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Themean square BIBO stabilization is investigated for the stochastic control systems with time delays and nonlinear perturbations.
A class of suitable Lyapunov functional is constructed, combined with the descriptor model transformation and the decomposition
technique of coefficient matrix; thus some novel delay-dependent mean square BIBO stabilization conditions are derived. These
conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab
LMI Toolbox. Finally, three numerical examples are given to demonstrate that the derived conditions are effective and much less
conservative than those given in the literature.

1. Introduction

Because of the finite switching speed, memory effects, and
so on, time delay is unavoidable in technology and nature,
which commonly exists in various mechanical, chemical
engineering, physical, biological, and economic systems. It
can make the concerned control systems become of poor
performance and unstable, which leads to the difficulty of
hardware implementation of the control system. Thus, the
stability of time-delay systems has been widely investigated.
See [1–7] and some references therein. For systems with small
delay, a model transformation technique is often used to
transform the system with discrete delay into a system with
distributed delay; the advantage of this transformation is to
transform the original system to an equivalent descriptor
from representation and additional dynamics in the systems
will not be introduced. The delay-dependent stabilization
criteria obtained by the coefficient matrix decomposition
method are usually less conservative than some existing ones.
Please refer to [3]. In recent years, bounded-input bounded-
output (BIBO) stabilization has been investigated by many
researchers in order to track out the reference input signal
in real world; see [5–22] and some references therein. In
[15, 16], the sufficient condition for BIBO stabilization of

control systems with no delays is proposed by the Bihari-
type inequality. In [6, 7], the BIBO stabilization of the systems
without distributed time delays was investigated by employ-
ing the parameters technique and the Gronwall inequality. In
[17–19], some BIBO stabilization criteria for a class of delayed
control systems with nonlinear perturbations were estab-
lished, based on Riccati equations, by constructing appropri-
ate Lyapunov functions. In [20], the BIBO stabilization prob-
lem of a class of piecewise switched linear systemswas further
investigated.

However, up to now, these previous results have been
assumed to be in deterministic systems, including continuous
time deterministic systems and discrete time deterministic
systems, but seldom in stochastic systems (see [21, 22]; in
[21] Fu and Liao got several mean square BIBO stabilization
criteria in terms of Razumikhin technique and comparison
principle. In [22], Zhou and Zhong discussed the mean
square BIBO stabilization of the stochastic delay system
with nonlinear perturbations by auxiliary algebraic Riccati
matrix equations). In practice, stochastic control systems are
more applicable to problems that are environmentally noisy
in nature or related to biological realities. Thus, the BIBO
stabilization analysis problems for stochastic control case are
necessary.
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Motivated by the previous discussions, this paper mainly
aims to study the BIBO stabilization in mean square for the
stochastic control systems with time delays and nonlinear
perturbations. Based on the descriptor model transforma-
tion and the decomposition technique of coefficient matrix,
some sufficient conditions guaranteeing BIBO stabilization in
mean square are obtained. Finally, three numerical examples
provided to demonstrate the derived conditions are valid and
much less conservative than those given in the literature.

Notations. Thenotations are quite standard.Throughout this
letter, 𝑅𝑛 and 𝑅𝑛×𝑚 denote, respectively, the 𝑛-dimensioned
Euclidean space and the set of all 𝑛 × 𝑚 real matrices. The
superscript “𝑇” denotes the transpose and the notation𝑋 ≥ 𝑌
(resp., 𝑋 > 𝑌) means that 𝑋 and 𝑌 are symmetric matrices
and that 𝑋 − 𝑌 is positive semidefinitive (respective positive
definite). ‖ ⋅ ‖ is the Euclidean norm in 𝑅𝑛. 𝐼 is the identity
matrix with compatible dimension. 𝐴 is a matrix, denoted
by ‖𝐴‖ as its operator norm; that is, ‖𝐴‖ = sup{‖𝐴𝑥‖ :
‖𝑥‖ = 1} = √𝜆max(𝐴

𝑇𝐴), where 𝜆max(𝐴) (resp., 𝜆min(𝐴))
means the largest (resp., smallest) eigenvalue of𝐴. Moreover,
let (Ω, 𝐹, {𝐹

𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with

a filtration {𝐹
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., the
filtration contains all 𝑃-null sets and is right continuous).
E{⋅} stands for the mathematical expectation operator with
respect to the given probability measure 𝑃. The asterisk
∗ in a matrix is used to denote term that is induced by
symmetry. Matrices, if not explicitly specified, are assumed
to have compatible dimensions. Sometimes, the arguments of
function will be omitted in the analysis when no confusion
can arise.

2. Problem Formulation and Preliminaries

Consider the stochastic control system described by the
following equation:

𝑑𝑥 (𝑡) = [𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏
1
)

+𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
)) + 𝐶𝑢 (𝑡) ] 𝑑𝑡

+ [𝐺𝑥 (𝑡) + 𝐻𝑥 (𝑡 − 𝜏
2
)] 𝑑w (𝑡) , 𝑡 ≥ 𝑡

0
≥ 0,

𝑦 (𝑡) = 𝐷𝑥 (𝑡) ,

𝑥 (𝜃) = 𝜑 (𝜃) ∈ 𝐶
𝑏

F0
([𝑡
0
− 𝜏, 𝑡
0
] ; 𝑅
𝑛

) , 𝜃 ∈ [𝑡
0
− 𝜏, 𝑡
0
] ,

(1)

where 𝑥(𝑡), 𝑢(𝑡), and 𝑦(𝑡) are the state vector, control input,
and control output of the system, respectively. 𝜏

1
> 0, 𝜏
2
> 0

are discrete time delays, and 𝜏 = max{𝜏
1
, 𝜏
2
}. 𝐴, 𝐵, 𝐶,𝐷, 𝐺,

and 𝐻 are constant matrices with appropriate dimensional,
w(𝑡) = (w

1
(𝑡),w
2
(𝑡), . . . ,w

𝑛
(𝑡))
𝑇 is an 𝑛-dimensional stan-

dard Brownian motion defined on a complete probability
space (Ω, 𝐹, {𝐹

𝑡
}
𝑡≥0
, 𝑃) with a natural filtration {𝐹

𝑡
}
𝑡≥0

, and

𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏
1
)) ∈ 𝐶(𝑅

+

× 𝑅
𝑛

× 𝑅
𝑛

, 𝑅
𝑛

) is the nonlinear
vector-valued perturbation bounded in magnitude as

𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏1))


2

≤ 𝛼
1
‖𝑥 (𝑡)‖

2

+ 𝛼
2

𝑥 (𝑡 − 𝜏1)


2

, (2)

where 𝛼
1
, 𝛼
2
are known positive constants.

To obtain the control law described by (1) and to track out
the reference input of the system, we let the controller be in
the form of

𝑢 (𝑡) = 𝐾𝑥 (𝑡) + 𝑟 (𝑡) , (3)

where 𝐾 is the feedback gain matrix and 𝑟(𝑡) is the reference
inputs.

At the end of this section, let us introduce some important
definitions and lemmas which will be used in the sequel.

Definition 1 (see [21]). A vector function 𝑟(𝑡) = (𝑟
1
(𝑡),

𝑟
2
(𝑡), . . . , 𝑟

𝑛
(𝑡))
𝑇 is said to be an element of 𝐿𝑛

∞
, if ‖𝑟‖

∞
=

sup
𝑡∈[𝑡0,+∞)

‖𝑟(𝑡)‖ < +∞, where ‖ ⋅ ‖ denotes the Euclid norm
in 𝑅𝑛, or the norm of a matrix.

Definition 2 (see [21]). The nonlinear stochastic control
system (1) is mean square BIBO stabilization, if one can
construct controller (3) such that the output 𝑦(𝑡) satisfies

E (
𝑦(𝑡)



2

) ≤ 𝑁
1
+ 𝑁
2
‖𝑟‖
2

∞
, (4)

where𝑁
1
, 𝑁
2
are positive constants.

Definition 3 (see [21],L operator). Let Lyapunov functionals
𝑉 : 𝐶([−𝜏, 0]; 𝑅

𝑛

) × 𝑅
+
→ 𝑅; its infinitesimal operator L,

acting on functional 𝑉, is defined by

L𝑉 (𝑥
𝑡
, 𝑡) = lim

Δ→0
+

sup 1
Δ
[E (𝑉 (𝑥

𝑡+Δ
, 𝑡 + Δ) − 𝑉 (𝑥

𝑡
, 𝑡))] .

(5)

Lemma 4 (see [23]). For any constant symmetric matrix𝑀 ∈

𝑅
𝑛×𝑛, 𝑀 = 𝑀

𝑇

> 0, scalar 𝑟 > 0, and vector function 𝑔 :
[0, 𝑟] → 𝑅

𝑛, such that the integrations in the following are
well defined, and then

𝑟 ∫

𝑟

0

𝑔
𝑇

(𝑠)𝑀𝑔 (𝑠) 𝑑𝑠 ≥ [∫

𝑟

0

𝑔 (𝑠) 𝑑𝑠]

𝑇

𝑀[∫

𝑟

0

𝑔 (𝑠) 𝑑𝑠] . (6)

Lemma 5 (see [24]). Let 𝑥, 𝑦 ∈ 𝑅𝑛 and any 𝑛 × 𝑛 positive-
definite matrix 𝑄 > 0. Then, one has

2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑄
−1

𝑥 + 𝑦
𝑇

𝑄𝑦. (7)

3. BIBO Stabilization for Nonlinear
Stochastic Systems

To derive delay-dependent mean square stabilization condi-
tions, which include the information of the time delay 𝜏

1
, one

usually uses the fact

𝑥 (𝑡 − 𝜏
1
) = 𝑥 (𝑡) − ∫

𝑡

𝑡−𝜏1

�̇� (𝑠) 𝑑𝑠 (8)
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to transform the original system to a system with distributed
delays. Let us decompose the coefficient matrix 𝐵 as 𝐵 =
𝐵
1
+𝐵
2
, where 𝐵

1
, 𝐵
2
are constant matrices.Then the original

system (1) can be represented in the form of the descriptor
system with discrete and distributed delays:

𝑑 [𝑥 (𝑡) + 𝐵
2
∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠]

= [(𝐴 + 𝐵
2
+ 𝐶𝐾) 𝑥 (𝑡) + 𝐵

1
𝑥 (𝑡 − 𝜏

1
)

+ 𝐶𝑟 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
))] 𝑑𝑡

+ [𝐺𝑥 (𝑡) + 𝐻𝑥 (𝑡 − 𝜏
2
)] 𝑑w (𝑡) , 𝑡 ≥ 𝑡

0
≥ 0,

𝑦 (𝑡) = 𝐷𝑥 (𝑡) ,

𝑥 (𝜃) = 𝜑 (𝜃) ∈ 𝐶
𝑏

F0
([𝑡
0
− 𝜏, 𝑡
0
] ; 𝑅
𝑛

) , 𝜃 ∈ [𝑡
0
− 𝜏, 𝑡
0
] .

(9)

Letting𝐷(𝑥
𝑡
) be a new operator, we have

𝐷(𝑥
𝑡
) = 𝑥 (𝑡) + 𝐵

2
∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠. (10)

To guarantee that the difference operator𝐷(𝑥
𝑡
) : 𝐶[−𝜏, 0] →

𝑅
𝑛 given by (10) is stable, we assume the following [25]:

A1: let 𝜏
1
‖𝐵
2
‖ < 1, where ‖ ⋅ ‖ is any matrix norm.

For the mean square BIBO stabilization of the system
described by (9) and (3), we have the following results.

Theorem 6. For any given positive constants 𝛽
𝑖
> 0, 𝑖 =

1, 2, 3, 4, 5, the nonlinear stochastic control system (1) with the
controller (3) is mean square BIBO stabilization, if there exist
symmetric positive-definite matrices 𝑃, 𝑅

1
, 𝑅
2
, 𝑅
3
, and𝑋, such

that
𝛽
5
𝜆min (𝑃) − 𝛽1𝜆max (𝑅1) − 𝛽2𝜆max (𝑅2)

− 𝛽
4
(𝛼
1
+ 𝛼
2
) − 𝜏
2

1
𝜆max (𝛽3𝑅3 + 𝛽5𝐵

𝑇

2
𝑃𝐵
2
) > 0,

(11)

and the linear matrix inequality

Ξ̃ = (

(1, 1) 𝑃𝐵
1
𝐺
𝑇

𝑃𝐻 (1, 4) 𝑃

∗ (2, 2) 0 0 0

∗ ∗ (3, 3) −𝐻
𝑇

𝑃𝐺𝐵
2

0

∗ ∗ ∗ (4, 4) 0

∗ ∗ ∗ ∗ −𝛽
4
𝐼

) ≤ 0, (12)

with

(1, 1) = 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑃𝐵
2
+ 𝐵
𝑇

2
𝑃

+ 𝐺
𝑇

𝑃𝐺 − 𝑋 − 𝑋
𝑇

+ 𝛽
5
𝑃 + 𝑃,

(1, 4) = −𝑃𝐴𝐵
2
− 𝑃𝐵
2

2
− 𝐺
𝑇

𝑃𝐺𝐵
2
+ 𝑋𝐵
2
− 𝛽
5
𝑃𝐵
2
,

(2, 2) = −𝛽
1
𝑅
1
,

(3, 3) = 𝐻
𝑇

𝑃𝐻 − 𝛽
2
𝑅
2
,

(4, 4) = 𝐵
𝑇

2
𝐺
𝑇

𝑃𝐺𝐵
2
− 𝛽
3
𝑅
3
.

(13)

Proof. We define a Lyapunov functional 𝑉(𝑡, 𝑥
𝑡
) as

𝑉 (𝑡, 𝑥
𝑡
) = 𝑉
1
(𝑡, 𝑥
𝑡
) + 𝑉
2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (14)

where

𝑉
1
(𝑡, 𝑥
𝑡
) = 𝐷

𝑇

(𝑥
𝑡
) 𝑃𝐷 (𝑥

𝑡
) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) (𝛽
1
𝑅
1
+ 𝛽
4
𝛼
2
) 𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = 𝛽

2
∫

𝑡

𝑡−𝜏2

𝑥
𝑇

(𝑠) 𝑅
2
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = 𝜏

1
∫

𝑡

𝑡−𝜏1

(𝑠 − 𝑡 + 𝜏
1
) 𝑥
𝑇

(𝑠)(𝛽
3
𝑅
3
+𝛽
5
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑠) 𝑑𝑠.

(15)

Taking the operator L of 𝑉
1
(𝑡, 𝑥
𝑡
) along the trajectory of

system (1), we have

L𝑉
1
(𝑡, 𝑥
𝑡
) = 𝐷

𝑇

(𝑥
𝑡
) 𝑃 [(𝐴 + 𝐵

2
+ 𝐶𝐾) 𝑥 (𝑡) + 𝐵

1
𝑥 (𝑡 − 𝜏

1
)

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
)) + 𝐶𝑟 (𝑡) ]

+ [(𝐴 + 𝐵
2
+ 𝐶𝐾) 𝑥 (𝑡) + 𝐵

1
𝑥 (𝑡 − 𝜏

1
) + 𝐶𝑟 (𝑡)

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
))]
𝑇

𝑃𝐷 (𝑥
𝑡
)

+
1

2
trace [(𝐺𝑥 (𝑡) + 𝐻𝑥 (𝑡 − 𝜏

2
))
𝑇

× 2𝑃 (𝐺𝑥 (𝑡) + 𝐻𝑥 (𝑡 − 𝜏
2
)) ]

≤ 𝜉(𝑡)
𝑇

Ξ̃𝜉 (𝑡) + 𝛽
1
𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑅
1
𝑥 (𝑡 − 𝜏

1
)

+ 𝐷
𝑇

(𝑥
𝑡
) 𝑃𝐶𝑟 (𝑡) + 𝛽

2
𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
2
𝑥 (𝑡 − 𝜏

2
)

− 𝛽
5
𝐷
𝑇

(𝑥
𝑡
) 𝑃𝐷 (𝑥

𝑡
)

+ 𝛽
3
(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑅
3
(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

+ 𝑟
𝑇

(𝑡) 𝐶
𝑇

𝑃𝐷 (𝑥
𝑡
) + 𝛽
4
𝑓
𝑇

(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
))

× 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
)) ,

(16)

where

𝜉(𝑡)
𝑇

= [𝐷
𝑇

(𝑥
𝑡
) , 𝑥
𝑇

(𝑡 − 𝜏
1
) , 𝑥
𝑇

(𝑡 − 𝜏
2
) ,

(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

𝑇

, 𝑓
𝑇

(𝑥, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
))] ,

(17)

Ξ̃=(

(1̃, 1̃) 𝑃𝐵
1

𝐺
𝑇

𝑃𝐻 (1̃, 4̃) 𝑃

∗ −𝛽
1
𝑅
1

0 0 0

∗ ∗ 𝐻
𝑇

𝑃𝐻− 𝛽
2
𝑅
2
−𝐻
𝑇

𝑃𝐺𝐵
2

0

∗ ∗ ∗ 𝐵
𝑇

2
𝐺
𝑇

𝑃𝐺𝐵
2
− 𝛽
3
𝑅
3
0

∗ ∗ ∗ ∗ −𝛽
4
𝐼

)≤0,

(18)
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with

(1̃, 1̃) = 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑃𝐵
2
+ 𝐵
𝑇

2
𝑃 + 𝐺

𝑇

𝑃𝐺 − 𝑋 − 𝑋
𝑇

+ 𝛽
5
𝑃,

(1̃, 4̃) = −𝑃𝐴𝐵
2
− 𝑃𝐵
2

2
− 𝐺
𝑇

𝑃𝐺𝐵
2
+ 𝑋𝐵
2
.

(19)

By Lemmas 4 and 5, (2), andDefinition 1we conclude that

L𝑉
1
(𝑡, 𝑥
𝑡
)

≤ 𝜉(𝑡)
𝑇

Ξ̃𝜉 (𝑡) + 𝑥
𝑇

(𝑡 − 𝜏
1
) (𝛽
1
𝑅
1
+ 𝛽
4
𝛼
2
) 𝑥 (𝑡 − 𝜏

1
)

+ 𝛽
2
𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
2
𝑥 (𝑡 − 𝜏

2
)

+ 𝛽
4
𝛼
1
‖𝑥 (𝑡)‖

2

− 𝛽
5
𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝜏
1
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) (𝛽
3
𝑅
3
+ 𝛽
5
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑠) 𝑑𝑠

+ 𝐷
𝑇

(𝑥
𝑡
) 𝑃𝐷 (𝑥

𝑡
)

− 𝛽
5
𝐷
𝑇

(𝑥
𝑡
) 𝑃𝐵
2
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) 𝑑𝑠

− 𝛽
5
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) 𝑑𝑠𝐵
𝑇

2
𝑃𝐷 (𝑥

𝑡
)

+

𝐶
𝑇

𝑃𝐶

‖𝑟‖
2

∞
.

(20)

Taking the operatorL of𝑉
𝑖
(𝑡), 𝑖 = 2, 3, 4, along the trajectory

of system (1), we get

L𝑉
2
(𝑡) = 𝑥

𝑇

(𝑡) (𝛽
1
𝑅
1
+ 𝛽
4
𝛼
2
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
1
) (𝛽
1
𝑅
1
+ 𝛽
4
𝛼
2
) 𝑥 (𝑡 − 𝜏

1
) ,

L𝑉
3
(𝑡) = 𝛽

2
𝑥
𝑇

(𝑡) 𝑅
2
𝑥 (𝑡) − 𝛽

2
𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
2
𝑥 (𝑡 − 𝜏

2
) ,

(21)

L𝑉
4
(𝑡) = 𝜏

2

1
𝑥
𝑇

(𝑡) (𝛽
3
𝑅
3
+ 𝛽
5
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑡)

− 𝜏
1
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) (𝛽
3
𝑅
3
+ 𝛽
5
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑠) 𝑑𝑠.

(22)

Combining (20) with (22), we have

L𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝜉(𝑡)

𝑇

Ξ̃𝜉 (𝑡) − 𝛽
5
𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (𝛽
1
𝑅
1
+ 𝛽
2
𝑅
2
) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (𝛽
4
𝛼
1
+ 𝛽
4
𝛼
2
) 𝑥 (𝑡) +


𝐶
𝑇

𝑃𝐶

‖𝑟‖
2

∞

+ 𝜏
2

1
𝑥
𝑇

(𝑡) (𝛽
3
𝑅
3
+ 𝛽
5
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑡)

≤ 𝜉(𝑡)
𝑇

Ξ̃𝜉 (𝑡)

− (𝛽
5
𝜆min (𝑃) − 𝛽1𝜆max (𝑅1)

− 𝛽
2
𝜆max (𝑅2) − 𝛽4 (𝛼1 + 𝛼2)

−𝜏
2

1
𝜆max (𝛽3𝑅3 + 𝛽5𝐵

𝑇

2
𝑃𝐵
2
)) ‖𝑥(𝑡)‖

2

+

𝐶
𝑇

𝑃𝐶

‖𝑟‖
2

∞
.

(23)

Let 𝑎 = 𝛽
5
𝜆min(𝑃) −𝛽1𝜆max(𝑅1) −𝛽2𝜆max(𝑅2) −𝛽4(𝛼1 +𝛼2) −

𝜏
2

1
𝜆max(𝛽3𝑅3 + 𝛽5𝐵

𝑇

2
𝑃𝐵
2
). If (11) and LMI (12) hold, we have

L𝑉 (𝑡, 𝑥
𝑡
) ≤ −𝑎‖𝑥(𝑡)‖

2

+

𝐶
𝑇

𝑃𝐶

‖𝑟‖
2

∞
. (24)

Under an assumption that 𝑉(𝑡, 𝑥
𝑡
) ≤ 𝑉(𝑡

0
, 𝑥
𝑡0
) for all 𝑡 ≥ 𝑡

0
,

then

𝜆min (𝑃)E


𝑥(𝑡) + 𝐵
2
∫

𝑡

𝑡−𝜏1

𝑥(𝑠)𝑑𝑠



2

≤ 𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝑉 (𝑡

0
, 𝑥
𝑡0
) ≤ 𝜌E

𝜑(𝜃)


2

,

(25)

where 𝜌 = 𝜆max(𝑃) + 𝜏1(‖𝐵
𝑇

2
𝑃‖ + ‖𝑃𝐵

2
‖) + 𝜏

2

1
‖𝐵
𝑇

2
𝑃𝐵
2
‖
2

+

𝜏
1
𝛽
1
𝜆max(𝑅1) + 𝜏1𝛽4𝛼2 + 𝜏2𝛽2𝜆max(𝑅2) + (𝜏

3

1
/2)𝜆max(𝛽3𝑅3 +

𝛽
5
𝐵
𝑇

2
𝑃𝐵
2
).

Thus, according to Theorem 1.3 in page 331 of [26], it can
easily be gotten that

E‖𝑥(𝑡)‖
2

≤ (
1 + 𝜏
1

𝐵2


1 − 𝜏
1

𝐵2


)

2

𝜌E
𝜑(𝜃)



2

𝜆min (𝑃)
. (26)

If not, there exist 𝑡 > 𝑡
0
, such that 𝑉(𝑡, 𝑥(𝑡)) ≥ 𝑉(𝑠, 𝑥(𝑠)) for

all 𝑠 ∈ [𝑡
0
, 𝑡), and we get

𝐷
+

E𝑉 (𝑡, 𝑥 (𝑡)) ≥ 0. (27)

In view of Ito’s formula, we obtain

𝐷
+

E𝑉 (𝑡, 𝑥 (𝑡)) = EL𝑉 (𝑡, 𝑥 (𝑡)) . (28)

By (24), (27), and (28), we get

0 ≤ 𝐷
+

E𝑉 (𝑡, 𝑥 (𝑡)) = EL𝑉 (𝑡, 𝑥 (𝑡))

≤ −𝑎E‖𝑥(𝑡)‖
2

+

𝐶
𝑇

𝑃𝐶

‖𝑟‖
2

∞
.

(29)

So,

E‖𝑥(𝑡)‖
2

≤


𝐶
𝑇

𝑃𝐶


𝑎
‖𝑟‖
2

∞
. (30)

By (26) and (30), we get

E‖𝑥(𝑡)‖
2

≤ (
1 + 𝜏
1

𝐵2


1 − 𝜏
1

𝐵2


)

2

𝜌E
𝜑 (𝜃)



2

𝜆min (𝑃)
+


𝐶
𝑇

𝑃𝐶


𝑎
‖𝑟‖
2

∞
.

(31)
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Thus

E
𝑦(𝑡)



2

≤ ‖𝐷‖
2

E‖𝑥(𝑡)‖
2

≤ (
1 + 𝜏
1

𝐵2


1 − 𝜏
1

𝐵2


)

2

‖𝐷‖
2

𝜌E
𝜑(𝜃)



2

𝜆min (𝑃)

+

‖𝐷‖
2

𝐶
𝑇

𝑃𝐶


𝑎
‖𝑟‖
2

∞

= 𝑁
1
+ 𝑁
2
‖𝑟‖
2

∞
,

(32)

where

𝑁
1
= (

1 + 𝜏
1

𝐵2


1 − 𝜏
1

𝐵2


)

2

‖𝐷‖
2

𝜌E
𝜑(𝜃)



2

𝜆min (𝑃)
,

𝑁
2
=

‖𝐷‖
2

𝐶
𝑇

𝑃𝐶


𝑎
.

(33)

By Definition 2, the nonlinear stochastic control system (1)
is mean square BIBO stabilization. This completes the proof.

Theorem7. For any given positive integer 𝛿
𝑖
> 0, 𝑖 = 1, 2, 3, 4,

the nonlinear stochastic control system (1) with controller (3)
is mean square BIBO stabilization, if there exist symmetric
positive-definite matrices 𝑃, 𝑄 and some positive constants 𝜂,
𝛿
5
, and 𝛿

6
such that

𝐵
2
𝑃 = 𝑃𝐵

2
, (34)

𝛿
1
− 𝛿
2
− 𝛿
3
> 0,

(𝛿
1
− 𝛿
2
− 𝛿
3
) 𝜆min (𝑃) − 𝜏

2

1
𝜆max (𝛿4𝑃 + 𝛿1𝐵

𝑇

2
𝑃𝐵
2
)

− 𝜆max (𝐺
𝑇

𝑃𝐺) − 𝜆max (𝑄
−1

) − 𝜆max (𝐻
𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻)

− 𝜆max (𝐻
𝑇

𝑃𝐻) − 𝛿
5
𝛼
2

> 0,

(35)

and the linear matrix inequality

Ω =(

(

(1
∗
, 1
∗
) 𝐵
1
𝑆 0 (1

∗
, 4
∗
) 𝐶 𝐼

∗ −𝛿
2
𝑆 0 0 0 0

∗ ∗ −𝛿
3
𝑆 0 0 0

∗ ∗ ∗ −𝛿
4
𝑆 0 0

∗ ∗ ∗ ∗ −𝛿
5
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝛿
6
𝐼

)

)

≤ 0

(36)

holds, where

𝑆 = 𝑃
−1

,

(1
∗
, 1
∗
) = 𝐴𝑆 + 𝑆𝐴

𝑇

+ 𝐵
2
𝑆 + 𝑆𝐵

𝑇

2
− 2𝜂𝐶𝐶

𝑇

+ 𝛿
1
𝑆,

(1
∗
, 4
∗
) = −𝐴𝐵

2
𝑆 − 𝐵
2
𝐵
2
𝑆 + 𝜂𝐶𝐶

𝑇

𝐵
2
− 𝛿
1
𝐵
2
𝑆.

(37)

Proof. We define a Lyapunov functional 𝑉(𝑡, 𝑥
𝑡
) as

𝑉 (𝑡, 𝑥
𝑡
) = 𝑉
1
(𝑡, 𝑥
𝑡
) + 𝑉
2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (38)

where

𝑉
1
(𝑡, 𝑥
𝑡
) = 𝐷

𝑇

(𝑥
𝑡
) 𝑃𝐷 (𝑥

𝑡
) ,

𝑉
2
(𝑡) = 𝛿

2
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) 𝑅
1
𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡)=∫

𝑡

𝑡−𝜏2

𝑥
𝑇

(𝑠) (𝛿
3
𝑃 + 𝐻

𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻 +𝐻
𝑇

𝑃𝐻)𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = 𝜏

1
∫

𝑡

𝑡−𝜏1

(𝑠 − 𝑡 + 𝜏
1
) 𝑥
𝑇

(𝑠) (𝛿
4
𝑃 + 𝛿
1
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑠) 𝑑𝑠.

(39)

Taking the operator L of 𝑉
1
(𝑡, 𝑥
𝑡
) along the trajectory of

system (1), by (2), (34), and Definition 1, we have

L𝑉
1
(𝑡, 𝑥
𝑡
)= 𝐷
𝑇

(𝑥
𝑡
) 𝑃 [(𝐴 + 𝐵

2
+ 𝐶𝐾) 𝑥 (𝑡)

+𝐵
1
𝑥 (𝑡 − 𝜏

1
) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐶𝑟 (𝑡)]

+ [(𝐴 + 𝐵
2
+ 𝐶𝐾) 𝑥 (𝑡)

+𝐵
1
𝑥(𝑡 − 𝜏

1
) + 𝐶𝑟(𝑡) + 𝑓(𝑡, 𝑥(𝑡))]

𝑇

𝑃𝐷 (𝑥
𝑡
)

+
1

2
trace [(𝐺𝑥 (𝑡) + 𝐻𝑥 (𝑡 − 𝜏

2
))
𝑇

× 2𝑃 (𝐺𝑥 (𝑡) + 𝐻𝑥 (𝑡 − 𝜏
2
))]

≤ 𝜉(𝑡)
𝑇

Ω̃𝜉 (𝑡) − 𝛿
1
𝐷
𝑇

(𝑥
𝑡
) 𝑃𝐷 (𝑥

𝑡
)

+ 𝛿
2
𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑃𝑥 (𝑡 − 𝜏

1
)

+ 𝛿
3
𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑃𝑥 (𝑡 − 𝜏

2
)

+ 𝑥 (𝑡 − 𝜏
2
)𝐻
𝑇

𝑃𝐻𝑥 (𝑡 − 𝜏
2
)

+ 𝛿
4
(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

+ 𝑥 (𝑡 − 𝜏
2
)𝐻
𝑇

𝑃𝐺𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝐺
𝑇

𝑃𝐺𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝐺
𝑇

𝑃𝐻𝑥 (𝑡 − 𝜏
2
)

+ 𝛿
5
𝛼
2

‖𝑥(𝑡)‖
2

+ 𝛽
6
‖𝑟‖
2

∞

+ 𝛿
1
𝐷
𝑇

(𝑥
𝑡
) 𝑃𝐵
2
∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠

+ 𝛿
1
(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐵
𝑇

2
𝑃𝐷 (𝑥

𝑡
) ,

(40)
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where

𝜉(𝑡)
𝑇

= [𝐷
𝑇

(𝑥
𝑡
) , 𝑥
𝑇

(𝑡 − 𝜏
1
) , 𝑥
𝑇

(𝑡 − 𝜏
2
) ,

(∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠)

𝑇

, 𝑓
𝑇

(𝑥, 𝑥 (𝑡)) , 𝑟
𝑇

(𝑡)] ,

Ω̃ =(

(

(1
∗

, 1
∗

) 𝛿
1
𝑃 0 (1

∗

, 4
∗

) 𝑃𝐶 𝑃

∗ −𝛿
2
𝑃 0 0 0 0

∗ ∗ −𝛿
3
𝑃 0 0 0

∗ ∗ ∗ −𝛿
4
𝑃 0 0

∗ ∗ ∗ ∗ −𝛿
5
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝛿
6
𝐼

)

)

,

(41)

with

(1
∗

, 1
∗

) = 𝑃 (𝐴 + 𝐵
2
) + (𝐴 + 𝐵

2
)
𝑇

𝑃 + 𝑃𝐵
1
− 2𝜂𝑃𝐶

𝑇

𝐶𝑃,

(1
∗

, 4
∗

) = −𝑃𝐴𝐵
2
− 𝑃𝐵
2

2
+ 𝜂𝑃𝐶𝐶

𝑇

𝐵
2
𝑃 − 𝛿
1
𝑃𝐵
2
.

(42)

Pre- and postmultiplying (36) by diag[𝑃, 𝑃, 𝑃, 𝑃, 𝐼, 𝐼], we can
obtain

Ω̃ ≤ 0. (43)

Then, by Lemmas 4 and 5, (40), and (43), we conclude that

L𝑉
1
(𝑡, 𝑥
𝑡
) ≤ − 𝛿

1
𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝛿
2
𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑃𝑥 (𝑡 − 𝜏

1
)

+ 𝛿
6
‖𝑟‖
2

∞
+ 𝛿
3
𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑃𝑥 (𝑡 − 𝜏

2
)

+ 𝑥
𝑇

(𝑡) 𝐺
𝑇

𝑃𝐺𝑥 (𝑡)

+ 𝜏
1
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) (𝛿
4
𝑃 + 𝛿
1
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑠) 𝑑𝑠

+ 𝑥
𝑇

(𝑡 − 𝜏
2
)𝐻
𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻𝑥 (𝑡 − 𝜏
2
)

+ 𝑥
𝑇

(𝑡) 𝑄
−1

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏
2
)𝐻
𝑇

𝑃𝐻𝑥 (𝑡 − 𝜏
2
) + 𝛿
5
𝛼
2

‖𝑥(𝑡)‖
2

.

(44)

Taking the operator L of 𝑉
𝑖
(𝑡), 𝑖 = 2, 3, 4, along the

trajectory of system (1), we get

L𝑉
2
(𝑡) = 𝛿

2
𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) − 𝛿
2
𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑃𝑥 (𝑡 − 𝜏

1
) ,

L𝑉
3
(𝑡) = 𝑥

𝑇

(𝑡) (𝛿
3
𝑃 + 𝐻

𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻 +𝐻
𝑇

𝑃𝐻)𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) (𝛿
3
𝑃 + 𝐻

𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻 +𝐻
𝑇

𝑃𝐻)

× 𝑥 (𝑡 − 𝜏
2
) ,

(45)

L𝑉
4
(𝑡) = 𝜏

2

1
𝑥
𝑇

(𝑡) (𝛿
4
𝑃 + 𝛿
1
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑡)

− 𝜏
1
∫

𝑡

𝑡−𝜏1

𝑥
𝑇

(𝑠) (𝛿
4
𝑃 + 𝛿
1
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑠) 𝑑𝑠.

(46)

Combining (44) with (46), we have

L𝑉 (𝑡, 𝑥 (𝑡)) ≤ − (𝛿
1
− 𝛿
2
− 𝛿
3
) 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝛽
5
𝛼
2

‖𝑥(𝑡)‖
2

+ 𝛽
6
‖𝑟‖
2

∞

+ 𝜏
2

1
𝑥
𝑇

(𝑡) (𝛿
4
𝑃 + 𝛿
1
𝐵
𝑇

2
𝑃𝐵
2
) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄
−1

𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡)𝐻
𝑇

𝑃𝐻𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝐺
𝑇

𝑃𝐺𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡)𝐻
𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻𝑥 (𝑡)

≤ − [ (𝛿
1
− 𝛿
2
− 𝛿
3
) 𝜆min (𝑃)

− 𝜏
2

1
𝜆max (𝛿4𝑃 + 𝛿1𝐵

𝑇

2
𝑃𝐵
2
)

− 𝛽
5
𝛼
2

− 𝜆max (𝐻
𝑇

𝑃𝐻) − 𝜆max (𝐺
𝑇

𝑃𝐺)

− 𝜆max (𝑄
−1

) − 𝜆max (𝐻
𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻)]

× ‖𝑥(𝑡)‖
2

+ 𝛽
6
‖𝑟‖
2

∞
.

(47)

Let 𝑏 = (𝛿
1
− 𝛿
2
− 𝛿
3
)𝜆min(𝑃) − 𝜏

2

1
𝜆max(𝛿4𝑃 + 𝛿1𝐵

𝑇

2
𝑃𝐵
2
)−

𝛽
5
𝛼
2

− 𝜆max(𝐻
𝑇

𝑃𝐻) − 𝜆max(𝐺
𝑇

𝑃𝐺) − 𝜆max(𝑄
−1

) −

𝜆max(𝐻
𝑇

𝑃𝐺𝑄𝐺
𝑇

𝑃𝐻); we have

L𝑉 (𝑡, 𝑥 (𝑡)) ≤ −𝑏‖𝑥(𝑡)‖
2

+ 𝛽
6
‖𝑟‖
2

∞
. (48)

The rest of the proof is essentially the same asTheorem 6 and
hence is omitted. This completes the proof.

If the stochastic term disappears, the control system (9)
reduces to

𝑑 [𝑥 (𝑡) + 𝐵
2
∫

𝑡

𝑡−𝜏1

𝑥 (𝑠) 𝑑𝑠]

= [(𝐴 + 𝐵
2
+ 𝐶𝐾) 𝑥 (𝑡) + 𝐵

1
𝑥 (𝑡 − 𝜏

1
) + 𝐶𝑟 (𝑡)

+𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
))] 𝑑𝑡 𝑡 ≥ 𝑡

0
≥ 0,

𝑦 (𝑡) = 𝐷𝑥 (𝑡) ,

𝑥 (𝜃) = 𝜑 (𝜃) ∈ 𝐶
𝑏

F0
([𝑡
0
− 𝜏, 𝑡
0
] ; 𝑅
𝑛

) , 𝜃 ∈ [𝑡
0
− 𝜏, 𝑡
0
] .

(49)

We have the following stabilization results.

Corollary 8. For any given positive constants 𝛽
𝑖
> 0, 𝑖 =

1, 2, 3, 4, 5, the nonlinear stochastic control system (1) with the
controller (3) is BIBO stabilization, if there exist symmetric
positive-definite matrices 𝑃, 𝑅

1
, 𝑅
2
, 𝑅
3
, and 𝑋, such that

𝛽
5
𝜆min (𝑃) − 𝛽1𝜆max (𝑅1) − 𝛽2𝜆max (𝑅2)

− 𝛽
4
(𝛼
1
+ 𝛼
2
) − 𝜏
2

1
𝜆max (𝛽3𝑅3 + 𝛽5𝐵

𝑇

2
𝑃𝐵
2
) > 0,

(50)
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and the linear matrix inequality

Ξ̃ =(

(1, 1) 𝑃𝐵
1

0 (1, 4) 𝑃

∗ (2, 2) 0 0 0

∗ ∗ (3, 3) 0 0

∗ ∗ ∗ (4, 4) 0

∗ ∗ ∗ ∗ −𝛽
4
𝐼

) ≤ 0, (51)

with

(1, 1) = 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑃𝐵
2
+ 𝐵
𝑇

2
𝑃 − 𝑋 − 𝑋

𝑇

+ 𝛽
5
𝑃 + 𝑃,

(1, 4) = −𝑃𝐴𝐵
2
− 𝑃𝐵
2

2
+ 𝑋𝐵
2
− 𝛽
5
𝑃𝐵
2
,

(2, 2) = −𝛽
1
𝑅
1
,

(3, 3) = −𝛽
2
𝑅
2
,

(4, 4) = −𝛽
3
𝑅
3
.

(52)

Corollary 9. For any given positive integer 𝛿
𝑖
> 0, 𝑖 = 1, 2, 3,

the nonlinear stochastic control system (49) with the controller
(3) is BIBO stabilization, if there exist symmetric positive-
definite matrix 𝑃 > 0 and some positive constants 𝜂 > 0,
𝛿
4
> 0, and 𝛿

5
> 0 such that

𝐵
2
𝑃 = 𝑃𝐵

2
,

𝛿
1
− 𝛿
2
> 0,

(53)

(𝛿
1
− 𝛿
2
) 𝜆min (𝑃) − 𝜏

2

1
𝜆max (𝛿3𝑃 + 𝛿1𝐵

𝑇

2
𝑃𝐵
2
) − 𝛿
5
𝛼
2

> 0

(54)

and the linear matrix inequality

Ω =(

(1
∗
, 1
∗
) 𝐵
1
𝑆 (1
∗
, 3
∗
) 𝐶 𝐼

∗ −𝛿
2
𝑆 0 0 0

∗ ∗ −𝛿
3
𝑆 0 0

∗ ∗ ∗ −𝛿
4
𝐼 0

∗ ∗ ∗ ∗ −𝛿
5
𝐼

) ≤ 0 (55)

holds, where

𝑆 = 𝑃
−1

,

(1
∗
, 1
∗
) = 𝐴𝑆 + 𝑆𝐴

𝑇

+ 𝐵
2
𝑆 + 𝑆𝐵

𝑇

2
− 2𝜂𝐶𝐶

𝑇

+ 𝛿
1
𝑆,

(1
∗
, 3
∗
) = −𝐴𝐵

2
𝑆 − 𝐵
2

2
𝑆 + 𝜂𝐶𝐶

𝑇

𝐵
2
− 𝛿
1
𝐵
2
𝑆.

(56)

4. Examples

In this section, Example 1 will be presented to show that the
mean BIBO stabilization conditions in Theorem 6 are valid,
Example 2 will be presented to show that the BIBO stabiliza-
tion conditions in Corollary 8 are valid, and Example 3 will
be presented to show that the derived conditions are much
less conservative than those given in the literature [20].

Example 1. As a simple application of Theorem 6, consider
the stochastic control system (1) with control law (3); the
parameters are given by

𝐴 = (
−2 1

1 −3
) , 𝐵 = (

−2 0

0 −1
) ,

𝐶 = (
4 1

2 0
) , 𝐺 = (

0.05 0

0 0.05
) ,

𝐻 = (
0.01 0

0 0.01
)

(57)

𝑓
1
= [0.1 sin(𝑡), 0.1 cos(𝑡)]𝑇, 𝑓

2
= [√0.2 sin(𝑡), √0.2 cos(𝑡)]𝑇,

𝛽
1
= 0.01, 𝛽

2
= 0.01, 𝛽

3
= 0.01, 𝛽

4
= 1, 𝛽

5
= 4.8, 𝛼

1
= 0.01,

and 𝛼
2
= 0.02. Let us decompose matrix 𝐵 = 𝐵

1
+ 𝐵
2
, where

𝐵
1
= (
−0.5 0.1

0.2 −0.5
) , 𝐵

2
= (
−1.5 −0.1

−0.2 −0.5
) . (58)

By using the Matlab LMI Toolbox, we solve LMI (12) and
obtain the feasible solutions as follows:

𝑃 = (
431.2920 131.9598

131.9598 408.9760
) , 𝑅

1
= (
5500.9 −492.4

−492.4 5151.3
) ,

𝑅
2
= (
3183.9 0.7

0.7 3183.7
) , 𝑅

3
= (
3423.6 −251

−251 3991.8
) ,

𝑋 = (
695.8768 469.2695

469.2695 801.3229
) ,

𝛽
5
𝜆min (𝑃) − 𝛽1𝜆max (𝑅1) − 𝛽2𝜆max (𝑅2) − 𝛽4 (𝛼1 + 𝛼2)

− 𝜏
2

1
𝜆max (𝛽3𝑅3 + 𝛽5𝐵

𝑇

2
𝑃𝐵
2
) = 2.0586 > 0.

(59)

From the above formula, we can see that condition (11) is met.
The stabilizing feedback gain matrix is given by

𝐾 = −𝐶
−1

𝑃
−1

𝑋 = (
−0.3477 −0.8922

−0.0097 3.0268
) . (60)

Meanwhile, we obtain the maximum value 𝜏max = 5.315.
This example shows that the mean square BIBO stabilization
conditions inTheorem 6 are valid.

Example 2. Let us consider the delayed control system (49)
with parameters given by

𝐴 = (
−4 1

1 −4
) , 𝐵 = (

−2 0

0 −1
) ,

𝐶 = (
2 1

1 0
) ,

(61)

𝛽
1
= 0.01, 𝛽

2
= 0.01, 𝛽

3
= 0.01, 𝛽

4
= 1, 𝛽

5
= 4.8, 𝛼

1
= 0.01,

and 𝛼
2
= 0.02.

Let us decompose matrix 𝐵 = 𝐵
1
+ 𝐵
2
, where

𝐵
1
= (
−0.5 0.1

0.2 −0.5
) , 𝐵

2
= (
−1.5 −0.1

−0.2 −0.5
) . (62)
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Now we use Corollary 8 in this paper to study the problem.
By using the Matlab LMI Toolbox, we obtain the feasible
solutions as follows:

𝑃 = (
1.8869 1.7503

1.7503 3.1049
) , 𝑅

1
= (
21.0832 1.9140

1.9140 24.2362
) ,

𝑅
2
=(
18.6240 0

0 18.6240
), 𝑅

3
=(
21.7687 −5.7602

−5.7602 25.2583
),

𝑋 = (
0.5918 1.0013

1.0013 4.1015
) ,

𝛽
5
𝜆min (𝑃) − 𝛽1𝜆max (𝑅1) − 𝛽2𝜆max (𝑅2) − 𝛽4 (𝛼1 + 𝛼2)

− 𝜏
2

1
𝜆max (𝛽3𝑅3 + 𝛽5𝐵

𝑇

2
𝑃𝐵
2
) = 0.0043 > 0.

(63)
From the above formula, we can see that condition (50) ismet.
The stabilizing feedback gain matrix is given by

𝐾 = −𝐶
−1

𝑃
−1

𝑋 = (
−0.3054 −2.1417

0.5804 5.7392
) . (64)

Meanwhile, we obtain the maximum value 𝜏max = 0.48.

Example 3. For the convenience of comparison, let us con-
sider a delayed control system (49) with parameters given by

𝐴 = (
−4 1

1 −4
) , 𝐵 = (

−2 0

0 −1
) , 𝐶 = (

2 1

1 0
) ,

(65)
𝛿
1
= 0.8, 𝛿

2
= 0.4, and 𝛿

3
= 0.5.

Now we use Corollary 9 in this paper to study the
problem; let us decompose matrix 𝐵 = 𝐵

1
+ 𝐵
2
, where

𝐵
1
= (
−1.95 0

0 −1.03
) , 𝐵

2
= (
−0.05 0

0 0.03
) . (66)

By using the Matlab LMI Toolbox, solving LMI (55), we can
get

𝑃 = (
14.8464 0.8740

0.8740 6.1426
) , (67)

and 𝛿
4
= 1.0428, 𝛿

5
= 1.0428, and 𝜂 = 0.0683. In order to

verify condition (54), we give the parameters as follows:

(𝛿
1
− 𝛿
2
) 𝜆min (𝑃) − 𝜏

2

1
𝜆max (𝛿3𝑃 + 𝛿1𝐵

𝑇

2
𝑃𝐵
2
)

− 𝛿
5
𝛼
2

= 0.0145 > 0.

(68)

From the above formula,we can see that condition (54) ismet.
The stabilizing feedback gain matrix is given by

𝐾 = (
−2.0867 −0.5387

−1.0135 −0.0597
) . (69)

Meanwhile, solving LMI (55), the maximum value of 𝜏max for
BIBO stabilization of system (49) is 𝜏max = 1.06. In [20], its
𝜏max is 0.2960. The maximum value of 𝜏max in this example
in our paper is 358.11% larger than this in [20].This example
shows that the BIBO stabilization conditions in this paper are
less conservative than these in [20].The essential reasons why
the stability conditions we have given are less conservative are
that we decompose the coefficient matrix in a proper way.

5. Conclusions

The problem of the mean square BIBO stabilization for
the stochastic control systems with delays and nonlinear
perturbations is investigated. A class of suitable Lyapunov
functional combined with the descriptor model transforma-
tion and the decomposition technique of coefficient matrix
is constructed to derive some novel delay-dependent BIBO
stabilization criteria. Numerical examples have shown that
the derived conditions are valid and improvements over the
existing results are significant.
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