
1
is an upper solution for problem (𝑃

𝛾
1
,𝛾
2

). The fact
that 𝑥

1
is being the least solution of this problem in [𝛼, 𝛽]

implies that 𝑥
1
≥ 𝑥
1
and then 𝐴

∗
(⋅, 𝛾
2
) is nondecreasing. On

the other hand,

𝑥
󸀠

1
(𝑡) = 𝑔 (𝑡, 𝑥

1
(𝑡) , 𝛾
2
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

1
(𝑡) , 𝛾
1
(𝜏 (𝑡)))

≤ 𝑔 (𝑡, 𝑥
1
(𝑡) , 𝛾
2
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

1
(𝑡) , 𝛾
1
(𝜏 (𝑡))) ,

(34)

and therefore 𝑥
1
is an upper solution for problem (𝑃

𝛾
1
,𝛾
2

).
Then, 𝑥

1
≥ 𝑥
2
, and so themapping𝐴

∗
(𝛾
1
, ⋅) is nonincreasing.

In the same way, we show that 𝐴∗ is mixed monotone.
To see that𝐴

∗
,𝐴∗ satisfy the m.m.c.p., let (V

𝑗
)
∞

𝑗=1
, (𝑤
𝑗
)
∞

𝑗=1

be sequences in [𝛼, 𝛽], one being nondecreasing and the
other being nonincreasing. As 𝐴

∗
, 𝐴∗ are mixed monotone

and bounded, we obtain that the sequences (𝐴
∗
(V
𝑗
, 𝑤
𝑗
))
∞

𝑗=1
,

(𝐴
∗
(V
𝑗
, 𝑤
𝑗
))
∞

𝑗=1
have their pointwise limit; say 𝑧

∗
, 𝑧∗. As

(𝐴
∗
(V
𝑗
, 𝑤
𝑗
))
∞

𝑗=1
, (𝐴∗(V

𝑗
, 𝑤
𝑗
))
∞

𝑗=1
are constant in [𝑏, 𝑏 + 𝑟], the

convergence is uniform in this interval. On the other hand,
for 𝑡, 𝑠 ∈ 𝐼, 𝑠 < 𝑡, and 𝑗 ∈ N, we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
∗

𝑗
(𝑡) − 𝑧

∗

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑟, 𝑧

∗

𝑗
(𝑟) , 𝑤

𝑗
(𝜏 (𝑟))) + ℎ (𝑡, 𝑧

∗

𝑗
(𝑟) , V
𝑗
(𝜏 (𝑟)))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑟

≤ ∫

𝑡

𝑠

𝜓 (𝑟) 𝑑𝑟,

(35)

and thus (𝑧∗
𝑗
)
∞

𝑗=1
converges to 𝑧∗ uniformly on 𝐼. The same

argument is valid for 𝑧
∗
.

By application ofTheorem 5, operatorA has the extremal
coupled fixed points in [𝛼, 𝛽]; say 𝑥

∗
, 𝑥∗.

Step 2. Problem (1) has the extremal quasisolutions in [𝛼, 𝛽].
Indeed, we will show that the extremal coupled fixed points
of operators A, 𝑥

∗
, and 𝑥

∗ correspond with these extremal
quasisolutions. First, it is clear that if 𝑥, 𝑥 ∈ [𝛼, 𝛽] are coupled
fixed points of A, then they are coupled quasisolutions of
problem (1). On the other hand, if 𝑥, 𝑥 are quasisolutions of
problem (1), then 𝐴

∗
(𝑥, 𝑥) ≤ 𝑥 and 𝐴∗(𝑥, 𝑥) ≥ 𝑥, and then
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characterization (9) implies that 𝑥
∗
≤ 𝑥 and 𝑥 ≤ 𝑥

∗. This
shows that 𝑥

∗
, 𝑥∗ are the extremal quasisolutions of problem

(1) in [𝛼, 𝛽].

Step 3. Problem (1) has a unique solution in [𝛼, 𝛽]. We will
prove this by showing that the extremal quasisolutions 𝑥

∗
, 𝑥∗

are, in fact, the same functions, and thus defining a solution of
the problem. This solution must be unique in [𝛼, 𝛽] because
if 𝑥 ∈ [𝛼, 𝛽] is a solution of (1), then the pair 𝑥, 𝑥 is also a
quasisolution, and then 𝑥

∗
≤ 𝑥 ≤ 𝑥

∗.
To see that 𝑥

∗
= 𝑥
∗, first notice that as (𝑥

∗
, 𝑥
∗
) is a

pair of quasisolutions; then, the reversed pair, (𝑥∗, 𝑥
∗
), is

quasisolutions too, and then, extremality implies 𝑥
∗
≤ 𝑥
∗.

Moreover, condition (𝐻
3
) implies that for a.a. 𝑡 ∈ 𝐼

𝑥
∗
(𝑡) , 𝑥
∗

(𝑡) ∈ [𝜙 (𝑏) − ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠, 𝜙 (𝑏) + ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠] .

(36)

Now, define the function 𝑝(𝑡) = 𝑥
∗
(𝑡) −𝑥

∗
(𝑡) ≥ 0. On the

one hand, 𝑝(𝑡) = 0 for all 𝑡 ∈ [𝑏, 𝑏 + 𝑟]. On the other hand,
condition (𝐻

4
) implies for a.a. 𝑡 ∈ 𝐼 that

𝑝
󸀠

(𝑡) = 𝑔 (𝑡, 𝑥
∗

(𝑡) , 𝑥
∗
(𝜏 (𝑡))) − 𝑔 (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗

(𝜏 (𝑡)))

+ ℎ (𝑡, 𝑥
∗

(𝑡) , 𝑥
∗

(𝜏 (𝑡))) − ℎ (𝑡, 𝑥
∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡)))

≥ 𝐾 (𝑡) (𝑥
∗

(𝑡) − 𝑥
∗
(𝑡)) − 𝐿 (𝑡) (𝑥

∗

(𝜏 (𝑡)) − 𝑥
∗
(𝜏 (𝑡))) ,

(37)

and then by virtue of Lemma 9, we obtain that 𝑝(𝑡) ≤ 0 on 𝐼.
We conclude that𝑝(𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏+𝑟]; that is, 𝑥

∗
= 𝑥
∗.

This ends the proof.

Remark 11. Now, we point out some remarks related to
Theorem 10.

(1) Condition (𝐻
2
) could be replaced by any result on

the existence of extremal solutions between lower and
upper solutions for problem (𝑃

𝛾
1
,𝛾
2

). For example, as
it is well known, if 𝐹

𝛾
1
,𝛾
2

is a Carathéodory function,
then (𝐻

3
) implies that (𝑃

𝛾
1
,𝛾
2

) has the extremal solu-
tions between 𝛼 and 𝛽. Moreover, there exists a very
extensive literature about the existence of extremal
solutions for problem (𝑃

𝛾
1
,𝛾
2

) for discontinuous 𝐹
𝛾
1
,𝛾
2

.
The reader is referred to [1, 8–10] and references
therein for some results of this type. Notice that
although most of these references deal with initial
value problems, these results can easily be adapted for
final value problems. Finally, notice that (𝐻

2
) implies,

in particular, measurability of the composition 𝑡 ∈

𝐼 󳨃→ 𝐹
𝛾
1
,𝛾
2

(𝑡, 𝑥(𝑡)) for all 𝑥 ∈ [𝛼, 𝛽].

(2) As we said in Section 2, a function of bounded
variation has only “jump” discontinuities. Although
condition (𝐻

4
) implies that for a.a. 𝑡 ∈ 𝐼 the function

𝑓 is continuous with respect to its third variable in the
interval

[ min
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) − ∫

𝑏

𝑡

𝜓 (𝑠) 𝑑𝑠,

max
𝑠∈[𝑏,𝑏+𝑟]

𝜙 (𝑠) + ∫

𝑏

𝑡

𝜓 (s) 𝑑𝑠] ,
(38)

a countable number of discontinuities are allowed to
exist outside this interval. Moreover, notice that this
interval can be improved if we find another function
𝜓̃ satisfying (𝐻

3
) and such that 𝜓̃(𝑡) ≤ 𝜓(𝑡) for a.a. 𝑡.

(3) For almost all 𝑡 ∈ 𝐼 and all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)] the
function 𝑓

𝑡,𝑥
(⋅) = 𝑓(𝑡, 𝑥, ⋅) is of bounded variation in

[𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))], and thus there exists in this interval
a decomposition 𝑓

𝑡,𝑥
(⋅) = 𝑔

𝑡,𝑥
(⋅) + ℎ

𝑡,𝑥
(⋅), with 𝑔

nondecreasing and ℎ nonincreasing. Although all
conditions in Theorem 10 are stated for an arbitrary
Jordan decomposition of this type, all of them can be
rewritten with

𝑔
𝑡,𝑥
(𝑦) = 𝑉

𝑦

𝐴
(𝑓) ,

ℎ
𝑡,𝑥
(𝑦) = 𝑓

𝑡,𝑥
(𝑦) − 𝑉

𝑦

𝐴
(𝑓) ,

(39)

for any choice of 𝐴 ≤ min{𝛼(𝑡) : 𝑡 ∈ [𝑎, 𝑏 + 𝑟]}, 𝐴 ≥

min 𝐽.

Theorem 10 provides, in particular, a new result on
the existence of extremal solutions for problem (1) in the
case that function 𝑓 is nonincreasing with respect to its
third variable. In this case, the nondecreasing part of the
Jordan decomposition of 𝑓 does not exist, and therefore the
lower and upper solutions introduced in Definition 6 appear
uncoupled. Moreover, a pair of quasisolutions in the sense of
Definition 8 becomes, in fact, a pair of solutions, and then
extremal quasisolutions provided by Theorem 10 reduce to
extremal solutions. We specify these ideas in the following
corollary.

Corollary 12. Assume that there exist 𝛼, 𝛽 ∈ C[𝑎, 𝑏 + 𝑟] such
that 𝛼

𝐼
, 𝛽
𝐼
∈ 𝐴𝐶(𝐼), 𝛼 ≤ 𝛽 on [𝑎, 𝑏 + 𝑟] and the following

inequalities hold:

𝛼
󸀠

(𝑡) ≥ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛼 (𝑡) ≤ 𝜙 (𝑡)

∀𝑡 ∈ [𝑏, 𝑏 + 𝑟] ,

𝛽
󸀠

(𝑡) ≤ 𝑓 (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛽 (𝑡) ≥ 𝜙 (𝑡)

𝑡 ∈ [𝑏, 𝑏 + 𝑟] .

(40)

Assume moreover that the following conditions hold:

(𝐻
2
)
󸀠 for all 𝛾 ∈ [𝛼, 𝛽], the final value problem

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝛾) , 𝑓𝑜𝑟 𝑎. 𝑎. 𝑡 ∈ 𝐼,

𝑥 (𝑏) = 𝜙 (𝑏)

(41)

has the extremal solutions in [𝛼, 𝛽];
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(𝐻
3
)
󸀠 there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for a.a.

𝑡 ∈ 𝐼, all𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all𝑦 ∈ [𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))],
one has

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝜓 (𝑡) ; (42)

(𝐻
4
)
󸀠 for a.a. 𝑡 ∈ 𝐼 and all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], the function

𝑓(𝑡, 𝑥, ⋅) is nonincreasing.

In these conditions problem (1) has the extremal solutions
in [𝛼, 𝛽].

4. Delay Problems

The results obtained in the previous section can be easily
reformulated in order to deal with problems with delay. We
concrete this idea in the following lines.

Consider the following problem:

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼 = [𝑎, 𝑏] ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

(43)

where 𝑟 ≥ 0, 𝜏 is a measurable function such that 𝜏(𝑡) ≤ 𝑡

for a.a. 𝑡; that is, 𝜏 is a delayed argument and 𝜙 is a bounded
function which represents the initial state of the solution.
Now, by a solution of (43), wemean a function 𝑥 ∈ C[𝑎−𝑟, 𝑏]
such that 𝑥

|𝐼
∈ 𝐴𝐶(𝐼) and 𝑥 satisfies both the differential

equation (a.e. on 𝐼) and the initial condition.
As we said, we will show now that we can use our tech-

nique to obtain a new result on the existence of solutions for
problem (43) in the case that function 𝑓(𝑡, 𝑥, ⋅) is of bounded
variation. We begin by reformulating the concept of lower
and upper solutions and coupled quasisolutions in order to
adapt them to our new problem. As in previous section, we
assume (𝐻

1
).

Definition 13. One says that𝛼,𝛽 ∈ C[𝑎−𝑟, 𝑏] are, respectively,
lower and upper solutions for problem (43), and if 𝛼

|𝐼
, 𝛽
|𝐼
∈

𝐴𝐶(𝐼),

[ min
𝑡∈[𝑎−𝑟,𝑏]

𝛼 (𝑡) , max
𝑡∈[𝑎−𝑟,𝑏]

𝛽 (𝑡)] ⊂ 𝐽, (44)

the compositions

𝑡 󳨃󳨀→ 𝑓 (𝑡, 𝛼 (𝑡) , 𝑦) , 𝑡 󳨃󳨀→ 𝑓 (𝑡, 𝛽 (𝑡) , 𝑦) (45)

are measurable for all 𝑦 ∈ 𝐽 and the following inequalities
hold:

𝛼
󸀠

(𝑡) ≤ 𝑔 (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) + ℎ (𝑡, 𝛼 (𝑡) , 𝛽 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛼 (𝑡) ≤ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

𝛽
󸀠

(𝑡) ≥ 𝑔 (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) + ℎ (𝑡, 𝛽 (𝑡) , 𝛼 (𝜏 (𝑡))) ,

for a.a. 𝑡 ∈ 𝐼,

𝛽 (𝑡) ≥ 𝜙 (𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] .

(46)

Definition 14. One says that two functions 𝑥
∗
, 𝑥∗ ∈ C[𝑎 −

𝑟, 𝑏] are coupled quasisolutions of problem (43) if 𝑥
∗|𝐼
, 𝑥
∗

|𝐼
∈

𝐴𝐶(𝐼), 𝑥
∗
(𝑡) = 𝑥

∗
(𝑡) = 𝜙(𝑡) for all 𝑡 ∈ [𝑎 − 𝑟, 𝑎] and for a.a.

𝑡 ∈ 𝐼, they satisfy

𝑥
󸀠

∗
(𝑡) = 𝑔 (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗
(𝜏 (𝑡))) + ℎ (𝑡, 𝑥

∗
(𝑡) , 𝑥
∗

(𝜏 (𝑡))) ,

𝑥
∗󸀠

(𝑡) = 𝑔 (𝑡, 𝑥
∗

(𝑡) , 𝑥
∗

(𝜏 (𝑡))) + ℎ (𝑡, 𝑥
∗

(𝑡) , 𝑥
∗
(𝜏 (𝑡))) .

(47)

We say that these coupled quasisolutions are extremal in a
subset𝑋 ⊂ C[𝑎−𝑟, 𝑏]; if𝑥

∗
,𝑥∗ ∈ 𝑋 and𝑥

∗
(𝑡) ≤ 𝑥

1
(𝑡),𝑥
2
(𝑡) ≤

𝑥
∗
(𝑡) whenever 𝑥

1
, 𝑥
2
∈ 𝑋 is another pair of quasisolutions.

Before introducing our main result for problem (43), we
need a maximum principle for problems with delay, which is
as follows. Its proof is analogous to that done in Lemma 9, so
we omit it.

Lemma 15. Let 𝜏 : 𝐼 → [𝑎 − 𝑟, 𝑏] be a measurable function
such that 𝜏(𝑡) ≤ 𝑡 for a.a. 𝑡 ∈ 𝐼 and assume that 𝑝 ∈ C[𝑎−𝑟, 𝑏]
is such that 𝑝

|𝐼
∈ 𝐴𝐶(𝐼) and satisfies

𝑝
󸀠

(𝑡) ≤ 𝐾 (𝑡) 𝑝 (𝑡) + 𝐿 (𝑡) 𝑝 (𝜏 (𝑡)) , for a.a. 𝑡 ∈ 𝐼,

𝑝 (𝑡) = 0, ∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

(48)

where𝐾, 𝐿 ∈ 𝐿1(𝐼) and 𝐿 ≥ 0 a.e.
If

∫

𝑏

𝑎

(𝐾
+
(𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (49)

where𝐾
+
= max{𝐾, 0}, then 𝑝(𝑡) ≤ 0 for all 𝑡 ∈ [𝑎 − 𝑟, 𝑏].

Now, we state our main result in this Section.

Theorem 16. Assume (𝐻
1
) and that there exist 𝛼, 𝛽 ∈ C[𝑎 −

𝑟, 𝑏] which are, respectively, lower and upper solutions for
problem (43) such that 𝛼(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎 − 𝑟, 𝑏] and

𝐸 = [ min
𝑡∈[𝑎−𝑟,𝑏]

𝛼 (𝑡) , max
𝑡∈[𝑎−𝑟,𝑏]

𝛽 (𝑡)] ⊂ 𝐽. (50)

Assume moreover that the following conditions hold:

(𝐻̂
2
) for each 𝛾

1
, 𝛾
2
∈ [𝛼, 𝛽] = {𝛾 ∈ C[𝑎 − 𝑟, 𝑏] :

𝛼(𝑡) ≤ 𝛾(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝑎 − 𝑟, 𝑏]}, the initial
value problem

(𝑃̂
𝛾
1
,𝛾
2

)

{
{
{
{

{
{
{
{

{

𝑥
󸀠
(𝑡) = 𝐹

𝛾
1
,𝛾
2
(𝑡, 𝑥 (𝑡))

:= 𝑔 (𝑡, 𝑥 (𝑡) , 𝛾
1
(𝜏 (𝑡)))

+ ℎ (𝑡, 𝑥 (𝑡) , 𝛾
2
(𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼,

𝑥 (a) = 𝜙 (𝑎)

(51)

has the extremal solutions in [𝛼, 𝛽];
(𝐻
3
) there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for

a.a. 𝑡 ∈ 𝐼, all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all 𝑦
1
, 𝑦
2
∈

[𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))], one has
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑥, 𝑦

1
) + ℎ (𝑡, 𝑥, 𝑦

2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜓 (𝑡) ; (52)



Abstract and Applied Analysis 7

(𝐻̂
4
) there exists 𝐾

1
, 𝐾
2
, 𝐿
1
, 𝐿
2
∈ 𝐿
1
(𝐼) such that 𝐿

1
,

𝐿
2
≥ 0 a.e. and

𝑔 (𝑡, 𝑥, 𝑦) − 𝑔 (𝑡, 𝑥, 𝑦)

≤ 𝐾
1
(𝑡) (𝑥 − 𝑥) + 𝐿

1
(𝑡) (𝑦 − 𝑦) ,

ℎ (𝑡, 𝑥, 𝑦) − ℎ (𝑡, 𝑥, 𝑦)

≤ 𝐾
2
(𝑡) (𝑥 − 𝑥) + 𝐿

2
(𝑡) (𝑦 − 𝑦)

(53)

whenever 𝛼(𝑡) ≤ 𝑥 ≤ 𝑥 ≤ 𝛽(𝑡) and

min
𝑠∈[𝑎−𝑟,𝑎]

𝜙 (𝑠) − ∫

𝑡

𝑎

𝜓 (𝑠) 𝑑𝑠

≤ 𝑦 ≤ 𝑦 ≤ max
𝑠∈[𝑎−𝑟,𝑎]

𝜙 (𝑠) + ∫

𝑡

𝑎

𝜓 (𝑠) 𝑑𝑠.

(54)

Moreover,

∫

𝑏

𝑎

(𝐾
+
(𝑡) + 𝐿 (𝑡)) 𝑑𝑡 < 1, (55)

where 𝐾 = 𝐾
1
+ 𝐾
2
, 𝐿 = 𝐿

1
+ 𝐿
2
and 𝐾

+
(𝑡) =

max{𝐾(𝑡), 0}.

In these conditions, problem (43) has a unique solution in
[𝛼, 𝛽].

Proof. Theproof is analogous to that done inTheorem 10, but
now, redefining operatorA in this way, first, we consider the
space𝑋 = C[𝑎 − 𝑟, 𝑏] endowed with the ordering

𝛾
1
≤ 𝛾
2
⇐⇒ 𝛾

1
(𝑡) ≤ 𝛾

2
(𝑡) , ∀𝑡 ∈ [𝑎 − 𝑟, 𝑏] . (56)

Then, we consider the operator

̂A : [𝛼, 𝛽] × [𝛼, 𝛽] ⊂ 𝑋 × 𝑋 󳨀→ 2
[𝛼,𝛽]

\ 0 (57)

as follows: for each 𝛾
1
, 𝛾
2
∈ [𝛼, 𝛽], we have𝑥 ∈ A(𝛾

1
, 𝛾
2
) if and

only if 𝑥 ∈ [𝛼, 𝛽], 𝑥
𝐼
is a solution of (𝑃̂

𝛾
1
,𝛾
2

) and 𝑥
|[𝑎−𝑟,𝑎]

= 𝜙.
The rest of the proof is analogous, with obvious changes.

Now, Theorem 16 provides, in particular, a new result on
the existence of extremal solutions in the case that function
𝑓 is nondecreasing with respect to its third variable. For the
sake of completeness, we concrete this idea in the following
Corollary, which is the analogous to Corollary 12.

Corollary 17. Assume that there exist 𝛼, 𝛽 ∈ C[𝑎 − 𝑟, 𝑏] such
that 𝛼

𝐼
, 𝛽
𝐼
∈ 𝐴𝐶(𝐼), 𝛼 ≤ 𝛽 on [𝑎 − 𝑟, 𝑏] and the following

inequalities hold:

𝛼
󸀠

(𝑡) ≤ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛼 (𝑡) ≤ 𝜙 (𝑡)

∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] ,

𝛽
󸀠

(𝑡) ≥ 𝑓 (𝑡, 𝛽 (𝑡) , 𝛽 (𝜏 (𝑡))) , for a.a. 𝑡 ∈ 𝐼, 𝛽 (𝑡) ≥ 𝜙 (𝑡)

∀𝑡 ∈ [𝑎 − 𝑟, 𝑎] .

(58)

Assume moreover that the following conditions hold:

(𝐻̂
2
)

󸀠 for all 𝛾 ∈ [𝛼, 𝛽], the initial value problem

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝛾) for a.a. 𝑡 ∈ 𝐼,
𝑥 (𝑎) = 𝜙 (𝑎)

(59)

has the extremal solutions in [𝛼, 𝛽];
(𝐻
3
)
󸀠 there exists 𝜓 ∈ 𝐿

1
(𝐼, [0, +∞)) such that for a.a.

𝑡 ∈ 𝐼, all𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all𝑦 ∈ [𝛼(𝜏(𝑡)), 𝛽(𝜏(𝑡))],
one has

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝜓 (𝑡) ; (60)

(𝐻̂
4
)

󸀠 for a.a. 𝑡 ∈ 𝐼 and all 𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], the function
𝑓(𝑡, 𝑥, ⋅) is nondecreasing.

In these conditions, problem (43) has the extremal solutions
in [𝛼, 𝛽].

5. Examples of Application

We finish this work with two applications of our main results.

Example 1. Consider the following problem with advance:

𝑥
󸀠

(𝑡) = 𝑓 (𝑥 (4𝑡)) , for a.a. 𝑡 ∈ 𝐼 = [0,

𝜋

8

] ,

𝑥 (𝑡) = 𝜙 (𝑡) =

1

2

(𝑥 −

𝜋

2

) sin( 1

𝑥 − 𝜋/2

) , ∀𝑡 ∈ [

𝜋

8

,

𝜋

2

] ,

(61)

where 𝑓 is defined as follows: for each 𝑛 ∈ {1, 2, . . .}, we have

𝑓 (𝑦) =

{
{

{
{

{

1

10

𝑦, if 𝑦 ∈ (2𝑛 − 2, 2𝑛 − 1] ,

4𝑛 − 1

10

−

1

10

𝑦, if 𝑦 ∈ (2𝑛 − 1, 2𝑛] ,

(62)

and for 𝑦 ≤ 0, we define 𝑓(𝑦) = −𝑓(−𝑦).
Defined that way, 𝑓 is a function of bounded variation

in any bounded interval of R. Moreover, 𝑓 has a countable
number of both downwards and upwards discontinuities. We
will construct later a pair (𝛼, 𝛽) of coupled lower and upper
solutions for problem (1) such that for all 𝑡 ∈ [0, 𝜋/2], we have

−

𝜋

2

≤ 𝛼 (𝑡) ≤ 𝛽 (𝑡) ≤

𝜋

2

. (63)

And then, it suffices to consider a Jordan decomposition of 𝑓
in the interval [−2, 2]. So, we put 𝑓 = 𝑔 + ℎ, with

𝑔 (𝑦) = 𝑉
𝑦

−2
(𝑓) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1

10

𝑦 +

2

10

, if 𝑦 ∈ [−2, −1) ,

1

10

𝑦 +

3

10

, if 𝑦 ∈ [−1, 1] ,

1

10

𝑦 +

4

10

, if 𝑦 ∈ (1, 2] ,
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ℎ (𝑦) = 𝑓 (𝑦) − 𝑉
𝑦

−2
(𝑓) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

−

2

10

𝑦 −

5

10

, if 𝑦 ∈ [−2, −1) ,

−

3

10

, if 𝑦 ∈ [−1, 1] ,

−

2

10

𝑦 −

1

10

, if 𝑦 ∈ (1, 2] .

(64)

We will show now that the functions 𝛼(𝑡) = 𝑡 − 𝜋/2 =

−𝛽(𝑡) are coupled lower and upper solutions for problem (1).
First, we have that 𝛼(𝑡) ≤ 𝜙(𝑡) ≤ 𝛽(𝑡) for all 𝑡 ∈ [𝜋/8, 𝜋/2].
On the other hand, for a.a. 𝑡 ∈ 𝐼 we have the following.

(i) If (𝜋/2) − 4𝑡 ∈ (1, 2], then 4𝑡 − (𝜋/2) ∈ [−2, −1) and
then

𝑉
𝛽(4𝑡)

−2
(𝑓) + 𝛼 (4𝑡) − 𝑉

𝛼(4𝑡)

−2
(𝑓)

=

8

10

(

𝜋

2

− 4𝑡) =

−8

10

(

𝜋

2

− 4𝑡) +

2

10

≤ 1 = 𝛼
󸀠

(𝑡) ,

𝑉
𝛼(4𝑡)

−2
(𝑓) + 𝛽 (4𝑡) − 𝑉

𝛽(4𝑡)

−2
(𝑓)

=

8

10

(

𝜋

2

− 4𝑡) −

2

10

≥ −1 = 𝛽
󸀠

(𝑡) .

(65)

(ii) If (𝜋/2) − 4𝑡 ∈ [0, 1], then 4𝑡 − (𝜋/2) ∈ [−1, 0] and
then

𝑉
𝛽(4𝑡)

−2
(𝑓) + 𝛼 (4𝑡) − 𝑉

𝛼(4𝑡)

−2
(𝑓)

=

8

10

(

𝜋

2

− 4𝑡) =

−8

10

(

𝜋

2

− 4𝑡) ≤ 1 = 𝛼
󸀠

(𝑡) ,

𝑉
𝛼(4𝑡)

−2
(𝑓) + 𝛽 (4𝑡) − 𝑉

𝛽(4𝑡)

−2
(𝑓)

=

8

10

(

𝜋

2

− 4𝑡) ≥ −1 = 𝛽
󸀠

(𝑡) .

(66)

Then, 𝛼 and 𝛽 are coupled lower and upper solutions for
problem (61), satisfying 𝛼 ≤ 𝛽 on [0, 𝜋/2].

Now, we check condition (𝐻
3
). We have for a.a. 𝑡 ∈ 𝐼, all

𝑥 ∈ [𝛼(𝑡), 𝛽(𝑡)], and all 𝑦
1
, 𝑦
2
∈ [𝛼(4𝑡), 𝛽(4𝑡)],

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑥, 𝑦

1
) + ℎ (𝑡, 𝑥, 𝑦

2
)
󵄨
󵄨
󵄨
󵄨
≤

6

10

+

5

10

, (67)

and thus condition (𝐻
2
) is satisfied with 𝜓 ≡ 11/10.

Finally, notice that for a.a. 𝑡 ∈ 𝐼, it is

[ min
𝑠∈[𝜋/8,𝜋/2]

𝜙 (𝑠) − ∫

𝜋/8

𝑡

𝜓 (𝑠) 𝑑𝑠,

max
𝑠∈[𝜋/8,𝜋/2]

𝜙 (𝑠) + ∫

𝜋/8

𝑡

𝜓 (𝑠) 𝑑𝑠] ⊂ [−1, 1] ,

(68)

and thus condition (𝐻
4
) is satisfied with

𝐿
1
≡

1

10

, 𝐿
2
≡ 0. (69)

By application of Theorem 10, we conclude that problem
(61) has exactly one solution in the functional interval

[4𝑡 −

𝜋

2

,

𝜋

2

− 4𝑡] . (70)

In the following example, we consider a practical appli-
cation of Corollary 17. It involves a modified logistic-type
model with delay.

Example 2. Consider a bacterial culture governed by a logis-
tic-type equation of the form

𝑥
󸀠

(𝑡) = 𝑟
1
𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) , (71)

where 𝑥 represents the population in thousands.
To counteract the effects of saturation term, we introduce

an electronic mechanism which acts as follows. It counts the
number of individuals and then it provides some food that
makes the population grow. The amount of food supplied by
the machine is proportional to the number of individuals.
Moreover, the machine can distinguish only thousands of
individuals and it supplies the food with a delay 𝜏 which
also depends on time; as time goes by, this delay increases.
Therefore, we can model this process with a differential
equation of the form

𝑥
󸀠

(𝑡) = 𝑟
1
𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) + 𝑟

2
[𝑥 (𝑡 − 𝜏 (𝑡))] , 𝑡 ∈ [0, 1] ,

(72)

where 𝑟
1
, 𝑟
2
≥ 0, 𝐾 > 1, [⋅] means integer part and 𝜏 :

𝑡 ∈ [0, 1] → 𝜏(𝑡) ∈ [0, 𝑡] is measurable. We consider the
normalized time interval [0, 1] for simplicity.

Finally, we consider an initial population of one thousand
individuals.Therefore, we deal with the following initial value
problem with delay:

𝑥
󸀠

(𝑡) = 𝑟
1
𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) + 𝑟

2
[𝑥 (𝑡 − 𝜏 (𝑡))] ,

for a.a. 𝑡 ∈ [0, 1] , 𝑥 (0) = 1.

(73)

We will show now that problem (73) has extremal solu-
tions between suitable lower and upper solutions.

First, notice that 𝛼 ≡ 1 and 𝛽 ≡ 𝐿, for large enough 𝐿,
are, respectively, lower and upper solutions for the problem.
Indeed, for all 𝑡 ∈ [0, 1], we have

0 = 𝛼
󸀠

(𝑡) ≤ 𝑟
1
(𝐾 − 1) + 𝑟

2
,

0 = 𝛽
󸀠

(𝑡) ≥ 𝑟
1
𝐿 (𝐾 − 𝐿) + 𝑟

2
𝐿, for large enough 𝐿.

(74)
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Then, 𝛼 and 𝛽 are, respectively, lower and upper solutions
for problem (73), which moreover satisfy 𝛼(𝑡) ≤ 𝛽(𝑡) for all
𝑡 ∈ [0, 1].

To check conditions (𝐻̂
2
)

󸀠, (𝐻̂
3
)

󸀠, and (𝐻̂
4
)

󸀠, notice that
the differential equation in (73) is defined by the function

𝑓 (𝑡, 𝑥, 𝑦) = 𝑟
1
𝑥 (𝐾 − 𝑥) + 𝑟

2
[𝑦] . (75)

First, for each continuous 𝛾 such that 1 ≤ 𝛾(𝑡) ≤ 𝐿 for all
𝑡 ∈ [0, 1], the function

𝑓
𝛾
(𝑡, 𝑥) = 𝑓 (𝑡, 𝑥, 𝛾) (76)

is the classical logistic function and then the initial value
problem

𝑥
󸀠

(𝑡) = 𝑓
𝛾
(𝑡, 𝑥 (𝑡)) , for a.a. 𝑡 ∈ [0, 1] , 𝑥 (0) = 1 (77)

has extremal solutions (in fact, a unique solution) between 𝛼
and 𝛽. Therefore, condition (𝐻̂

2
)

󸀠 is satisfied.
Finally, as for 𝑥, 𝑦 ∈ [1, 𝐿], the function 𝑓 is bounded

and, moreover, 𝑓 is nondecreasing with respect to its third
variable; we conclude that (𝐻̂

3
)

󸀠 and (𝐻̂
4
)

󸀠 hold.
Therefore, we can apply Corollary 17 to ensure that prob-

lem (73) has the extremal solutions between 𝛼 and 𝛽.
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