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We consider a theory of thermoelasticity constructed by taking into account the heat conduction in deformable bodies which
depends on two temperatures. The first one is the conductive temperature, the second is the thermodynamic temperature, and the
difference between them is proportional to the heat supply.

1. Introduction

In the classical uncoupled theory of thermoelasticity the
equation of the heat conduction does not contain any elastic
term. On the other hand, the heat equation is of parabolic
type, which leads to infinite speeds of propagation for heat
waves.

In view of eliminating these two phenomena which are
not compatible with physical observations, some researchers
proposed different generalizations of the classical theory. We
restrict our attention to two such extensions. According to
the model proposed by Lord and Shulman [1], the classical
Fourier’s law of heat conduction is replaced by a wave type
heat equation. This new equation ensures finite speeds of
propagation for the heat and elastic waves.

It is important to remark that in this model the equation
of motion and constitutive equations remain the same as
those for the coupled and uncoupled theories.

Another generalization is known as the theory of temper-
ature-rate-dependent thermoelasticity or the thermoelastic-
ity with two relaxation times. This theory contains two
constants that act as relaxation times and modify the heat
equation and, also, the equation of motion and constitutive
equations.This theory was first proposed by Green and Lind-
say [2] and has aroused much interest in recent years. Unlike
the coupled thermoelasticity theory, this theory includes

temperature rate among the constitutive variables and con-
sequently predicts a finite speed for the propagation of
thermal signals. Since thermal signals propagating with finite
speeds have actually been observed in solids, the theory of
temperature-rate-dependent thermoelasticity ismore general
and physically more realistic than the coupled theory.

In [3], Chen et al. gave a theory of thermodynamics of
nonsimple elastic materials with two temperatures For the
linearized form, Iesan establish in [4] some general theorems.

For time-dependent problems, in particular for wave
propagation, the conductive temperature is different from
thermodynamic temperature, regardless of presence of a heat
supply.

The two temperatures have representation in the form a
travelling wave plus a response which occurs instantaneously
through the body.

First studies dedicated to the theory of microstretch
elastic bodies were published by Eringen [5, 6].This theory is
a generalization of themicropolar theory and a special case of
the micromorphic theory. In the context of this theory each
material point is endowed with three deformable directors.
A body is a microstretch continuum if the directors are
constrained to have only breathing-type microdeformations.
Also, the material points of a microstretch solid can stretch
and contract independently of their translations and rota-
tions.
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The purpose of this theory is to eliminate discrepancies
between the classical elasticity and experiments, since the
classical elasticity failed to present acceptable resultswhen the
effects of material microstructure were known to contribute
significantly to the body’s overall deformations, for example,
in the case of granular bodies with large molecules (e.g.,
polymers), graphite, or human bones (see [6]).

These cases are becoming increasingly important in the
design and manufacture of modern day advanced materials,
as small-scale effects become paramount in the prediction of
the overall mechanical behaviour of these materials.

Other intended applications of this theory are to com-
posite materials reinforced with chopped fibers and various
porous materials.

In [7, 8], we find some basic results regarding thermoe-
lastic microstretch bodies.

In [9], the governing equations are modified in the con-
text of Lord and Shulman’s theory of generalized thermoelas-
ticity to include the two temperatures.

2. Basic Equations

Let us summarize the basic equations of the theory of ther-
moelasticity of microstretch bodies with two temperatures.
Let 𝐵 be a bounded regular region of three-dimensional
Euclidian space 𝑅

3 occupied by a microstretch elastic body,
referred to the reference configuration (at time 𝑡 = 0 ).
Let 𝐵 denote the closure of B and call 𝜕𝐵 the boundary
of the domain 𝐵. We consider 𝜕𝐵 a piecewise smooth
surface designated by 𝑛

𝑖
the components of the outward

unit normal to the surface 𝜕𝐵. Letters in boldface stand
for vector fields. We use the notation V

𝑖
to designate the

components of the vector k in the underlying rectangular
Cartesian coordinates frame. A superposed dot stands for
the material time derivative. We will employ the usual
summation and differentiation conventions: the subscripts
are understood to range over integer (1, 2, 3). Summation
over repeated subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the
corresponding Cartesian coordinate.

The spatial argument and time argument of a function
will be omitted when there is no likelihood of confusion. We
refer the motion of the body to a fixed system of rectangular
Cartesian axes 𝑂𝑥

𝑖
, 𝑖 = 1, 2, 3, and to the reference configu-

ration.
The behaviour of the thermoelastic microstretch body is

characterized by the following kinematic variables:
𝑢
𝑖
= 𝑢
𝑖
(𝑥, 𝑡) , 𝜑

𝑖
= 𝜑
𝑖
(𝑥, 𝑡) ,

𝜓 = 𝜓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝐵 × [0, 𝑡
0
) ,

(1)

where 𝑢
𝑖
are the components of the displacement field, 𝜑

𝑖

are the components of the microrotation field, and 𝜓 is the
microstretch function.

The the components of the strain tensors 𝜀
𝑖𝑗
, 𝑘
𝑖𝑗
, and 𝛾

𝑖
are

defined by means of the geometric equations:

𝜀
𝑖𝑗
= 𝑢
𝑗,𝑖

+ 𝜀
𝑖𝑗𝑘

𝜑
𝑘
, 𝜂

𝑖𝑗
= 𝜑
𝑗,𝑖
, 𝛾

𝑖
= 𝜓
,𝑖
, (2)

where 𝜀
𝑖𝑗𝑘

is the alternating symbol.

As usual, we denote by 𝑡
𝑖𝑗
the components of the stress

tensor and by𝑚
𝑖𝑗
the components of the couple stress tensor

over 𝐵. Also, we denote by 𝜆
𝑖
the components of the internal

hypertraction vector and by 𝑞
𝑖
the components of the heat

flux vector.
Now, we define the surface traction 𝑡

𝑖
, the surface couple

𝑚
𝑖
, the microstretch traction 𝑝, and the heat flux 𝑞 at regular

points of the surface 𝜕𝐵 by means of the components of the
outward unit normal to the surface 𝜕𝐵 and components of
stress tensors:

𝑡
𝑖
= 𝑡
𝑗𝑖
𝑛
𝑗
, 𝑚

𝑖
= 𝑚
𝑗𝑖
𝑛
𝑗
, 𝑝 = 𝜆

𝑖
𝑛
𝑖
, 𝑞 = 𝑞

𝑖
𝑛
𝑖
. (3)

If we refer the motion relative to a stress-free and undis-
torted reference state, then the basic equations for the theory
of thermoelasticity of microstretch bodies with two tempera-
tures are

(i) the equations of motion:

𝑡
𝑖𝑗,𝑗

+ 𝐹
𝑖
= 󰜚𝑢̈
𝑖
,

𝑚
𝑖𝑗,𝑗

+ 𝜀
𝑖𝑗𝑘

𝑡
𝑗𝑘

+ 𝐺
𝑖
= 𝐼
𝑖𝑗
𝜑̈
𝑗
,

(4)

(ii) the balance of the equilibrated forces:

𝜆
𝑖,𝑖
+ 𝐿 = 𝐽𝜓̈, (5)

(iii) the energy equation:

𝜑
0
𝜓̇ = −𝑞

𝑖,𝑖
+ 𝑟. (6)

For an isotropic and homogeneous microstretch elastic
material, the constitutive equations have the following form:

𝑡
𝑖𝑗
= (𝜆𝜀
𝑘𝑘

+ 𝜆
0
𝜓 − 𝛽𝜃) 𝛿

𝑖𝑗
+ (𝜇 + ]) 𝜀

𝑖𝑗
+ 𝜇𝜀
𝑗𝑖
,

𝑚
𝑖𝑗
= 𝛼𝜂
𝑘𝑘
𝛿
𝑖𝑗
+ 𝛽𝜂
𝑗𝑖
+ 𝛾𝜂
𝑖𝑗
+ 𝑏
0
𝜀
𝑘𝑗𝑖

𝛾
𝑘
,

𝜆
𝑖
= 𝑎
0
𝛾
𝑖
+ 𝜀
𝑖𝑗𝑘

𝜂
𝑗𝑘
,

𝑞
𝑖
= −𝑘𝜑

,𝑖
,

𝜂 = 𝛽𝜀
𝑟𝑟

+
𝑐

𝜑
0

𝜃,

(7)

where 𝛿
𝑖𝑗
is the Kronecker symbol.

We define the thermodynamic temperature 𝜃 measured
from a constant reference temperature 𝜑

0
by means of

formula

𝜃 = 𝜑 − 𝑎𝜑
,𝑘𝑘 (8)

in which 𝑎 is the two-temperature parameter, 𝑎 > 0.
In the above equations we have used the following

notations:

(i) 𝐹
𝑖
are the components of body force;

(ii) 𝐺
𝑖
are the components of body couple;

(iii) 𝐿 is the generalized external body load;
(iv) 󰜚 is the reference mass density;
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(v) 𝐼
𝑖𝑗
= 𝐼
𝑗𝑖
and 𝐽 are the coefficients of inertia;

(vi) 𝜂 is the entropy per unit volume measured from the
entropy of the reference state;

(vii) 𝑟 is heat supply per unit mass;
(viii) 𝜑 is the conductive temperature measured from a

constant reference temperature 𝜑
0
.

Also, the constants 𝜆, 𝜆
0
, 𝜇, 𝛽, ], 𝛼, 𝛾, 𝑎

0
, 𝑏
0
, 𝑘, 𝑎 and 𝑐,

from the above relations, are the characteristic coefficients of
the material and full characterize the mechanical properties
of the body.

As usual in mechanics of continua, we assume that the
internal energy density is a positive definite quadratic form
and this hypothesis implies (see Eringen [6])

3𝜆 + 2𝜇 + ] >
𝜆
2

0

𝜆
1

, 2𝜇 + ] > 0, ] > 0,

3𝛼 + 𝛽 + 𝛾 > 0, 𝛾 + 𝛽 > 0, 𝛾 − 𝛽 > 0,

𝛼
0
> 0, 𝜆

1
> 0, 𝑐 > 0, 𝑘 > 0, 𝑎 ≥ 0.

(9)

To the system of field equations (4)–(7) we adjoin the
following initial conditions:

𝑢
𝑖
(𝑥, 0) = 𝑎

0

𝑖
(𝑥) , 𝑢̇

𝑖
(𝑥, 0) = 𝑎

1

𝑖
(𝑥) ,

𝜑
𝑖 (𝑥, 0) = 𝑏

0

𝑖
(𝑥) , 𝜑̇

𝑖 (𝑥, 0) = 𝑏
1

𝑖
(𝑥) ,

𝜓 (𝑥, 0) = 𝜓
0
(𝑥) , 𝜓̇ (𝑥, 0) = 𝜓

1
(𝑥) ,

𝜂 (𝑥, 0) = 𝜂
0
(𝑥) , 𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ 𝐵.

(10)

and the following prescribed boundary conditions:

𝑢
𝑖
= 𝑢̃
𝑖

on 𝜕𝐵
1
× [0, 𝑡

0
) , 𝑡

𝑖
= 𝑡̃
𝑖

on 𝜕𝐵
𝑐

1
× [0, 𝑡

0
) ,

𝜑
𝑖
= 𝜑
𝑖

on 𝜕𝐵
2
× [0, 𝑡

0
) , 𝑚

𝑖
= 𝑚̃
𝑖

on 𝜕𝐵
𝑐

2
× [0, 𝑡

0
) ,

𝜓 = 𝜓̃ on 𝜕𝐵
3
× [0, 𝑡

0
) , 𝑝 = 𝑝 on 𝜕𝐵

𝑐

3
× [0, 𝑡

0
) ,

𝜑 = 𝜑 on 𝜕𝐵
4
× [0, 𝑡

0
) , 𝑞 = 𝑞 on 𝜕𝐵

𝑐

4
× [0, 𝑡

0
) ,

(11)

where 𝑎
0

𝑖
, 𝑎1
𝑖
, 𝑏0
𝑖
, 𝑏1
𝑖
, 𝜓0, 𝜓1, 𝜂0, 𝑢̃

𝑖
, 𝑡̃
𝑖
, 𝜑
𝑖
, 𝑚̃
𝑖
, 𝜓̃, 𝜑, and 𝑞 are

prescribed functions in their domains of definition. 𝑡
0
is some

instant that may be infinite.
Also, 𝜕𝐵

1
, 𝜕𝐵
2
, 𝜕𝐵
3
, and 𝜕𝐵

4
with respective complements

𝜕𝐵
𝑐

1
, 𝜕𝐵𝑐
2
, 𝜕𝐵𝑐
3
, and 𝜕𝐵

𝑐

4
are subsets of the surface 𝜕𝐵 such that

𝜕𝐵
1
∩ 𝜕𝐵
𝑐

1
= 𝜕𝐵
2
∩ 𝜕𝐵
𝑐

2
= 𝜕𝐵
3
∩ 𝜕𝐵
𝑐

3
= 𝜕𝐵
4
∩ 𝜕𝐵
𝑐

4
= 0,

𝜕𝐵
1
∪ 𝜕𝐵
𝑐

1
= 𝜕𝐵
2
∪ 𝜕𝐵
𝑐

2
= 𝜕𝐵
3
∪ 𝜕𝐵
𝑐

3
= 𝜕𝐵
4
∪ 𝜕𝐵
𝑐

4
= 𝜕𝐵.

(12)

For a function𝑓 defined on the cylinder𝐵×[0, 𝑡
0
), we will

use the notations 𝑓 ∈ 𝐶
𝑀,𝑁 which means that the derivative,

𝜕
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗
⋅ ⋅ ⋅ 𝜕𝑥
𝑘

(
𝜕
𝑛
𝑓

𝜕𝑡𝑛
) , (13)

exists and is continuous on 𝐵 × [0, 𝑡
0
) for 𝑚 = 0, 1, 2, . . . ,𝑀,

𝑛 = 0, 1, 2, . . . , 𝑁, and𝑚 + 𝑛 ≤ max{𝑀,𝑁}.
We say that the ordered array,

𝑆 = {𝑢
𝑖
, 𝜑
𝑖
, 𝜓, 𝑞
𝑖
, 𝜀
𝑖𝑗
, 𝜂
𝑖𝑗
, 𝛾
𝑖
, 𝜂, 𝑡
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜆
𝑖
, 𝜑} , (14)

is an admissible state if

𝑢
𝑖
∈ 𝐶
1,2

, 𝜑
𝑖
∈ 𝐶
1,2

, 𝜓 ∈ 𝐶
1,2

,

𝜀
𝑖𝑗
∈ 𝐶
0,0

, 𝜂
𝑖𝑗
∈ 𝐶
0,0

, 𝛾
𝑖
∈ 𝐶
0,0

, 𝜂 ∈ 𝐶
0,1

,

𝑡
𝑖𝑗
∈ 𝐶
1,0

, 𝑚
𝑖𝑗
∈ 𝐶
1,0

, 𝜆
𝑖
∈ 𝐶
1,0

, 𝜑 ∈ 𝐶
2,0

.

(15)

It easy to verify that the set of all admissible states is a
linear space with regard to the addition of two admissible
states and multiplication of a admissible state by a scalar

𝑆
1
+ 𝑆
2
= {𝑢
1

𝑖
+ 𝑢
2

𝑖
, 𝜑
1

𝑖
+ 𝜑
2

𝑖
, 𝜓
1
+ 𝜓
2
, 𝑞
1

𝑖
+ 𝑞
2

𝑖
,

𝜀
1

𝑖𝑗
+ 𝜀
2

𝑖𝑗
, 𝜂
1

𝑖𝑗
+ 𝜂
2

𝑖𝑗
, 𝛾
1

𝑖
+ 𝛾
2

𝑖
, 𝜂
1
+ 𝜂
2
, 𝑡
1

𝑖𝑗
+ 𝑡
2

𝑖𝑗
,

𝑚
1

𝑖𝑗
+ 𝑚
2

𝑖𝑗
, 𝜆
1

𝑖
+ 𝜆
2

𝑖
, 𝜑
1
+ 𝜑
2
} ,

𝜆𝑆 = {𝜆𝑢
𝑖
, 𝜆𝜑
𝑖
, 𝜆𝜓, 𝜆𝑞

𝑖
, 𝜆𝜀
𝑖𝑗
, 𝜆𝜂
𝑖𝑗
, 𝜆𝛾
𝑖
, 𝜆𝜂, 𝜆𝑡

𝑖𝑗
, 𝜆𝑚
𝑖𝑗
, 𝜆𝜆
𝑖
, 𝜆𝜑} .

(16)

By a solution of themixed initial boundary value problem
of the theory of thermoelasticity of microstretch bodies with
two temperatures in the cylinderΩ

0
= 𝐵× [0, 𝑡

0
)wemean an

admissible state which satisfies (4)–(7), the initial conditions
(10) and the boundary conditions (11) for all (𝑥, 𝑡) ∈ Ω

0
.

3. Main Results

Let us denote by 𝜀 the specific internal energy. Using a usual
procedure, we can write

̇𝜀 = 𝑡
𝑖𝑗

̇𝜀
𝑖𝑗
+ 𝑚
𝑖𝑗

̇𝜂
𝑖𝑗
+ 𝜆
𝑖
̇𝛾
𝑖
+ 𝜃 ̇𝜂. (17)

Theorem 1. For an admissible state one has the following
equality:

1

2

𝑑

𝑑𝑡
∫
𝐵

(2𝜀 + 󰜚𝑢̇
𝑖
𝑢̇
𝑖
+ 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̇
𝑗
+ 𝐽𝜓̇
2
) 𝑑𝑉

= ∫
𝐵

(𝐹
𝑖
𝑢̇
𝑖
+ 𝐺
𝑖
𝜑̇
𝑖
+ 𝐽𝜓̇ +

1

𝜑
0

𝑟𝜃) 𝑑𝑉

−
𝑘

𝜑
0

∫
𝐵

(𝜑
,𝑘
𝜑
,𝑘
+ 𝑎𝜑
,𝑖𝑖
𝜑
,𝑗𝑗
) 𝑑𝑉

+ ∫
𝜕𝐵

(𝑡
𝑖
𝑢̇
𝑖
+ 𝑚
𝑖
𝜑̇
𝑖
+ 𝑝𝜓̇ −

𝑞

𝜑
0

𝜑)𝑑𝐴.

(18)



4 Abstract and Applied Analysis

Proof. Taking into account, first the geometric equations (2)
and then (4)–(6), we can write

𝑡
𝑖𝑗

̇𝜀
𝑖𝑗
+ 𝑚
𝑖𝑗

̇𝜂
𝑖𝑗
+ 𝜆
𝑖
̇𝛾
𝑖
+ 𝜃 ̇𝜂

= 𝑡
𝑖𝑗
(𝑢̇
𝑖,𝑗

+ 𝜀
𝑗𝑖𝑘

𝜑̇
𝑘
)

+ 𝑚
𝑖𝑗
𝜑̇
𝑗,𝑖

+ 𝜆
𝑖
𝜓̇
,𝑖
−

1

𝜑
0

𝑞
𝑖,𝑖
(𝜑 − 𝑎𝜑

,𝑘𝑘
) +

1

𝜑
0

𝑟𝜃

= (𝑡
𝑖𝑗
𝑢̇
𝑖
)
,
− 𝑡
𝑖𝑗,𝑗

𝑢̇
𝑖
+ 𝜀
𝑗𝑖𝑘

𝑡
𝑖𝑗
𝜑̇
𝑘

+ (𝑚
𝑖𝑗
𝜑̇
𝑗
)
,𝑖
− 𝑚
𝑖𝑗,𝑖

𝜑̇
𝑗
+ (𝜆
𝑖
𝜓̇)
,𝑖

− 𝜆
𝑖,𝑖
𝜓̇ +

1

𝜑
0

𝑟𝜃 −
1

𝜑
0

(𝑞
𝑖
𝜑)
,𝑖
+

1

𝜑
0

𝑞
𝑖
𝜑
,𝑖

= (𝑡
𝑖𝑗
𝑢̇
𝑖
)
,𝑗
+ 𝐹
𝑖
− 󰜚𝑢̈
𝑖
+ 𝐹
𝑖
𝑢̇
𝑖
− 󰜚𝑢̇
𝑖
𝑢̈
𝑖

+ 𝜀
𝑗𝑖𝑘

𝑡
𝑖𝑗
𝜑̇
𝑘
+ (𝑚
𝑖𝑗
𝜑̇
𝑗
)
,𝑖

+ 𝜀
𝑖𝑗𝑘

𝑡
𝑗𝑘
𝜑̇
𝑖
+ 𝐺
𝑖
𝜑̇
𝑖
− 𝐼
𝑖𝑗
𝜑̈
𝑗
𝜑̇
𝑖
+ (𝜆
𝑖
𝜓̇)
,𝑖
+ 𝐿𝜓̇ − 𝐽𝜓̇𝜓̈

+
1

𝜑
0

𝑟𝜃 −
1

𝜑
0

(𝑞
𝑖
𝜑)
,𝑖
+

1

𝜑
0

𝑞
𝑖
𝜑
,𝑖
+

𝑎

𝜑
0

𝑞
𝑖,𝑖
𝜑
,𝑘𝑘

= (𝑡
𝑖𝑗
𝑢̇
𝑖
)
,𝑗
+ (𝑚
𝑖𝑗
𝜑̇
𝑗
)
,𝑖
+ (𝜆
𝑖
𝜓̇)
,𝑖
−

1

𝜑
0

(𝑞
𝑖
𝜑)
,𝑖

+ 𝐹
𝑖
𝑢̇
𝑖
+ 𝐺
𝑖
𝜑̇
𝑖
+ 𝐿𝜓̇ +

1

𝜑
0

𝑟𝜃

− 󰜚𝑢̇
𝑖
𝑢̈
𝑖
− 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̈
𝑗
− 𝐽𝜓̇𝜓̈ −

𝑘

𝜑
0

𝜑
,𝑖
𝜑
,𝑖
−

𝑎𝑘

𝜑
0

𝜑
,𝑖𝑖
𝜑
,𝑘𝑘

.

(19)

Using (17) and (19), we can write

̇𝜀 + 󰜚𝑢̇
𝑖
𝑢̈
𝑖
+ 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̈
𝑗
+ 𝐽𝜓̇𝜓̈

= 𝐹
𝑖
𝑢̇
𝑖
+ 𝐺
𝑖
𝜑̇
𝑖
+ 𝐿𝜓̇ +

1

𝜑
0

𝑟𝜃

+ (𝑡
𝑖𝑗
𝑢̇
𝑖
)
,𝑗
+ (𝑚
𝑖𝑗
𝜑̇
𝑗
)
,𝑖
+ (𝜆
𝑖
𝜓̇)
,𝑖

−
1

𝜑
0

(𝑞
𝑖
𝜑)
,𝑖
−

𝑘

𝜑
0

(𝜑
,𝑖
𝜑
,𝑖
+ 𝑎𝜑
,𝑖𝑖
𝜑
,𝑘𝑘

) .

(20)

Now, we integrate equality (20) over 𝐵 and by using the
divergence theorem, we obtain

1

2

𝑑

𝑑𝑡
∫
𝐵

(2𝜀 + 󰜚𝑢̇
𝑖
𝑢̇
𝑖
+ 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̇
𝑗
+ 𝐽𝜓̇
2
) 𝑑𝑉

= ∫
𝐵

(𝐹
𝑖
𝑢̇
𝑖
+ 𝐺
𝑖
𝜑̇
𝑖
+ 𝐿𝜓̇ +

1

𝜑
0

𝑟𝜃) 𝑑𝑉

−
𝑘

𝜑
0

∫
𝐵

(𝜑
,𝑖
𝜑
,𝑖
+ 𝑎𝜑
,𝑖𝑖
𝜑
,𝑘𝑘

) 𝑑𝑉

+ ∫
𝜕𝐵

(𝑡
𝑖𝑗
𝑛
𝑗
𝑢̇
𝑖
+ 𝑚
𝑖𝑗
𝑛
𝑗
𝜑̇
𝑖
+ 𝜆
𝑖
𝑛
𝑖
𝜓̇ −

1

𝜑
0

𝑞
𝑖
𝑛
𝑖
𝜑)𝑑𝐴.

(21)

On the last integral in the right-side of equality (21) we take
into account the boundary condition (11) such that we are led
to

∫
𝜕𝐵

(𝑡
𝑖𝑗
𝑛
𝑗
𝑢̇
𝑖
+ 𝑚
𝑖𝑗
𝑛
𝑗
𝜑̇
𝑖
+ 𝜆
𝑖
𝑛
𝑖
𝜓̇ −

1

𝜑
0

𝑞
𝑖
𝑛
𝑖
𝜑)𝑑𝐴

= ∫
𝜕𝐵

(𝑡
𝑖
𝑢̇
𝑖
+ 𝑚
𝑖
𝜑̇
𝑖
+ 𝑝𝜓̇ −

1

𝜑
0

𝑞𝜑)𝑑𝐴.

(22)

Finally, from (21) and (22) we deduce the desired equality
(18) and the proof of theorem is complete.

Based on equality (18) we can prove the uniqueness result
of the solution in the following theorem.

Theorem 2. The mixed problem of the thermoelasticity of
microstretch materials with two temperatures has at most one
solution.

Proof. Suppose, by contrast, that our problem admits two
solutions:

𝑢
(𝛼)

𝑖
, 𝜑
(𝛼)

𝑖
, 𝜓
(𝛼)

𝑖
, 𝜑
(𝛼)

, (23)

where𝛼 = 1, 2 and denote by𝑢
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, and 𝜑 the difference

of two solutions; that is

𝑢
𝑖
= 𝑢
(1)

𝑖
− 𝑢
(2)

𝑖
, 𝜑

𝑖
= 𝜑
(1)

𝑖
− 𝜑
(2)

𝑖
,

𝜓 = 𝜓
(1)

− 𝜓
(2)

, 𝜑 = 𝜑
(1)

− 𝜑
(2)

.

(24)

Of course, because of the linearity of the problem, the
differences (24) satisfy the equations and conditions of the
problem, but in their homogeneous form. If we write relation
(18) for the differences (24) and take into account the
hypothesis (9) we obtain

1

2

𝑑

𝑑𝑡
∫
𝐵

(2𝜀 + 󰜚𝑢̇
𝑖
𝑢̇
𝑖
+ 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̇
𝑗
+ 𝐽𝜓̇2) 𝑑𝑉

= −
𝑘

𝜑
0

∫
𝐵

(𝜑
,𝑘
𝜑
,𝑘
+ 𝑎𝜑
,𝑖𝑖
𝜑
,𝑗𝑗
) 𝑑𝑉,

(25)

where 𝜀 is the specific internal energy corresponding to the
differences (24).

Clarly, from (25) taking into account that 𝑘 > 0, 𝜑
0
> 0,

and 𝑎 > 0 we deduce

𝑑

𝑑𝑡
∫
𝐵

(2𝜀 + 󰜚𝑢̇
𝑖
𝑢̇
𝑖
+ 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̇
𝑗
+ 𝐽𝜓̇2) 𝑑𝑉 ≤ 0 (26)

and this inequality assures that the function,

∫
𝐵

(2𝜀 + 󰜚𝑢̇
𝑖
𝑢̇
𝑖
+ 𝐼
𝑖𝑗
𝜑̇
𝑖
𝜑̇
𝑗
+ 𝐽𝜓̇2) 𝑑𝑉, (27)

is decreasing.
According to the homogeneous initial conditions for

differences (24), this integral is null at time 𝑡 = 0. On the other
hand, this integral cannot be negative, such that we deduce
that the integral vanishes for all time 𝑡 > 0.
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Thus we obtain

𝑢
𝑖
= 0, 𝜑

𝑖
= 0, 𝜓 = 0,

𝜑 = 0, 𝜃 = 𝜑 − 𝑎𝜑
,𝑘𝑘

= 0.

(28)

It is easy to see that

∫
𝐵

𝜑 (𝜑 − 𝑎𝜑
,𝑘𝑘

) 𝑑𝑉

= ∫
𝐵

(𝜑
2
+ 𝑎𝜑
,𝑖
𝜑
,𝑖
) 𝑑𝑉 +

𝑎

𝑘
∫
𝜕𝐵

𝑞 𝜑 𝑑𝐴.

(29)

Using (28) and (29) and taking into account the fact that
𝑞 and 𝜑 satisfy the homogeneous boundary conditions, we
obtain 𝜑 = 0 andTheorem 2 is concluded.

This theorem generalizes Iesan’s uniqueness result from
the classical thermoelasticity with two temperatures.

Now, we give an alternative form of our mixed problem,
by using the convolution of two functions.

If 𝛼 and 𝛽 are two functions defined on 𝐵 × [0,∞),
assumed be continuous on [0,∞), with respect to 𝑡, for each
𝑥 ∈ 𝐵, then we define the convolution 𝛼 ∗ 𝛽 by

(𝛼 ∗ 𝛽) (𝑥, 𝑡) = ∫

𝑡

0

𝛼 (𝑥, 𝑡 − 𝜏) 𝛽 (𝑥, 𝜏) 𝑑𝜏 (30)

which has the known properties:

𝛼 ∗ 𝛽 = 𝛽 ∗ 𝛼,

(𝛼 ∗ 𝛽) ∗ 𝛾 = 𝛼 ∗ (𝛽 ∗ 𝛾) = 𝛼 ∗ 𝛽 ∗ 𝛾,

𝛼 ∗ (𝛽 + 𝛾) = (𝛼 + 𝛽) ∗ (𝛼 + 𝛾) ,

𝛼 ∗ 𝛽 = 0 󳨐⇒ 𝛼 = 0 or 𝛽 = 0.

(31)

Let us consider the functions ℎ and 𝑔 defined on [0,∞) by

ℎ (𝑡) = 1, 𝑔 (𝑡) = 𝑡, (32)

and the functions 𝑓
𝑖
, 𝑔
𝑖
, 𝑙, and𝑊 defined on 𝐵 × [0,∞) by

𝑓
𝑖
= ℎ ∗ 𝐹

𝑖
+ 󰜚 (𝑡𝑎

0

𝑖
+ 𝑎
1

𝑖
) ,

𝑔
𝑖
= ℎ ∗ 𝐺

𝑖
+ 𝐼
𝑖𝑗
(𝑡𝑏
0

𝑗
+ 𝑏
1

𝑗
) ,

𝑙 = ℎ ∗ 𝐿 + 𝐽 (𝑡𝜓
0
+ 𝜓
1
) ,

𝑊 = ℎ ∗ 𝑟 + 𝜑
0
𝜂
0
.

(33)

Then (4)–(6) received the form

ℎ ∗ 𝑡
𝑖𝑗,𝑗

+ 𝑓
𝑖
= 󰜚𝑢
𝑖
,

ℎ ∗ 𝑚
𝑖𝑗,𝑗

+ 𝜀
𝑖𝑗𝑘

ℎ ∗ 𝑡
𝑗𝑘

+ 𝑔
𝑖
= 𝐼
𝑖𝑗
𝜑
𝑗
,

ℎ ∗ 𝜆
𝑖,𝑖
+ 𝑙 = 𝐽𝜓,

(34)

𝜑
0
𝜂 = −𝑙 ∗ 𝑞

𝑖,𝑖
+ 𝑊. (35)

In this way, we obtain the following result.

Theorem 3. An admissible state

𝑆 = {𝑢
𝑖
, 𝜑
𝑖
, 𝜓, 𝑞
𝑖
, 𝜀
𝑖𝑗
, 𝜂
𝑖𝑗
, 𝛾
𝑖
, 𝜂, 𝑡
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜆
𝑖
, 𝜑} (36)

is a solution of themixed problem of thermoelasticity of micros-
tretch bodies with two temperatures if and only if it satisfies
(34), (35), (7), and (8) and the boundary conditions (11).

We must outline that in this form of the mixed problem,
the initial conditions are included in the field of equations.

In the following, we propose to find a result of Betti’s type
regarding our mixed problem.

Assume that the thermoelastic body with two tempera-
tures is subjected to two systems of thermoelastic loadings:

𝐿
(𝛼)

= {𝐹
(𝛼)

𝑖
, 𝐺
(𝛼)

𝑖
, 𝐿
(𝛼)

, 𝑟
(𝛼)

, 𝑢̃
(𝛼)

𝑖
, 𝜑
(𝛼)

𝑖
, 𝜓̃
(𝛼)

, 𝜑
(𝛼)

, 𝑡̃
(𝛼)

𝑖
, 𝑚̃
(𝛼)

𝑖

𝑝
(𝛼)

, 𝑞
(𝛼)

, 𝑎
0(𝛼)

𝑖
, 𝑎
1(𝛼)

𝑖
, 𝑏
0(𝛼)

𝑖
, 𝑏
1(𝛼)

𝑖
, 𝜓
0(𝛼)

, 𝜓
1(𝛼)

, 𝜂
(𝛼)

0
} ,

(37)

where 𝛼 = 1, 2.
These loadings correspond to the thermoelastic configu-

rations:

𝐶
(𝛼)

= {𝑢
(𝛼)

𝑖
, 𝜑
(𝛼)

𝑖
, 𝜓
(𝛼)

, 𝜑
(𝛼)

} . (38)

Theorem 4. Suppose that the thermoelastic body with two
temperatures is subjected to two systems of loadings 𝐿(𝛼), 𝛼 =

1, 2. Then between the corresponding thermoelastic configura-
tions 𝐶(𝛼), 𝛼 = 1, 2, there is the following reciprocity relation:

∫
𝐵

[𝑓
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝑔
(1)

𝑖
∗ 𝜑
(2)

𝑖

+ 𝑙
(1)

∗ 𝜓
(2)

−
1

𝜑
0

𝑔 ∗ 𝑊
(1)

∗ 𝜃
(2)

] 𝑑𝑉

+ ∫
𝜕𝐵

𝑔 ∗ [𝑡
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝑚
(1)

𝑖
∗ 𝜑
(2)

𝑖

+𝑝
(1)

∗ 𝜓
(2)

+
1

𝜑
0

ℎ ∗ 𝑞
(1)

∗ 𝜑
(2)

] 𝑑𝐴

= ∫
𝐵

[𝑓
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝑔
(2)

𝑖
∗ 𝜑
(1)

𝑖

+ 𝑙
(2)

∗ 𝜓
(1)

−
1

𝜑
0

𝑔 ∗ 𝑊
(2)

∗ 𝜃
(1)

] 𝑑𝑉

+ ∫
𝜕𝐵

𝑔 ∗ [𝑡
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝑚
(2)

𝑖
∗ 𝜑
(1)

𝑖

+𝑝
(2)

∗ 𝜓
(1)

+
1

𝜑
0

ℎ ∗ 𝑞
(2)

∗ 𝜑
(1)

] 𝑑𝐴,

(39)

where𝑓(𝛼)
𝑖

,𝑔(𝛼)
𝑖
, 𝑙(𝛼), and𝑊

(𝛼) are given by relations of the form
(33).
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Proof. Taking into account the properties of the convolution,
from the constitutive equations (7) and relation (8), we get

[𝑡
(1)

𝑖𝑗
+ 𝛽𝜃
(1)

𝛿
𝑖𝑗
] ∗ 𝑒
(2)

𝑖𝑗
= [𝑡
(2)

𝑖𝑗
+ 𝛽𝜃
(2)

𝛿
𝑖𝑗
] ∗ 𝑒
(1)

𝑖𝑗
,

𝑚
(1)

𝑖𝑗
∗ 𝜂
(2)

𝑖𝑗
= 𝑚
(2)

𝑖𝑗
∗ 𝜂
(1)

𝑖𝑗
,

𝜆
(1)

𝑖
∗ 𝛾
(2)

𝑖
= 𝜆
(2)

𝑖
∗ 𝛾
(1)

𝑖
,

[𝛽𝜀
(1)

𝑘𝑘
− 𝜂
(1)

] ∗ 𝜃
(2)

= [𝛽𝜀
(2)

𝑘𝑘
− 𝜂
(2)

] ∗ 𝜃
(1)

.

(40)

Adding these relations we deduce that

𝑡
(1)

𝑖𝑗
∗ 𝑒
(2)

𝑖𝑗
+ 𝑚
(1)

𝑖𝑗
∗ 𝜂
(2)

𝑖𝑗
+ 𝜆
(1)

𝑖
∗ 𝛾
(2)

𝑖
− 𝜂
(1)

∗ 𝜃
(2)

= 𝑡
(2)

𝑖𝑗
∗ 𝑒
(1)

𝑖𝑗
+ 𝑚
(2)

𝑖𝑗
∗ 𝜂
(1)

𝑖𝑗
+ 𝜆
(2)

𝑖
∗ 𝛾
(1)

𝑖
− 𝜂
(2)

∗ 𝜃
(1)

.

(41)

Now, we introduce the following notation:

𝐿
𝛼𝛽

= ∫
𝐵

𝑔 ∗ [𝑡
(𝛼)

𝑖𝑗
∗ 𝑒
(𝛽)

𝑖𝑗
+ 𝑚
(𝛼)

𝑖𝑗
∗ 𝜂
(𝛽)

𝑖𝑗

+𝜆
(𝛼)

𝑖
∗ 𝛾
(𝛽)

𝑖
− 𝜂
(𝛼)

∗ 𝜃
(𝛽)

] 𝑑𝑉.

(42)

Thus, from (41) it is easy to deduce that

𝐿
21

= 𝐿
12
. (43)

Taking into account the constitutive equations (7), rela-
tion (8), the geometric equations (2), and (34) and (35), we
obtain

𝑔 ∗ [𝑡
(𝛼)

𝑖𝑗
∗ 𝑒
(𝛽)

𝑖𝑗
+ 𝑚
(𝛼)

𝑖𝑗
∗ 𝜂
(𝛽)

𝑖𝑗
+ 𝜆
(𝛼)

𝑖
∗ 𝛾
(𝛽)

𝑖
− 𝜂
(𝛼)

∗ 𝜃
(𝛽)

]

= 𝑔 ∗ 𝑡
(𝛼)

𝑖𝑗
∗ 𝑢
(𝛽)

𝑖,𝑗
+ 𝜀
𝑗𝑖𝑘

𝑔 ∗ 𝑡
(𝛼)

𝑖𝑗
∗ 𝜑
(𝛽)

𝑘

+ 𝑔 ∗ 𝑚
(𝛼)

𝑖𝑗
∗ 𝜑
(𝛽)

𝑗,𝑖
+ 𝑔 ∗ 𝜆

(𝛼)

𝑖
∗ 𝜓
(𝛽)

,𝑖

+
1

𝜑
0

𝑔 ∗ ℎ ∗ 𝑞
(𝛼)

𝑖,𝑖
∗ (𝜑
(𝛽)

− 𝑎𝜑
(𝛽)

,𝑘𝑘
)

−
1

𝜑
0

𝑔 ∗ 𝑊
(𝛼)

∗ 𝜃
(𝛽)

= 𝑔 ∗ (𝑡
(𝛼)

𝑖𝑗
∗ 𝑢
(𝛽)

𝑖
)
,𝑗
+ 𝑔 ∗ (𝑚

(𝛼)

𝑖𝑗
∗ 𝜑
(𝛽)

𝑖
)
,𝑗

+ 𝑔 ∗ (𝜆
(𝛼)

𝑖
∗ 𝜓
(𝛽)

)
,𝑖

− 𝑔 ∗ 𝑡
(𝛼)

𝑖𝑗,𝑗
∗ 𝑢
(𝛽)

𝑖
− 𝑔 ∗ 𝑚

(𝛼)

𝑖𝑗,𝑗
∗ 𝜑
(𝛽)

𝑖
− 𝑔 ∗ 𝜆

(𝛼)

𝑖,𝑖
∗ 𝜓
(𝛽)

+
1

𝜑
0

𝑔 ∗ ℎ ∗ (𝑞
(𝛼)

𝑖
∗ 𝜑
(𝛽)

)
,𝑖

−
1

𝜑
0

𝑔 ∗ ℎ ∗ 𝑞
(𝛼)

𝑖
∗ 𝜑
(𝛽)

,𝑖
−

𝑎

𝜑
0

𝑔 ∗ ℎ ∗ 𝑞
(𝛼)

𝑖, 𝑖
∗ 𝜑
(𝛽)

,𝑘𝑘

−
1

𝜑
0

𝑔 ∗ 𝑊
(𝛼)

∗ 𝜃
(𝛽)

= 𝑔 ∗ (𝑡
(𝛼)

𝑖𝑗
∗ 𝑢
(𝛽)

𝑖
)
,𝑗
+ 𝑔 ∗ (𝑚

(𝛼)

𝑖𝑗
∗ 𝜑
(𝛽)

𝑖
)
,𝑗

+ 𝑔 ∗ (𝜆
(𝛼)

𝑖
∗ 𝜓
(𝛽)

)
,𝑖

+ 𝑓
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝑔
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑖
+ 𝑙
(𝛼)

∗ 𝜓
(𝛽)

−
1

𝜑
0

𝑔 ∗ 𝑊
(𝛼)

∗ 𝜃
(𝛽)

− 󰜚𝑢
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
− 𝐼
𝑖𝑗
𝜑
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑗
− 𝐽𝜓
(𝛼)

∗ 𝜓
(𝛽)

+
𝑘

𝜑
0

𝑔 ∗ ℎ ∗ 𝜑
(𝛼)

,𝑖
∗ 𝜑
(𝛽)

,𝑖
+

𝑘𝑎

𝜑
0

𝑔 ∗ ℎ ∗ 𝜑
(𝛼)

,𝑖𝑖
∗ 𝜑
(𝛽)

,𝑘𝑘
.

(44)

If we introduce this result in (42) we are led to

𝐿
𝛼𝛽

= ∫
𝐵

[𝑓
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝑔
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑖

+𝑙
(𝛼)

∗ 𝜓
(𝛽)

−
1

𝜑
0

𝑔 ∗ 𝑊
(𝛼)

∗ 𝜃
(𝛽)

] 𝑑𝑉

+ ∫
𝜕𝐵

𝑔 ∗ [𝑡
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝑚
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑖

+𝑝
(𝛼)

∗ 𝜓
(𝛽)

+
1

𝜑
0

ℎ ∗ 𝑞
(𝛼)

∗ 𝜑
(𝛽)

] 𝑑𝐴

− ∫
𝐵

[󰜚𝑢
(𝛼)

𝑖
∗ 𝑢
(𝛽)

𝑖
+ 𝐼
𝑖𝑗
𝜑
(𝛼)

𝑖
∗ 𝜑
(𝛽)

𝑗
− 𝐽𝜓
(𝛼)

∗ 𝜓
(𝛽)

−
𝑘

𝜑
0

𝑔 ∗ ℎ ∗ 𝜑
(𝛼)

,𝑖
∗ 𝜑
(𝛽)

,𝑖

−
𝑘𝑎

𝜑
0

𝑔 ∗ ℎ ∗ 𝜑
(𝛼)

,𝑖𝑖
∗ 𝜑
(𝛽)

,𝑘𝑘
] 𝑑𝑉.

(45)

Using form (45) of the functional𝐿
𝛼𝛽
, taking into account

the symmetry relation (43), we obtain the desired result (39)
that concludes the proof of Theorem 4.

Let us make some considerations on the uncoupled prob-
lemof the thermoelasticitywith two temperatures. So, instead
of relation (7)

5
we assume that

𝜂 =
𝑐

𝜑
0

𝜃. (46)

In this way, we can obtain the relation between the thermoe-
lastic configurations 𝐶(1) and 𝐶

(2) corresponding to the cou-
pled problem, say 𝑃

(1), and the uncoupled problem 𝑃
(2),

respectively.
Suppose that the above systems of thermoelastic loadings

𝐿
(𝛼) correspond to the problems 𝑃(𝛼), 𝛼 = 1, 2.
Using the same procedure as in the proof of Theorem 4,

we obtain the following result.

Theorem 5. Assume that the microstretch thermoelastic body
with two temperatures is subjected to two thermoelastic bodies
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𝐿
(𝛼), 𝛼 = 1, 2; then between the thermoelastic configurations

𝐶
(𝛼), 𝛼 = 1, 2, which correspond to the problems 𝑃(𝛼), 𝛼 = 1, 2,

there is the following reciprocity relation:

∫
𝐵

[𝑓
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝑔
(1)

𝑖
∗ 𝜑
(2)

𝑖

+ 𝑙
(1)

∗ 𝜓
(2)

−
1

𝜑
0

𝑔 ∗ 𝑊
(1)

∗ 𝜃
(2)

] 𝑑𝑉

+ ∫
𝜕𝐵

𝑔 ∗ [𝑡
(1)

𝑖
∗ 𝑢
(2)

𝑖
+ 𝑚
(1)

𝑖
∗ 𝜑
(2)

𝑖

+𝑝
(1)

∗ 𝜓
(2)

+
1

𝜑
0

𝑔 ∗ 𝑞
(1)

∗ 𝜑
(2)

] 𝑑𝐴

= ∫
𝐵

[𝑓
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝑔
(2)

𝑖
∗ 𝜑
(1)

𝑖

+ 𝑙
(2)

∗ 𝜓
(1)

−
1

𝜑
0

𝑔 ∗ 𝑊
(2)

∗ 𝜃
(1)

] 𝑑𝑉

+ ∫
𝜕𝐵

𝑔 ∗ [𝑡
(2)

𝑖
∗ 𝑢
(1)

𝑖
+ 𝑚
(2)

𝑖
∗ 𝜑
(1)

𝑖

+𝑝
(2)

∗ 𝜓
(1)

+
1

𝜑
0

𝑔 ∗ 𝑞
(2)

∗ 𝜑
(1)

] 𝑑𝐴

− ∫
𝐵

𝑔 ∗ 𝜀
(2)

𝑘𝑘
∗ 𝜃
(1)

𝑑𝑉.

(47)

As an immediately consequence of Theorem 5, we indi-
cate the following particular application. In fact, using the
reciprocity relation (47) the problem of coupled thermoelas-
ticity will be reduced to an associated problem of uncoupled
thermoelasticity and to an integral equation.

Indeed, we take

𝑟
(2)

= 𝛿 (𝑥 − 𝜉) 𝛿 (𝑡) , 𝐹
(𝛼)

𝑖
= 𝐺
(𝛼)

𝑖
= 𝐿
(𝛼)

= 0,

𝑢̃
(𝛼)

𝑖
= 𝜑
(𝛼)

𝑖
= 𝜓̃
(𝛼)

= 𝜑
(𝛼)

= 0, 𝛼 = 1, 2,

𝑡̃
(𝛼)

𝑖
= 𝑚̃
(𝛼)

𝑖
= 𝑝
(𝛼)

= 𝑞
(𝛼)

= 0,

𝑎
0(𝛼)

𝑖
= 𝑎
1(𝛼)

𝑖
= 𝑏
0(𝛼)

𝑖
= 𝑏
1(𝛼)

𝑖
= 𝜓
0(𝛼)

= 𝜓
1(𝛼)

= 𝜂
(𝛼)

0
= 0,

(48)

where 𝛿 is the Dirac’s distribution.
Using the properties of convolution and taking into

account definition (33) of the functions 𝑓
𝑖
, 𝑔
𝑖
, 𝑙 and 𝑊, the

reciprocity relation (47) permits to reduce the problem 𝑃
(1)

of coupled thermoelasticity to solving the problem 𝑃
(2) of

uncoupled thermoelasticity and to find the solution of the
following integral equation:

𝜃
(1)

(𝜉, 𝑡) = ∫
𝐵

𝑟
(1)

∗ 𝜃
(2)

𝑑𝑉 − 𝜑
0
𝛽∫
𝐵

̇𝑒
𝑘𝑘
𝑟
(2)

∗ 𝜃
(1)

𝑑𝑉. (49)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors express gratitude to the referees for their crit-
icism of the paper and for helpful suggestions. This paper
was funded by the Deanship of Scientific Research (DSR),
King Abdulaziz University, Jeddah. The authors, therefore,
acknowledge with thanks the DSR technical and financial
support.

References

[1] H.W. Lord and Y. Shulman, “A generalized dynamical theory of
thermoelasticity,” Journal of the Mechanics and Physics of Solids,
vol. 15, no. 5, pp. 299–309, 1967.

[2] A. E. Green and K. A. Lindsay, “Thermoelasticity,” Journal of
Elasticity, vol. 2, no. 1, pp. 1–7, 1972.

[3] P. J. Chen,M. E. Gurtin, andW.O.Williams, “On the thermody-
namics of non-simple elastic materials with two temperatures,”
Zeitschrift für Angewandte Mathematik und Physik, vol. 20, no.
1, pp. 107–112, 1969.
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