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We consider the stochastic optimal control problems under G-expectation. Based on the theory of backward stochastic differential
equations driven by G-Brownian motion, which was introduced in Hu et al. (2012), we can investigate the more general stochastic
optimal control problems under G-expectation than that were constructed in Zhang (2011). Then we obtain a generalized dynamic
programming principle, and the value function is proved to be a viscosity solution of a fully nonlinear second-order partial
differential equation.

1. Introduction

Nonlinear BSDEs in the framework of linear expectation
were introduced by Pardoux and Peng [1] in 1990. Then,
a lot of researches were studied by many authors, and
they provided various applications of BSDEs in stochastic
control, finance, stochastic differential games, and second-
order partial differential equations theory; see [2–9].

The notion of sublinear expectation space was intro-
duced by Peng [10–12], which is a generalization of classical
probability space. The G-expectation, a type of sublinear
expectation, has played an important role in the researches
of sublinear expectation space recently. It can be regarded as
a counterpart of the Wiener probability space in the linear
case. Within this G-expectation framework, the G-Brownian
motion is the canonical process. Besides, the notions of theG-
martingales and the Itô integral with respect to G-Brownian
motion were also derived. There are some new structures
in these notions and some new applications in the financial
models with volatility uncertainty; see Peng [12, 13].

In the G-expectation framework, thanks to a series of
studies [14–17], the complete representation theorem for
G-martingales has been obtained by Peng et al. [18]. Due to
this contribution, a natural formulation of BSDEs driven by

G-Brownian motion was found by Hu et al. [19]. In addition,
the existence and uniqueness of the solution to the BSDEs
driven by G-Brownian motion have been proved. They
also have given the comparison theorem, Feynman-Kac
formula and Girsanov transformation for BSDEs driven
by G-Brownian motion in [20]. So the complete theory of
BSDEs driven by G-Brownian motion has been established.

An important application of BSDEs is that we can define
the recursive utility functions from BSDEs, which can index
scaling risks in the study of economics and finance [21–
24]. Based on these results, a type of significant stochastic
optimal control problems under linear expectation with a
BSDE as cost function was studied [2, 4, 7–9]. Under G-
expectation, the similar problems will be useful in the future
studies of finance models with volatility uncertainty. So we
arise a natural question: can we construct the similar results
in G-expectation framework? In [25, 26], Zhang have given
the study about the stochastic control problems under G-
expectation based on the preliminary theory of BSDEs driven
by G-Brownian motion. When the complete results about
BSDEs driven by G-Brownian motion were established in
[19, 20], we tried to prove the complete results of stochastic
optimization theory of BSDEs driven by G-Brownianmotion
in this paper.



2 Abstract and Applied Analysis

In this paper, we investigate the stochastic optimal control
problems with a BSDE driven by G-Brownian motion con-
structed in [19, 20] as cost function. Based on the results in
[19, 20], we obtain the dynamic programming principle under
G-expectation. Besides, the value function is proved to be a
viscosity solution of a fully nonlinear second-order partial
differential equation.

The rest of the paper is organized as follows. In Section 2,
we recall theG-expectation framework and adapt it according
to our objective. Besides, we give the related properties
of forward and backward stochastic differential equations
driven by G-Brownian motion, which will be needed in the
sequel sections. In Section 3, the stochastic optimal control
problems with a BSDE driven by G-Brownian motion as
cost function are investigated and a dynamic programming
principle under G-expectation is obtained. In Section 4, The
value function is proved to be a viscosity solution of a fully
nonlinear second-order partial differential equation.

2. Preliminaries

In this section, we recall the G-expectation framework
established by Peng [10–12, 27]. Besides, we give some
results about forward and backward stochastic differential
equations driven by G-Brownian motion, which we need in
the following sections. Some details can be found in [19, 20].

2.1. G-Expectation and G-Martingales

Definition 1. LetΩ be a given set, and letH be a linear space
of real valued functions defined on Ω; namely, 𝑐 ∈ H for
each constant 𝑐 and |𝑋| ∈ H if 𝑋 ∈ H. The space H can
be considered as the space of random variables. A sublinear
expectation E is a functional E : H → R satisfying the
following properties: for all𝑋,𝑌 ∈ H, we have

(i) monotonicity: E[𝑋] ≥ E[𝑌] if𝑋 ≥ 𝑌;
(ii) constant preservation: E[𝑐] = 𝑐, for 𝑐 ∈ R;
(iii) subadditivity: E[𝑋 + 𝑌] ≤ E[𝑋] + E[𝑌];
(iv) positive homogeneity: E[𝜆𝑋] = 𝜆E[𝑋], for 𝜆 ≥ 0.

The triple (Ω,H,E) is called a sublinear expectation
space.

Definition 2 (G-normal distribution). A 𝑑-dimensional ran-
dom vector 𝑋 = (𝑋

1
, . . . , 𝑋

𝑑
) on a sublinear expectation

space (Ω,H,E) is called G-normally distributed if for each
𝑎, 𝑏 ≥ 0, we have

𝑋 + 𝑏𝑋
𝑑

= √𝑎2 + 𝑏2𝑋, (1)

where 𝑋 is an independent copy of 𝑋; that is, 𝑋 and 𝑋 are
identically distributed, and 𝑋 is independent of 𝑋. Here, the
letter 𝐺 denotes the function

𝐺 (𝐴) :=
1

2
E [(𝐴𝑋,𝑋)] : S𝑑

󳨃󳨀→ R, (2)

where S
𝑑
denotes the collection of all 𝑑 × 𝑑 symmetric

matrices.

Proposition 3. Let 𝑋 be G-normal distributed. The distribu-
tion of X is characterized by

𝑢 (𝑡, 𝑥) = E [𝜑 (𝑥 + √𝑡𝑋)] , 𝜑 ∈ 𝐶
𝑏,𝐿 𝑖𝑝

(R
𝑑
) . (3)

In particular,E[𝜑(𝑋)] = 𝑢(1, 0), where𝑢 is the unique viscosity
solution of the following parabolic PDE defined on [0,∞)×R𝑑:

𝜕
𝑡
𝑢 − 𝐺 (𝐷

2
𝑢) = 0, 𝑢|

𝑡=0
= 𝜑, (4)

where 𝐺 is defined by (2).

Remark 4. It is easy to check that 𝐺 is a monotonic sublinear
function defined on S(𝑑) and 𝐺(𝐴) := (1/2)E[(𝐴𝑋,𝑋)] ≤

(1/2)|𝐴|E[|𝑋|2] = (1/2)|𝐴|𝜎
2 implies that there exists a

bounded, convex, and closed subset Γ ⊂ S+

𝑑
such that

𝐺 (𝐴) =
1

2
sup
𝛾∈Γ

Tr (𝛾𝐴) , (5)

where S+

𝑑
denotes the collection of nonnegative elements in

S
𝑑
. If there exist some 𝛽 > 0 such that 𝐺(𝐴) − 𝐺(𝐵) ≥

𝛽 tr[𝐴 − 𝐵] for any 𝐴 ≥ 𝐵, we call the G-normal distribution
nondegenerate, which is the case we consider throughout this
paper.

Definition 5. Let Ω = 𝐶
𝑑

0
([0, 𝑇]), that is, the space of all

R𝑑-valued continuous paths (𝜔
𝑡
)
𝑡∈[0,𝑇]

with 𝜔
0
= 0. The

corresponding canonical process is 𝐵
𝑡
(𝜔) = 𝜔

𝑡
, 𝑡 ∈ [0, 𝑇]. 𝑃

0

is wiener measure. F = {F𝐵

𝑡
}
𝑡≥0

is the filtration generated by
𝐵. We letH := 𝐿

𝑖𝑝
(Ω

𝑇
) be a linear space of random variables

for each fixed 𝑇 ≥ 0, where 𝐿
𝑖𝑝
(Ω

𝑇
) := {𝜑(𝐵

𝑡1
, . . . , 𝐵

𝑡𝑛
) : 𝑛 ≥

1, 𝑡
1
, . . . , 𝑡

𝑛
∈ [0, 𝑇], 𝜑 ∈ 𝐶

𝑏,𝐿 𝑖𝑝
(R𝑑×𝑛

)}.
(i)TheG-expectation𝐸 is a sublinear expectation defined

by

𝐸 [𝑋] := 𝐸 [𝜑 (√𝑡
1
− 𝑡

0
𝜉
1
, . . . , √𝑡

𝑛
− 𝑡

𝑛−1
𝜉
𝑛
)] , (6)

for each 𝑋 = 𝜑(𝐵
𝑡1
− 𝐵

𝑡0
, 𝐵

𝑡2
− 𝐵

𝑡1
, . . . , 𝐵

𝑡𝑛
− 𝐵

𝑡𝑛−1
), where

(𝜉
𝑖
)
𝑛

𝑖=1
are identically distributed 𝑑-dimensional G-normally

distributed random vectors in a sublinear expectation space
(Ω̃, H̃, 𝐸) such that 𝜉

𝑖+1
is independent of (𝜉

1
, . . . , 𝜉

𝑖
) for each

𝑖 = 1, 2, . . . , 𝑛 − 1. (Ω,H, 𝐸) is called G-expectation space
and the canonical process {𝐵

𝑡
}
𝑡∈[0,𝑇]

in the sublinear space
(Ω,H, 𝐸) is called a G-Brownian motion.

(ii) The conditional G-expectation 𝐸
𝑡
of 𝑋 ∈ 𝐿

𝑖𝑝
(Ω

𝑇
) is

defined by

𝐸
𝑡𝑗
[𝜑 (𝐵

𝑡1
− 𝐵

𝑡0
, 𝐵

𝑡2
− 𝐵

𝑡1
, . . . , 𝐵

𝑡𝑛
− 𝐵

𝑡𝑛−1
)]

:= 𝜓 (𝐵
𝑡1
− 𝐵

𝑡0
, . . . , 𝐵

𝑡𝑗
− 𝐵

𝑡𝑗−1
) ,

(7)

where 𝜓(𝑥
1
, . . . , 𝑥

𝑗
) = 𝐸[𝜑(𝑥

1
, . . . , 𝑥

𝑗
, √𝑡𝑗+1 − 𝑡𝑗𝜉𝑗+1, . . .,

√𝑡𝑛 − 𝑡𝑛−1𝜉𝑛)].

We denote by 𝐿
𝑝

𝐺
(Ω

𝑇
), 𝑝 ≥ 1, the completion

of G-expectation space 𝐿
𝑖𝑝
(Ω

𝑇
) under the norm
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‖𝑋‖
𝑝,𝐺

:= (𝐸[|𝑋|
𝑝
])
1/𝑝. For all 𝑡 ∈ [0, 𝑇], 𝐸[⋅] and 𝐸

𝑡
[⋅]

are continuous mappings on 𝐿
𝑖𝑝
(Ω

𝑇
) endowed with the

norm ‖ ⋅ ‖
1,𝐺

. Therefore, it can be extended continuously to
𝐿
𝑝

𝐺
(Ω

𝑇
).

Definition 6. A process {𝑀
𝑡
}
𝑡≥0

is called a G-martingale if for
each 𝑡 ∈ [0, 𝑇],𝑀

𝑡
∈ 𝐿

1

𝐺
(Ω

𝑡
), and for each 𝑠 ∈ [0, 𝑡], we have

𝐸
𝑠
[𝑀

𝑡
] = 𝑀

𝑠
.

Nowwe introduce the Itô integral and quadratic variation
process with respect to G-Brownianmotion in G-expectation
space.

Definition 7. Let 𝑝 ≥ 1 be fixed. For a given partition 𝜋
𝑇
=

{𝑡
0
, . . . , 𝑡

𝑁
} of [0, 𝑇], we denote𝑀𝑝,0

𝐺
(0, 𝑇) as the collection of

the following type of simple processes:

𝜂
𝑡
(𝜔) =

𝑁−1

∑

𝑘=0

𝜉
𝑘
(𝜔) 1

[𝑡𝑘 ,𝑡𝑘+1)
(𝑡) , (8)

where 𝜉
𝑘
∈ 𝐿

𝑖𝑝
(Ω

𝑡𝑘
), 𝑘 = 0, 1, 2, . . . , 𝑁 − 1. We denote

by 𝑀𝑝

𝐺
(0, 𝑇) the completion of 𝑀𝑝,0

𝐺
(0, 𝑇) under the norm

‖ ⋅ ‖
𝑀
𝑝

𝐺
(0,𝑇)

:= {𝐸[∫
𝑇

0
| ⋅ |

𝑝
𝑑𝑡]}

1/𝑝.

Definition 8. For each 𝜂 ∈ 𝑀2,0

𝐺
(0, 𝑇), we define

𝐼 (𝜂) = ∫

𝑇

0

𝜂
𝑡
𝑑𝐵

𝑡
:=

𝑁−1

∑

𝑗=0

𝜉
𝑗
(𝐵

𝑡𝑗+1
− 𝐵

𝑡𝑗
) . (9)

The mapping 𝐼 : 𝑀
2,0

𝐺
(0, 𝑇) → 𝐿

2

𝐺
(Ω

𝑇
) is continuous and

thus can be continuously extended to𝑀2

𝐺
(0, 𝑇).

Definition 9. The quadratic variation process of G-Brownian
motion is defined by

⟨𝐵⟩𝑡 := 𝐵
2

𝑡
− 2∫

𝑡

0

𝐵
𝑠
𝑑𝐵

𝑠
, (10)

which is a continuous, nondecreasing process.

Definition 10. We now define the integral of a process 𝜂 ∈

𝑀
1

𝐺
(0, 𝑇) with respect to ⟨𝐵⟩ as follows:

𝑄
0,𝑇

(𝜂) = ∫

𝑇

0

𝜂
𝑡
𝑑⟨𝐵⟩𝑡

:=

𝑁−1

∑

𝑗=0

𝜉
𝑗
(⟨𝐵⟩𝑡𝑗+1

− ⟨𝐵⟩𝑡𝑗
) : 𝑀

1,0

𝐺
(0, 𝑇)

󳨀→ 𝐿
1

𝐺
(Ω

𝑇
) .

(11)

The mapping is continuous and can be extended to𝑀1

𝐺
(0, 𝑇)

uniquely.

Then, we detail some results about the quasianalysis
theory constructed in [27].

Theorem 11. There exists a weakly compact probability mea-
sures familyP on (Ω,B(Ω)) such that

𝐸 [𝑋] = sup
𝑃∈P

𝐸
𝑝 [𝑋] , ∀𝑋 ∈ 𝐿

𝑖𝑝
(Ω

𝑇
) , (12)

P is called a set of probability measures that represents 𝐸.

Definition 12. We define the capacity associated toP, which
is a weakly compact family of probability measure that
represents 𝐸, as follows:

𝑐 (𝐴) := sup
𝑃∈P

𝑃 (𝐴) , 𝐴 ∈ B (Ω
𝑇
) ; (13)

𝑐 is also called the capacity induced by 𝐸.

Let (Ω0
,F0

= {F0

𝑡
},F, 𝑃

0
) be a filtered probability space,

and let {𝑊
𝑡
} be a 𝑑-dimensional Brownian motion under 𝑃0.

[27] proved that P
𝑀

:= {𝑃
0
∘ 𝑋

−1
| 𝑋

𝑡
= ∫

𝑡

0
ℎ
𝑠
𝑑𝑊

𝑠
, ℎ ∈

𝐿
2

F0
([0, 𝑇]; Γ

1/2
)} represents G-expectation 𝐸, where Γ1/2 :=

{𝛾
1/2

| 𝛾 ∈ Γ} and Γ is the set in the representation of 𝐺(⋅) of
the formula (5).

Definition 13. (i) Let 𝑐 be the capacity induced by 𝐸. A set
𝐴 ⊂ Ω is polar if 𝑐(𝐴) = 0. A property holds “quasi-surely”
(q.s. for short) if it holds outside a polar set.

(ii) Let 𝑋 and 𝑌 be two random variables; we say that 𝑋
is a version of 𝑌 if𝑋 = 𝑌 q.s.

Let ‖𝜓‖
𝑝,𝐺

= [𝐸(|𝜓|
𝑝
)]
1/𝑝 for 𝜓 ∈ 𝐶

𝑏
(Ω

𝑇
). The

completion of 𝐶
𝑏
(Ω

𝑇
) and 𝐿

𝑖𝑝
(Ω

𝑇
) under ‖ ⋅ ‖

𝑝,𝐺
is the same,

and we denote them by 𝐿𝑝
𝐺
(Ω

𝑇
).

2.2. Forward and Backward Stochastic Differential Equations
Driven by G-Brownian Motion. We consider the following
stochastic differential equations driven by 𝑑 dimensional G-
Brownian motion (G-SDE):

𝑋
𝑡
= 𝑋

0
+ ∫

𝑡

0

𝑏 (𝑠, 𝑋
𝑠
) 𝑑𝑠 +

𝑑

∑

𝑖,𝑗=1

∫

𝑡

0

ℎ
𝑖𝑗
(𝑠, 𝑋

𝑠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑠

+

𝑑

∑

𝑗=1

∫

𝑡

0

𝜎
𝑗
(𝑠, 𝑋

𝑠
) 𝑑𝐵

𝑗

𝑠
,

(14)

where 𝑡 ∈ [0, 𝑇], the initial condition 𝑋
0
∈ R𝑛 is a given

constant, 𝑏, ℎ
𝑖𝑗
, 𝜎

𝑗
are given functions satisfying 𝑏(⋅, 𝑥), and

ℎ
𝑖𝑗
(⋅, 𝑥), 𝜎

𝑗
(⋅, 𝑥) ∈ 𝑀

2

𝐺
(0, 𝑇;R𝑛

) for each 𝑥 ∈ R𝑛 and the
Lipschitz condition, that is, |𝜙(𝑡, 𝑥) − 𝜙(𝑡, 𝑥

󸀠
)| ≤ 𝐾|𝑥 − 𝑥

󸀠
|,

for each 𝑡 ∈ [0, 𝑇], 𝑥, 𝑥󸀠 ∈ R𝑛, 𝜙 = 𝑏, ℎ
𝑖𝑗
, and 𝜎

𝑗
, respectively.

The solution is a process 𝑋 ∈ 𝑀
2

𝐺
(0, 𝑇;R𝑛

) satisfying the G-
SDE (14).

Theorem 14 (see [12]). There exists a unique solution 𝑋 ∈

𝑀
2

𝐺
(0, 𝑇;R𝑛

) of the stochastic differential equation (14).

Now, we give the results about BSDEs driven
by G-Brownian motion in the G-expectation space
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(Ω
𝑇
, 𝐿

1

𝐺
(Ω

𝑇
), 𝐸) with Ω

𝑇
= 𝐶

0
([0, 𝑇],R𝑑

) and
𝜎
2
= 𝐸[𝐵

2

1
] ≥ −𝐸[−𝐵

2

1
] = 𝜎

2
> 0. We consider the following

type of G-BSDEs (we always use Einstein convention):

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍

𝑠
) 𝑑𝑠 +

𝑑

∑

𝑖,𝑗=1

∫

𝑇

𝑡

𝑔
𝑖𝑗
(𝑠, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑠

− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝐵

𝑠
− (𝐾

𝑇
− 𝐾

𝑡
) ,

(15)

where 𝑓(𝑡, 𝜔, 𝑦, 𝑧), 𝑔
𝑖𝑗
(𝑡, 𝜔, 𝑦, 𝑧) : [0, 𝑇] ×Ω

𝑇
×R×R𝑑

→ R

satisfy the following properties: there exist some 𝛽 > 1 such
that

(H1) for any 𝑦, 𝑧, 𝑓(⋅, ⋅, 𝑦, 𝑧), 𝑔
𝑖𝑗
(⋅, ⋅, 𝑦, 𝑧) ∈ 𝑀

𝛽

𝐺
(0, 𝑇);

(H2) for some 𝐿 > 0,
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝜔, 𝑦, 𝑧) − 𝑓 (𝑡, 𝜔, 𝑦

󸀠
, 𝑧

󸀠
)
󵄨󵄨󵄨󵄨󵄨

+

𝑑

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑖𝑗
(𝑡, 𝜔, 𝑦, 𝑧) − 𝑔

𝑖𝑗
(𝑡, 𝜔, 𝑦

󸀠
, 𝑧

󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦

󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑧

󸀠󵄨󵄨󵄨󵄨󵄨
) .

(16)

For simplicity, we denote by G(0, 𝑇) the collection of
processes (𝑌, 𝑍,𝐾) such that 𝑌 ∈ 𝑆

𝛼

𝐺
(0, 𝑇), 𝑍 ∈ 𝐻

𝛼

𝐺
(0, 𝑇);

𝐾 is a decreasing G-martingale with 𝐾
0
= 0 and 𝐾

𝑇
∈

𝐿
𝛼

𝐺
(Ω

𝑇
). Here, 𝑆𝛼

𝐺
(0, 𝑇) is the completion of 𝑆0

𝐺
(0, 𝑇) =

{ℎ(𝑡, 𝐵
𝑡1∧𝑡,...,𝐵𝑡𝑛∧𝑡

) : 𝑡
1
, . . . , 𝑡

𝑛
∈ [0, 𝑇], ℎ ∈ 𝐶

𝑏,𝐿 𝑖𝑝(R
𝑛+1

)
} under

‖ ⋅ ‖
𝑠
𝑝

𝐺

= {𝐸[sup
𝑡∈[0,𝑇]

|𝜂
𝑡
|
𝑝
]}
1/𝑝, and 𝐻

𝑝

𝐺
(0, 𝑇) is the comple-

tion of𝑀0

𝐺
(0, 𝑇) under ‖ ⋅ ‖

𝐻
𝑃

𝐺

= {𝐸[(∫
𝑇

0
|𝜂
𝑠
|
2
𝑑𝑠)

𝑝/2
]}
1/𝑝.

Definition 15. Let 𝜉 ∈ 𝐿
𝛽

𝐺
(Ω

𝑇
) with 𝛽 > 1; 𝑓 and 𝑔

𝑖𝑗
satisfy

(H1) and (H2). A triplet of processes (𝑌, 𝑍,𝐾) is called a
solution of (15) if for some 1 < 𝛼 ≤ 𝛽 the following properties
hold:

(a) (𝑌, 𝑍,𝐾) ∈ G𝛼

𝐺
(0, 𝑇);

(b)

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍

𝑠
) 𝑑𝑠 +

𝑑

∑

𝑖,𝑗=1

∫

𝑇

𝑡

𝑔
𝑖𝑗
(𝑠, 𝑌

𝑠
, 𝑍

𝑠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑠

− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝐵

𝑠
− (𝐾

𝑇
− 𝐾

𝑡
) .

(17)

Theorem 16 (see [19]). Assume that 𝜉 ∈ 𝐿
𝛽

𝐺
(Ω

𝑇
) and 𝑓, 𝑔

satisfy (𝐻1) and (𝐻2) for some 𝛽 > 1. Then, (15) has a unique
solution (𝑌, 𝑍,𝐾). Moreover, for any 1 < 𝛼 < 𝛽, we have
𝑌 ∈ 𝑆

𝛼

𝐺
(0, 𝑇), 𝑍 ∈ 𝐻

𝛼

𝐺
(0, 𝑇;R𝑑

), and 𝐾
𝑇
∈ 𝐿

𝛼

𝐺
(Ω

𝑇
).

We have the following estimates.

Proposition 17 (see [19]). Let 𝜉 ∈ 𝐿
𝛽

𝐺
(Ω

𝑇
), and 𝑓, 𝑔

𝑖𝑗
satisfy

(𝐻1) and (𝐻2) for some 𝛽 > 1. For some 1 < 𝛼 < 𝛽,
(𝑌, 𝑍,𝐾) ∈ G𝛼

𝐺
(0, 𝑇) is solution of equation (15). Then

(i) There exists a constant 𝐶
𝛼
:= 𝐶(𝛼, 𝑇, 𝐺, 𝐿) > 0 such

that

󵄨󵄨󵄨󵄨𝑌𝑡
󵄨󵄨󵄨󵄨

𝛼

≤ 𝐶
𝛼
𝐸
𝑡
[
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝛼

+ ∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
ℎ
0

𝑠

󵄨󵄨󵄨󵄨󵄨

𝛼

𝑑𝑠] ,

𝐸 [(∫

𝑇

0

󵄨󵄨󵄨󵄨𝑍𝑠

󵄨󵄨󵄨󵄨

2

𝑑𝑠)

𝛼/2

]

≤ 𝐶
𝛼
{𝐸[ sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑌𝑡
󵄨󵄨󵄨󵄨

𝛼

]

+(𝐸[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑌𝑡
󵄨󵄨󵄨󵄨

𝛼

])

1/2

(𝐸[(∫

𝑇

0

ℎ
0

𝑠
𝑑𝑠)

𝛼

])

1/2

} ,

𝐸 [
󵄨󵄨󵄨󵄨𝐾𝑇

󵄨󵄨󵄨󵄨

𝛼

] ≤ 𝐶
𝛼
{𝐸[ sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑌𝑡
󵄨󵄨󵄨󵄨

𝛼

] + 𝐸[(∫

𝑇

0

ℎ
0

𝑠
𝑑𝑠)

𝛼

]} ,

(18)

where ℎ0
𝑠
= |𝑓(𝑠, 0, 0)| + ∑

𝑑

𝑖,𝑗=1
|𝑔

𝑖𝑗
(𝑠, 0, 0)|.

(ii) For any given 𝛼 < 𝛼
󸀠
< 𝛽, there exists a constant 𝐶

𝛼,𝛼
󸀠

depending on𝛼, 𝛼󸀠, 𝑇, 𝐺, 𝐿 such that

𝐸[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑌𝑡
󵄨󵄨󵄨󵄨

𝛼

]

≤ 𝐶
𝛼,𝛼
󸀠

{

{

{

𝐸[ sup
𝑡∈[0,𝑇]

𝐸
𝑡
[
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝛼

]]

+ (𝐸[

[

sup
𝑡∈[0,𝑇]

𝐸
𝑡
[

[

(∫

𝑇

0

ℎ
0

𝑠
𝑑𝑠)

𝛼
󸀠

]

]

]

]

)

𝛼/𝛼
󸀠

+𝐸[

[

sup
𝑡∈[0,𝑇]

𝐸
𝑡
[

[

(∫

𝑇

0

ℎ
0

𝑠
𝑑𝑠)

𝛼
󸀠

]

]

]

]

}

}

}

.

(19)

Proposition 18 (see [20]). Let 𝜉𝑖 ∈ 𝐿
𝛽

𝐺
(Ω

𝑇
), 𝑖 = 1, 2, and 𝑓𝑖,

𝑔
𝑖

𝑖𝑗
satisfy (H1) and (H2) for some 𝛽 > 1. For some 1 < 𝛼 < 𝛽,

(𝑌
𝑖
, 𝑍

𝑖
, 𝐾

𝑖
) ∈ G𝛼

𝐺
(0, 𝑇) are solutions of (15) corresponding to

𝜉
𝑖, 𝑓𝑖, and 𝑔𝑖

𝑖𝑗
. Set 𝑌̂

𝑡
= 𝑌

1

𝑡
− 𝑌

2

𝑡
, 𝑍

𝑡
= 𝑍

1

𝑡
− 𝑍

2

𝑡
, and 𝐾̂

𝑡
=

𝐾
1

𝑡
− 𝐾

2

𝑡
.

(i) There exists a constant 𝐶
𝛼
:= 𝐶(𝛼, 𝑇, 𝐺, 𝐿) > 0 such

that

󵄨󵄨󵄨󵄨󵄨
𝑌̂
𝑡

󵄨󵄨󵄨󵄨󵄨

𝛼

≤ 𝐶
𝛼
𝐸
𝑡
[
󵄨󵄨󵄨󵄨󵄨
𝜉
󵄨󵄨󵄨󵄨󵄨

𝛼

+ ∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝑠

󵄨󵄨󵄨󵄨󵄨

𝛼

𝑑𝑠] , (20)

where 𝜉 = 𝜉
1
−𝜉

2, ℎ̂
𝑠
= |𝑓

1
(𝑠, 𝑌

2

𝑠
, 𝑍

2

𝑠
)−𝑓

2
(𝑠, 𝑌

2

𝑠
, 𝑍

2

𝑠
)|+

∑
𝑑

𝑖,𝑗=1
|𝑔

1

𝑖𝑗
(𝑠, 𝑌

2

𝑠
, 𝑍

2

𝑠
) − 𝑔

2

𝑖𝑗
(𝑠, 𝑌

2

𝑠
, 𝑍

2

𝑠
)|.
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(ii) For any given 𝛼
󸀠 with 𝛼 < 𝛼

󸀠
< 𝛽, there exists a

constant 𝐶
𝛼,𝛼
󸀠 depending on𝛼, 𝛼󸀠, 𝑇, 𝐺, 𝐿 such that

𝐸[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑌̂
𝑡

󵄨󵄨󵄨󵄨󵄨

𝛼

]

≤ 𝐶
𝛼,𝛼
󸀠

{

{

{

𝐸[ sup
𝑡∈[0,𝑇]

𝐸
𝑡
[
󵄨󵄨󵄨󵄨󵄨
𝜉
󵄨󵄨󵄨󵄨󵄨

𝛼

]]

+ (𝐸[

[

sup
𝑡∈[0,𝑇]

𝐸
𝑡
[

[

(∫

𝑇

0

ℎ̂
𝑠
𝑑𝑠)

𝛼
󸀠

]

]

]

]

)

𝛼/𝛼
󸀠

+𝐸[

[

sup
𝑡∈[0,𝑇]

𝐸
𝑡
[

[

(∫

𝑇

0

ℎ̂
𝑠
𝑑𝑠)

𝛼
󸀠

]

]

]

]

}

}

}

.

(21)

Theorem 19 (see [20]). Let (𝑌𝑖

𝑡
, 𝑍

𝑖

𝑡
, 𝐾

𝑖

𝑡
)
𝑡≤𝑇

, 𝑖 = 1, 2, be the
solutions of the following G-BSDEs:

𝑌
𝑖

𝑡
= 𝜉

𝑖
+ ∫

𝑇

𝑡

𝑓
𝑖
(𝑠, 𝑌

𝑖

𝑠
, 𝑍

𝑖

𝑠
) 𝑑𝑠 + ∫

𝑇

𝑡

𝑔
𝑖
(𝑠, 𝑌

𝑖

𝑠
, 𝑍

𝑖

𝑠
) 𝑑⟨𝐵⟩𝑠

− ∫

𝑇

𝑡

𝑍
𝑖

𝑠
𝑑𝐵

𝑠
− (𝐾

𝑖

𝑇
− 𝐾

𝑖

𝑡
) ,

(22)

where 𝜉𝑖 ∈ 𝐿𝛽
𝐺
(Ω

𝑇
), 𝑓

𝑖
, 𝑔

𝑖
satisfy (H1) and (H2) with 𝛽 > 1. If

𝜉
1
≥ 𝜉

2, 𝑓
1
≥ 𝑓

2
, 𝑔

1
≥ 𝑔

2
, then 𝑌1

𝑡
≥ 𝑌

2

𝑡
.

Theorem 20 (see [20]). Let (𝑌𝑖

𝑡
, 𝑍

𝑖

𝑡
, 𝐾

𝑖

𝑡
)
𝑡≤𝑇

, 𝑖 = 1, 2, be the
solutions of the following G-BSDEs:

𝑌
𝑖

𝑡
= 𝜉

𝑖
+ ∫

𝑇

𝑡

𝑓
𝑖
(𝑠, 𝑌

𝑖

𝑠
, 𝑍

𝑖

𝑠
) 𝑑𝑠 + ∫

𝑇

𝑡

𝑔
𝑖
(𝑠, 𝑌

𝑖

𝑠
, 𝑍

𝑖

𝑠
) 𝑑⟨𝐵⟩𝑠

− ∫

𝑇

𝑡

𝑍
𝑖

𝑠
𝑑𝐵

𝑠
− (𝐾

𝑖

𝑇
− 𝐾

𝑖

𝑡
) + 𝑉

𝑖

𝑇
− 𝑉

𝑖

𝑡
,

(23)

where 𝜉𝑖 ∈ 𝐿
𝛽

𝐺
(Ω

𝑇
), 𝑓

𝑖
, 𝑔

𝑖
satisfy (𝐻1) and (𝐻2), (𝑉𝑖

𝑡
)
𝑡≤𝑇

are
RCLL processes such that𝐸[sup

𝑡∈[0,𝑇]
|𝑉

𝑖

𝑡
|
𝛽
] < ∞with 𝛽 > 1. If

𝜉
1
≥ 𝜉

2, 𝑓
1
≥ 𝑓

2
, 𝑔

1
≥ 𝑔

2
, and𝑉1

𝑡
−𝑉

2

𝑡
is an increasing process,

then 𝑌1

𝑡
≥ 𝑌

2

𝑡
.

3. A DPP for Stochastic Optimal Control
Problems under G-Expectation

Now we introduce the setting for stochastic optimal control
problems under 𝐺-expectation. We suppose that the control
state space 𝑉 is a compact metric space. Let the set of
admissible control processes U for the player be a set of 𝑉-
valued stochastic processes in𝑀2

𝐺
([𝑡, 𝑇];R𝑛

), 𝑡 ∈ [0, 𝑇]. For
a given admissible control 𝜐(⋅) ∈ U, the corresponding orbit,
which regards 𝑡 as the initial time and 𝜉 ∈ 𝐿

2

𝐺
(Ω

𝑡
;R𝑛

) as the

initial state, is defined by the solution of the following type of
G-SDE:

𝑑𝑋
𝑡,𝜉;𝜐

𝑠
= 𝑏 (𝑠, 𝑋

𝑡,𝜉;𝜐

𝑠
, 𝜐

𝑠
) 𝑑𝑠 +

𝑑

∑

𝑖,𝑗=1

ℎ
𝑖𝑗
(𝑠, 𝑋

𝑡,𝜉;𝜐

𝑠
, 𝜐

𝑠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑠

+

𝑑

∑

𝑗=1

𝜎
𝑗
(𝑠, 𝑋

𝑡,𝜉;𝜐

𝑠
, 𝜐

𝑠
) 𝑑𝐵

𝑗

𝑠
, 𝑠 ∈ [𝑡, 𝑇] , 𝑋

𝑡,𝜉;𝜐

𝑡
= 𝜉,

(24)

where 𝑏, ℎ
𝑖𝑗
, 𝜎

𝑗
: [0, 𝑇] × R𝑛

× U → R𝑛 are deterministic
functions and satisfy the following conditions (H3):

(A1) ℎ
𝑖𝑗
= ℎ

𝑗𝑖
for 1 ≤ 𝑖, 𝑗 ≤ 𝑑;

(A2) For every fixed (𝑥, 𝜐) ∈ R𝑛
× U, 𝑏(⋅, 𝑥, 𝜐), ℎ

𝑖𝑗
(⋅, 𝑥, 𝜐),

𝜎
𝑗
(⋅, 𝑥, 𝜐) are continuous in 𝑡;

(A3) There exists a constant 𝐿 > 0, for any 𝑡 ∈ [0, 𝑇], 𝑥,
𝑥
󸀠
∈ R𝑛, 𝜐, 𝜐󸀠 ∈ U such that

󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑡, 𝑥, 𝜐) − 𝑏 (𝑡, 𝑥

󸀠
, 𝜐

󸀠
)
󵄨󵄨󵄨󵄨󵄨
+

𝑑

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑡, 𝑥, 𝜐) − ℎ

𝑖𝑗
(𝑡, 𝑥

󸀠
, 𝜐

󸀠
)
󵄨󵄨󵄨󵄨󵄨

+

𝑑

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝑡, 𝑥, 𝜐) − 𝜎

𝑗
(𝑡, 𝑥

󸀠
, 𝜐

󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜐 − 𝜐

󸀠󵄨󵄨󵄨󵄨󵄨
) .

(25)

From the assumption (H3), we can get global linear
growth conditions for 𝑏, ℎ

𝑖𝑗
, 𝜎

𝑗
; that is, there exists 𝐶 > 0

such that, for 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R𝑛, 𝜐 ∈ U, |𝑏(𝑡, 𝑥, 𝜐)| +
∑
𝑑

𝑖,𝑗=1
|ℎ
𝑖𝑗
(𝑡, 𝑥, 𝜐)| + ∑

𝑑

𝑗=1
|𝜎
𝑗
(𝑡, 𝑥, 𝜐)| ≤ 𝐶(1 + |𝑥| + |𝜐|).

Obviously, under the above assumptions, for any 𝜐(⋅) ∈ U,
G-SDE (24) has a unique solution. Moreover, we have the
following estimates.

Proposition 21. Let 𝜉, 𝜉󸀠 ∈ 𝐿
𝑝

𝐺
(Ω

𝑡
;R𝑛

) with 𝑝 ≥ 2, 𝜐(⋅),
𝜐
󸀠
(⋅) ∈ U, 𝑡 ∈ [0, 𝑇], and 𝛿 ∈ [0, 𝑇 − 𝑡]; then we have

𝐸
𝑡
[
󵄨󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝜉;𝜐

𝑡+𝛿
− 𝑋

𝑡,𝜉
󸀠
;𝜐
󸀠

𝑡+𝛿

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

] ≤ 𝐶(
󵄨󵄨󵄨󵄨󵄨
𝜉 − 𝜉

󸀠󵄨󵄨󵄨󵄨󵄨

𝑝

+∫

𝑡+𝛿

𝑡

𝐸
𝑡

󵄨󵄨󵄨󵄨󵄨
𝜐
𝑟
− 𝜐

󸀠

𝑟

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑟) ,

𝐸
𝑡
[
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝜉;𝜐

𝑡+𝛿

󵄨󵄨󵄨󵄨󵄨

𝑝

] ≤ 𝐶 (1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝

) ,

𝐸
𝑡
[ sup
𝑠∈[𝑡,𝑡+𝛿]

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝜉;𝜐

𝑠
− 𝜉

󵄨󵄨󵄨󵄨󵄨

𝑝

] ≤ 𝐶 (1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝

) 𝛿
𝑝/2
,

(26)

where 𝐶 depends on 𝐿, 𝐺, 𝑝, 𝑛, 𝑇.

Proof. The proof is similar to the proof of Proposition 4.1 in
[20].

Now we give bounded functionsΦ : R𝑛
→ R, 𝑓 : [0, 𝑇]×

R𝑛
×R ×R𝑑

×U → R, 𝑔
𝑖𝑗
: [0, 𝑇] ×R𝑛

×R ×R𝑑
×U → R

that satisfy the following conditions: (H4)
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(i) 𝑔
𝑖𝑗
= 𝑔

𝑗𝑖
for 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

(ii) For every fixed (𝑥, 𝑦, 𝑧, 𝜐) ∈ R𝑛
× R × R𝑛

× U,
𝑓(⋅, 𝑥, 𝑦, 𝑧, 𝜐) and 𝑔

𝑖𝑗
(⋅, 𝑥, 𝑦, 𝑧, 𝜐) are continuous in 𝑡,

1 ≤ 𝑖, 𝑗 ≤ 𝑑.
(iii) There exist a constant 𝐿 > 0, for 𝑡 ∈ [0, 𝑇], 𝑥, 𝑥󸀠 ∈ R𝑛,

𝑦, 𝑦󸀠 ∈ R, 𝑧, 𝑧󸀠 ∈ R𝑑, 𝜐, 𝜐󸀠 ∈ U, such that

󵄨󵄨󵄨󵄨󵄨
Φ (𝑥) − Φ (𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐿 (

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
) ,

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑥, 𝑦, 𝑧, 𝜐) − 𝑓 (𝑡, 𝑥

󸀠
, 𝑦

󸀠
, 𝑧

󸀠
, 𝜐

󸀠
)
󵄨󵄨󵄨󵄨󵄨

+

𝑑

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑖𝑗
(𝑡, 𝑥, 𝑦, 𝑧, 𝜐) − 𝑔

𝑖𝑗
(𝑡, 𝑥

󸀠
, 𝑦

󸀠
, 𝑧

󸀠
, 𝜐

󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦

󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑧

󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜐 − 𝜐

󸀠󵄨󵄨󵄨󵄨󵄨
) .

(27)

From (H4), we have that Φ, 𝑓, and 𝑔
𝑖𝑗
also satisfy global

linear growth condition in 𝑥; that is, there exists 𝐶 > 0, such
that for all 0 ≤ 𝑡 ≤ 𝑇, 𝜐 ∈ U, 𝑥 ∈ R𝑛,

|Φ (𝑥)| +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 0, 0, 𝜐)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑖𝑗
(𝑡, 𝑥, 0, 0, 𝜐)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (1 + |𝑥| + |𝜐|) .

(28)

For any 𝜐 ∈ U and 𝜉 ∈ 𝐿
2

𝐺
(Ω

𝑡
,R𝑛

), the mappings 𝑓(𝑠, 𝑥, 𝑦,
𝑧, 𝜐) := 𝑓(𝑠, 𝑋

𝑡,𝜉;𝜐

𝑠
, 𝑦, 𝑧, 𝜐

𝑠
) and 𝑔

𝑖𝑗
(𝑠, 𝑥, 𝑦, 𝑧, 𝜐) = 𝑔

𝑖𝑗
(𝑠, 𝑋

𝑡,𝜉;𝜐

𝑠
,

𝑦, 𝑧, 𝜐
𝑠
), where (𝑠, 𝑦, 𝑧) ∈ [0, 𝑇]×R×R𝑑 satisfy the conditions

of Theorem 16 on the interval [𝑡, 𝑇]. Therefore, there exists a
unique solution for the following G-BSDE:

𝑌
𝑡,𝜉;𝜐

𝑠
= Φ(𝑋

𝑡,𝜉;𝜐

𝑇
) + ∫

𝑇

𝑠

𝑓 (𝑟,𝑋
𝑡,𝜉;𝜐

𝑟
, 𝑌

𝑡,𝜉;𝜐

𝑟
, 𝑍

𝑡,𝜉;𝜐

𝑟
, 𝜐

𝑟
) 𝑑𝑟

− ∫

𝑇

𝑠

𝑍
𝑡,𝜉;𝜐

𝑟
𝑑𝐵

𝑟
− (𝐾

𝑡,𝜉;𝜐

𝑇
− 𝐾

𝑡,𝜉;𝜐

𝑠
)

+

𝑑

∑

𝑖,𝑗=1

∫

𝑇

𝑠

𝑔
𝑖𝑗
(𝑟, 𝑋

𝑡,𝜉;𝜐

𝑟
, 𝑌

𝑡,𝜉;𝜐

𝑟
, 𝑍

𝑡,𝜉;𝜐

𝑟
, 𝜐

𝑟
) 𝑑 ⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟
,

(29)

where𝑋𝑡,𝜉;𝜐 is introduced by (24).

Proposition 22. For each 𝜉, 𝜉󸀠 ∈ 𝐿
𝑝

𝐺
(Ω

𝑡
;R𝑛

) with 𝑝 ≥ 2 and
𝜐(⋅), 𝜐󸀠(⋅) ∈ U, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡,𝜉;𝜐

𝑡
− 𝑌

𝑡,𝜉
󸀠
;𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝜉 − 𝜉

󸀠󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡,𝜉;𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 (1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡,𝜉;𝜐

𝑡
− 𝑌

𝑡,𝜉;𝜐
󸀠

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶(∫

𝑇

𝑡

𝐸
𝑡

󵄨󵄨󵄨󵄨󵄨
𝜐 (𝑟) − 𝜐

󸀠
(𝑟)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑟)

1/2

,

(30)

where 𝐶 depends on 𝐿, 𝐺, 𝑛, and 𝑇.

Proof. The proof is similar to the Proposition 4.2 in [20].

Given a control process 𝜐(⋅) ∈ U, we introduce an associ-
ated cost functional

𝐽 (𝑡, 𝑥; 𝜐) = 𝑌
𝑡,𝑥;𝜐

𝑡
, (𝑡, 𝑥) ∈ [0, 𝑇] ×R

𝑛
, (31)

where the process𝑌𝑡,𝜉;𝜐

𝑡
is defined by G-BSDE (29). Similar to

the proof of Theorem 4.4 in [20], we have that for 𝑡 ∈ [0, 𝑇],
𝜉 ∈ 𝐿

2

𝐺
(Ω

𝑡
,R𝑛

),

𝐽 (𝑡, 𝜉; 𝜐) := 𝑌
𝑡,𝜉;𝜐

𝑡
. (32)

But we are more interested in the case when 𝜉 = 𝑥.
Now we define the value function as follows:

𝑢 (𝑡, 𝑥) := sup
𝜐(⋅)∈U

𝐽 (𝑡, 𝑥; 𝜐) . (33)

Proposition 23. 𝑢(𝑡, 𝑥) is a deterministic function of (𝑡, 𝑥).

Proof. For a partition of [𝑡, 𝑠]: 𝑡 = 𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑠, 𝑝 ≥

2, 𝑡 ≤ 𝑠 ≤ 𝑇, we denote 𝐿
𝑖𝑝
(Ω

𝑡

s) := {𝜑(𝐵
𝑡1
− 𝐵

𝑡
, . . . , 𝐵

𝑡𝑛
− 𝐵

𝑡
) :

𝑛 ≥ 1, 𝑡
1
, . . . , 𝑡

𝑛
∈ [𝑡, 𝑠], 𝜑 ∈ 𝐶

𝑏,𝐿 𝑖𝑝
(R𝑑×𝑛

)}, 𝑀𝑝,0,𝑡

𝐺
(𝑡, 𝑠;R𝑛

) by
the collection of simple processes 𝜂(𝑟) = ∑

𝑁−1

𝑘=0
𝜉
𝑘
1
[𝑡𝑘 ,𝑡𝑘+1)

(𝑟),
where 𝜉

𝑘
∈ 𝐿

𝑖𝑝
(Ω

𝑡

𝑡𝑘
;R𝑛

), 𝑘 = 0, 1, 2, . . . , 𝑁 − 1, and𝑀𝑝,𝑡

𝐺
(𝑡, 𝑠;

R𝑛
) by the completion of 𝑀𝑝,0,𝑡

𝐺
(𝑡, 𝑠;R𝑛

) under the norm
‖𝜂‖

𝑀
𝑝

𝐺
(𝑡,𝑠;R𝑛) := {𝐸[∫

𝑠

𝑡
|𝜂(𝑟)|

𝑝
𝑑𝑟]}

1/𝑝. Use the similar method
in Lemma 43 of [27]; we can prove that 𝜐 ∈ 𝑀

2

𝐺
(𝑡, 𝑠;R𝑛

) is
a 𝑉-valued process; there exists {𝑢 = ∑

𝑁

𝑖=1
1
𝐴𝑖
𝑢
𝑖
}
𝑁∈N; 𝑢

𝑖
∈

𝑀
2,𝑡

𝐺
(𝑡, 𝑠;R𝑛

) is a𝑉-valued process,𝐴
𝑖
is a partition ofB(Ω

𝑡
)

such that 𝑢 → V under probability measure 𝑃 ∈ P
𝑀
.

When 𝜐(𝑠) ∈ 𝑀
2,𝑡

𝐺
(𝑡, 𝑠;R𝑛

), we note that 𝐽(𝑡, 𝑥; 𝜐) is a deter-
ministic function of (𝑡, 𝑥) because 𝑏, ℎ

𝑖𝑗
, 𝜎

𝑗
, Φ, 𝑓, and 𝑔

𝑖𝑗
are

deterministic functions, and 𝐵
𝑠
:= 𝐵

𝑡+𝑠
− 𝐵

𝑡
is a G-Brownian

motion. So we need to construct a sequence of admissible
controls {𝜐𝑖(⋅)} of the form

𝜐
𝑖

𝑠
=

𝑁𝑖

∑

𝑗=1

𝜐
𝑖𝑗

𝑠
1
𝐴𝑖𝑗

(34)

satisfying lim
𝑖→∞

𝐽(𝑡, 𝑥; 𝜐
𝑖
(⋅)) = 𝑢(𝑡, 𝑥), where 𝜐𝑖𝑗(⋅) ∈ 𝑀2,𝑡

𝐺
(𝑡,

𝑠;R𝑛
) is a 𝑉-valued processes and {𝐴

𝑖𝑗
}
𝑁𝑖

𝑗=1
is a partition of

B(Ω
𝑡
). Firstly, there exists {𝜐𝑘}

𝑘≥1
⊂ U, such that 𝑢(𝑡, 𝑥) =

sup
𝑘≥1

𝐽(𝑡, 𝑥; 𝜐
𝑘
). Then we define 𝜐, 𝜐󸀠 ∈ U,

(𝜐 ∨ 𝜐
󸀠
)
𝑠
=

{{{{

{{{{

{

0, 𝑠 ∈ [0, 𝑡] ;

𝜐
𝑠
, 𝑠 ∈ (𝑡, 𝑇] , on {𝐽 (𝑡, 𝑥; 𝜐) ≥ 𝐽 (𝑡, 𝑥; 𝜐

󸀠
)} ;

𝜐
󸀠

𝑠
, 𝑠 ∈ (𝑡, 𝑇] , on {𝐽 (𝑡, 𝑥; 𝜐) < 𝐽 (𝑡, 𝑥; 𝜐

󸀠
)} .

(35)

Therefore,
𝐽 (𝑡, 𝑥; 𝜐 ∨ 𝜐

󸀠
) ≥ 𝐽 (𝑡, 𝑥; 𝜐) ∨ 𝐽 (𝑡, 𝑥; 𝜐

󸀠
) . (36)

Set 𝜐1 := 𝜐
1
∨ 𝜐

1, 𝜐𝑘 := 𝜐
𝑘−1

∨ 𝜐
𝑖, 𝑖 ≥ 2. So 𝑢(𝑡, 𝑥) =

lim
𝑘→∞

𝐽(𝑡, 𝑥; 𝜐
𝑘
).Without loss of generality, suppose𝐸[(𝑢(𝑡,

𝑥) − 𝐽(𝑡, 𝑥; 𝜐
𝑘
))
2
] ≤ 1/𝑘, 𝑘 ≥ 1. We denote

𝜐
𝑘

𝑠
=

𝑁𝑖−1

∑

𝑗,𝑘=0

𝜐
𝑗,𝑘
(𝑠) 1

𝐴
𝑘

𝑗

, (37)
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where 𝜐
𝑗,𝑘

∈ 𝑀
2,𝑡

𝐺
(𝑡, 𝑠;R𝑛

) is a 𝑉-valued process and
{𝐴

𝑘

𝑗
}
0≤𝑗≤𝑁𝑘−1

is a partition of B(Ω
𝑡
). Then we can suppose

for 𝑘 ≥ 1, 𝐸[∫𝑇
𝑡
|𝜐
𝑘

𝑠
− 𝜐

𝑘

𝑠
|
2
𝑑𝑠] ≤ 1/𝐶𝑘. From Proposition 22,

we have

𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝐽 (𝑡, 𝑥; 𝜐

𝑘
) − 𝐽 (𝑡, 𝑥; 𝜐

𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

] ≤ 𝐶𝐸[∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
𝜐
𝑘

𝑠
− 𝜐

𝑘

𝑠

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠] ≤
1

𝑘
.

(38)

Therefore, 𝐸[|𝑢(𝑡, 𝑥) − 𝐽(𝑡, 𝑥; 𝜐𝑘)|2] ≤ 4/𝑘. Then, we have

𝐽 (𝑡, 𝑥; 𝜐
𝑘
) =

𝑁𝑘−1

∑

𝑗=0

1
𝐴
𝑘

𝑗

𝐽 (𝑡, 𝑥; 𝜐
𝑗,𝑘
) ≤ 𝑢 (𝑡, 𝑥) . (39)

Now, we suppose that

𝐽 (𝑡, 𝑥, 𝜐) ≤ max
0≤𝑗≤𝑁𝑘−1

𝐽 (𝑡, 𝑥; 𝜐
𝑗,𝑘
) = 𝐽 (𝑡, 𝑥; 𝜐

𝑗
󸀠
,𝑘
) . (40)

Because 𝐸[|𝐽(𝑡, 𝑥; 𝜐𝑘) − 𝑢(𝑡, 𝑥)|2] → 0, we have

𝑢 (𝑡, 𝑥) = lim
𝑘→∞

𝐽 (𝑡, 𝑥; 𝜐
𝑗
󸀠
,𝑘
) , q.s.. (41)

Hence, 𝐸[𝑢(𝑡, 𝑥)] = 𝑢(𝑡, 𝑥). We have finished the proof.

Lemma 24. For any 𝑡 ∈ [0, 𝑇], 𝑥, 𝑥󸀠 ∈ R𝑛, we have
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
, (42)

|𝑢 (𝑡, 𝑥)| ≤ 𝐶 (1 + |𝑥|) . (43)

Proof. By Proposition 22, we have for 𝜐(⋅) ∈ U,

|𝐽 (𝑡, 𝑥; 𝜐 (⋅))| ≤ 𝐶 (1 + |𝑥|) ,

󵄨󵄨󵄨󵄨󵄨
𝐽 (𝑡, 𝑥; 𝜐 (⋅)) − 𝐽 (𝑡, 𝑥

󸀠
; 𝜐 (⋅))

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
.

(44)

Then, ∀𝜀 > 0, there exist 𝜐(⋅), 𝜐󸀠(⋅) ∈ U such that

𝐽 (𝑡, 𝑥; 𝜐 (⋅)) ≤ 𝑢 (𝑡, 𝑥) ≤ 𝐽 (𝑡, 𝑥; 𝜐 (⋅)) + 𝜀,

𝐽 (𝑡, 𝑥
󸀠
; 𝜐

󸀠
(⋅)) ≤ 𝑢 (𝑡, 𝑥

󸀠
) ≤ 𝐽 (𝑡, 𝑥

󸀠
; 𝜐

󸀠
(⋅)) + 𝜀.

(45)

Now, we have

−𝐶 (1 + |𝑥|) ≤ 𝐽 (𝑡, 𝑥; 𝜐 (⋅)) ≤ 𝑢 (𝑡, 𝑥) ≤ 𝐽 (𝑡, 𝑥; 𝜐 (⋅)) + 𝜀

≤ 𝐶 (1 + |𝑥|) + 𝜀.

(46)

So, we get (43). Similarly, we obtain

𝐽 (𝑡, 𝑥; 𝜐
󸀠
(⋅)) − 𝐽 (𝑡, 𝑥

󸀠
; 𝜐

󸀠
(⋅)) − 𝜀

≤ 𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥
󸀠
)

≤ 𝐽 (𝑡, 𝑥; 𝜐 (⋅)) − 𝐽 (𝑡, 𝑥
󸀠
; 𝜐 (⋅)) + 𝜀.

(47)

Then,

−𝐶
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
− 𝜀 ≤

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
+ 𝜀. (48)

Thus, we have proved (42).

Lemma 25. For any 𝑡 ∈ [0, 𝑇], 𝜁 ∈ 𝐿
2

𝐺
(Ω

𝑡
;R𝑛

), and 𝜁 is F𝐵

𝑡

measurable; we have ∀𝜐(⋅) ∈ U,

𝑢 (𝑡, 𝜁) ≥ 𝑌
𝑡,𝜁;𝜐

𝑡
. (49)

Conversely, ∀𝜀 > 0, there exists a 𝜐(⋅) ∈ U, such that

𝑢 (𝑡, 𝜁) ≤ 𝑌
𝑡,𝜁;𝜐

𝑡
+ 𝜀. (50)

Proof. We already know that 𝑢(𝑡, 𝑥) is continuous with
respect to 𝑥 and 𝑌𝑡,𝜁;𝜐

𝑡
is continuous with respect to (𝜁, 𝜐(⋅)).

We want to prove (49) and only need to discuss the simple
random variables 𝜁 of the form

𝜁 =

𝑁

∑

𝑖=1

1
𝐴𝑖
𝑥
𝑖
, (51)

and 𝜐(⋅) of the form

𝜐 (⋅) =

𝑁

∑

𝑖=1

1
𝐴𝑖
𝜐
𝑖
(⋅) . (52)

Here, 𝑖 = 1, 2, . . . , 𝑁, 𝑥
𝑖
∈ R𝑛, 𝜐𝑖 ∈ 𝑀2,𝑡

𝐺
(𝑡, 𝑠;R𝑛

), and {𝐴
𝑖
}
𝑁

𝑖=1

is aB(Ω
𝑡
)-partition. Then, from the same technique used in

the proof of Theorem 4.4 in [20], we have

𝑌
𝑡,𝜁;𝜐

𝑡
=

𝑁

∑

𝑖=1

1
𝐴𝑖
𝑌
𝑡,𝑥
𝑖
;𝜐
𝑖

𝑡
≤

𝑁

∑

𝑖=1

1
𝐴𝑖
𝑢 (𝑡, 𝑥

𝑖
) = 𝑢(𝑡,

𝑁

∑

𝑖=1

1
𝐴𝑖
𝑥
𝑖
)

= 𝑢 (𝑡, 𝜁) .

(53)

So we have proved (49). Now we prove (50) in a similar way.
We first construct a random variable 𝜂 ∈ 𝐿2

𝐺
(Ω

𝑡
;R𝑛

),

𝜂 =

𝑁

∑

𝑖=1

𝑥
𝑖

𝑠
1
𝐴𝑖
, (54)

where (𝐴
𝑖
)
𝑁

𝑖=1
is a B(Ω

𝑡
)-partition and 𝑥

𝑖
∈ R𝑛, such that

|𝜂 − 𝜁| ≤ 𝜀/3𝐶. Then, we have
󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡,𝜂;𝜐

𝑡
− 𝑌

𝑡,𝜁;𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨
≤
𝜀

3
,

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝜁) − 𝑢 (𝑡, 𝜂)
󵄨󵄨󵄨󵄨 ≤

𝜀

3
,

(55)

for 𝜐(⋅) ∈ U. Now, we choose a control 𝜐𝑖(⋅) ∈ 𝑀
2,𝑡

𝐺
(𝑡, 𝑠;R𝑛

),
such that 𝑢(𝑡, 𝑥

𝑖
) ≤ 𝑌

𝑡,𝑥
𝑖
;𝜐
𝑖

𝑡
+ 𝜀/3. Set 𝜐(⋅) := ∑

𝑁

𝑖=1
𝜐
𝑖
(⋅)1

𝐴𝑖
.

Finally, we get

𝑌
𝑡𝜁;𝜐

𝑡
≥ −

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡,𝜂;𝜐

𝑡
− 𝑌

𝑡,𝜁;𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨
+ 𝑌

𝑡,𝜂;𝜐

𝑡

≥ −
𝜀

3
+

𝑁

∑

𝑖=1

𝑌
𝑡,𝑥
𝑖
;𝜐
𝑖

𝑡
1
𝐴𝑖

≥ −
𝜀

3
+

𝑁

∑

𝑖=1

(𝑢 (𝑡, 𝑥
𝑖
) −

𝜀

3
) 1

𝐴𝑖

= −
2𝜀

3
+

𝑁

∑

𝑖=1

𝑢 (𝑡, 𝑥
𝑖
) 1

𝐴𝑖

= −
2𝜀

3
+ 𝑢 (𝑡, 𝜂) ≥ −𝜀 + 𝑢 (𝑡, 𝜁) .

(56)

So, we have (50).
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Now, we give a type of DPP for our stochastic optimal
control problems. Firstly, we define a family of backward
semigroups associated with the G-BSDE (29). Given the
initial data (𝑡, 𝑥), a positive number 𝛿 ≤ 𝑇 − 𝑡, and a random
variable 𝜂 ∈ 𝐿𝑝

𝐺
(Ω;R) with 𝑝 > 1, we set

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝜂] := 𝑌

𝑡,𝑥;𝜐

𝑠
, (57)

where (𝑌𝑡,𝑥;𝜐

𝑠
)
𝑡≤𝑠≤𝑡+𝛿

is the solution of the following G-BSDE
with the time horizon 𝑡 + 𝛿:

𝑌
𝑡,𝑥;𝜐

𝑠
= 𝜂 + ∫

𝑡+𝛿

𝑠

𝑓 (𝑟,𝑋
𝑡,𝑥;𝜐

𝑟
, 𝑌

𝑡,𝑥;𝜐

𝑟
, 𝑍

𝑡,𝑥;𝜐

𝑟
, 𝜐

𝑟
) 𝑑𝑟

− ∫

𝑡+𝛿

𝑠

𝑍
𝑡,𝑥;𝜐

𝑟
𝑑𝐵

𝑟
− (𝐾

𝑡,𝑥;𝜐

𝑇
− 𝐾

𝑡,𝑥;𝜐

𝑡
)

+

𝑑

∑

𝑖,𝑗=1

∫

𝑡+𝛿

𝑠

𝑔
𝑖𝑗
(𝑟, 𝑋

𝑡,𝑥;𝜐

𝑟
, 𝑌

𝑡,𝑥;𝜐

𝑟
, 𝑍

𝑡,𝑥;𝜐

𝑟
, 𝜐

𝑟
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟
.

(58)

Obviously, for the solution 𝑌𝑡,𝑥;𝜐 of G-BSDE (29), we have

𝐺
𝑡,𝑥;𝜐

𝑡,𝑇
[Φ (𝑋

𝑡,𝑥;𝜐

𝑇
)] = 𝐺

𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑌

𝑡,𝑥;𝜐

𝑡+𝛿
] . (59)

Then, we can obtain the DPP for our stochastic optimal
control problems as follows.

Theorem 26. The value function 𝑢(𝑡, 𝑥) has the following
proposition: for every 0 ≤ 𝛿 ≤ 𝑇 − 𝑡, we have

𝑢 (𝑡, 𝑥) = sup
𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
)] . (60)

Proof. We have

𝑢 (𝑡, 𝑥) = sup
𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑇
[Φ (𝑋

𝑡,𝑥;𝜐

𝑇
)] = sup

𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑌

𝑡+𝛿,𝑋
𝑡,𝑥;𝜐

𝑡+𝛿
;𝜐

𝑡+𝛿
] .

(61)

Obviously, 𝑋𝑡,𝑥;𝜐

𝑡+𝛿
is F𝐵

𝑡+𝛿
measurable. So, by Lemma 25 and

Theorem 19, we have

𝑢 (𝑡, 𝑥) ≤ sup
𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
)] . (62)

Besides, for 𝜀 > 0, there exists an admissible control 𝜐(⋅) ∈ U
such that

𝑢 (𝑡 + 𝛿,𝑋
𝑡,𝑥;𝜐

𝑡+𝛿
) ≤ 𝑌

𝑡+𝛿,𝑋
𝑡,𝑥;𝜐

𝑡+𝛿
;𝜐

𝑡+𝛿
+ 𝜀. (63)

Then,

𝑢 (𝑡, 𝑥) ≥ sup
𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
) − 𝜀]

≥ sup
𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
)] − 𝐶𝜀.

(64)

Because 𝜀 can be arbitrarily small, we get (60).

Proposition 27. 𝑢(𝑡, 𝑥) is 1/2-Hölder continuous in 𝑡.

Proof. For any given (𝑡, 𝑥) ∈ [0, 𝑇] × R𝑛 and 𝛿 > 0 (𝑡 + 𝛿 ≤

𝑇), from Theorem 26, we know that for 𝜀 > 0, there exists a
𝜐(⋅) ∈ U such that

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
)] + 𝜀 ≥ 𝑢 (𝑡, 𝑥)

≥ 𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
)] .

(65)

Then, we need to prove

𝑢 (𝑡, 𝑥) − 𝑢 (𝑡 + 𝛿, 𝑥) ≤ 𝐶𝛿
1/2

(resp., ≥ −𝐶𝛿
1/2
) . (66)

We only check the first inequality in (66). The second can be
proved similarly. We have ∀𝜀 > 0,

𝑢 (𝑡, 𝑥) − 𝑢 (𝑡 + 𝛿, 𝑥) ≤ 𝐼
1

𝛿
+ 𝐼

2

𝛿
+ 𝜀, (67)

where

𝐼
1

𝛿
= 𝐺

𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
)] − 𝐺

𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿, 𝑥)] ,

𝐼
2

𝛿
= 𝐺

𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑡 + 𝛿, 𝑥)] − 𝑢 (𝑡 + 𝛿, 𝑥) .

(68)

From Proposition 21, we have

𝐸
𝑡
[
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝑥;𝜐

𝑡+𝛿
− 𝑥

󵄨󵄨󵄨󵄨󵄨

2

] ≤ 𝐶 (1 + |𝑥|
2
) 𝛿. (69)

By Proposition 22 and Lemma 24, we deduce that

󵄨󵄨󵄨󵄨󵄨
𝐼
1

𝛿

󵄨󵄨󵄨󵄨󵄨
≤ [𝐶𝐸

𝑡
[
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
) − 𝑢 (𝑡 + 𝛿, 𝑥)

󵄨󵄨󵄨󵄨󵄨

2

]]

1/2

≤ [𝐶𝐸
𝑡
[
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝑥;𝜐

𝑡+𝛿
− 𝑥

󵄨󵄨󵄨󵄨󵄨

2

]]

1/2

≤ 𝐶
󸀠
𝛿
1/2
.

(70)

Based on the definition of 𝐺𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
, we get

𝐼
2

𝛿
= 𝐸

𝑡
[𝑢 (𝑡 + 𝛿, 𝑥) + ∫

𝑡+𝛿

𝑡

𝑓 (𝑠, 𝑋
𝑡,𝑥;𝜐

𝑠
, 𝑌

𝑡,𝑥;𝜐

𝑠
, 𝑍

𝑡,𝑥;𝜐

𝑠
, 𝜐

𝑠
) 𝑑𝑠

+

𝑑

∑

𝑖,𝑗=1

∫

𝑡+𝛿

𝑡

𝑔
𝑖𝑗
(𝑠, 𝑋

𝑡,𝑥;𝜐

𝑠
, 𝑌

𝑡,𝑥;𝜐

𝑠
, 𝑍

𝑡,𝑥;𝜐

𝑠
, 𝜐

𝑠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑠

−∫

𝑡+𝛿

𝑡

𝑍
𝑡,𝑥;𝜐

𝑠
𝑑𝐵

𝑠
− (𝐾

𝑡,𝑥;𝜐

𝑇
− 𝐾

𝑡,𝑥;𝜐

𝑡
)] − 𝑢 (𝑡 + 𝛿, 𝑥)

= 𝐸
𝑡
[

[

∫

𝑡+𝛿

𝑡

𝑓 (𝑠, 𝑋
𝑡,𝑥;𝜐

𝑠
, 𝑌

𝑡,𝑥;𝜐

𝑠
, 𝑍

𝑡,𝑥;𝜐

𝑠
, 𝜐

𝑠
) 𝑑𝑠

+

𝑑

∑

𝑖,𝑗=1

∫

𝑡+𝛿

𝑡

𝑔
𝑖𝑗
(𝑠, 𝑋

𝑡,𝑥;𝜐

𝑠
, 𝑌

𝑡,𝑥;𝜐

𝑠
, 𝑍

𝑡,𝑥;𝜐

𝑠
, 𝜐

𝑠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑠

]

]

≤ 𝐶
󸀠
𝛿
1/2

× (1 + 𝐸
𝑡
[∫

𝑡+𝛿

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝑥;𝜐

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑌
𝑡,𝑥;𝜐

𝑠

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑡,𝑥;𝜐

𝑠

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

1/2

) .

(71)
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By Proposition 22, we can prove the following inequality
easily by the similar method in Proposition 3.5 of [11]

𝐸
𝑡
[∫

𝑡+𝛿

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑡,𝑥;𝜐

𝑠

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠]

1/2

≤ 𝐶 (1 + |𝑥|) . (72)

So we have 𝐼2
𝛿
≤ 𝐶

󸀠
𝛿
1/2. Hence, by (67) we have

𝑢 (𝑡, 𝑥) − 𝑢 (𝑡 + 𝛿, 𝑥) ≤ 𝐶
󸀠
𝛿
1/2

+ 𝜀. (73)

Let 𝜀 → 0; we obtain the first inequality of (66).The proof is
completed.

4. Value Function and Viscosity Solution
of Fully Nonlinear Second-Order Partial
Differential Equation

In this section, we consider the following fully nonlinear
second-order partial differential equation

𝜕
𝑡
𝑢 + 𝐹 (𝐷

2

𝑥
𝑢,𝐷

𝑥
𝑢, 𝑢, 𝑥, 𝑡) = 0, (𝑡, 𝑥) ∈ [0, 𝑇] ×R

𝑛
,

𝑢 (𝑇, 𝑥) = Φ (𝑥) ,

(74)

where

𝐹 (𝐷
2

𝑥
𝑢,𝐷

𝑥
𝑢, 𝑢, 𝑥, 𝑡)

= sup
𝜐∈𝑉

{𝐺 (𝐻(𝐷
2

𝑥
𝑢,𝐷

𝑥
𝑢, 𝑢, 𝑥, 𝑡, 𝜐)) + ⟨𝑏 (𝑡, 𝑥, 𝜐) , 𝐷

𝑥
𝑢⟩

+ 𝑓 (𝑡, 𝑥, 𝑢, ⟨𝜎
1
(𝑡, 𝑥) , 𝐷

𝑥
𝑢⟩ ,

. . . , ⟨𝜎
𝑑
(𝑡, 𝑥) , 𝐷

𝑥
𝑢⟩ , 𝜐) } ,

𝐻
𝑖𝑗
(𝐷

2

𝑥
𝑢,𝐷

𝑥
𝑢, 𝑢, 𝑥, 𝑡, 𝜐)

= ⟨𝐷
2

𝑥
𝑢 ⋅ 𝜎

𝑖
(𝑡, 𝑥, 𝜐) , 𝜎

𝑗
(𝑡, 𝑥, 𝜐)⟩

+ 2 ⟨𝐷
𝑥
𝑢, ℎ

𝑖𝑗
(𝑡, 𝑥, 𝜐)⟩

+ 2𝑔
𝑖𝑗
(𝑡, 𝑥, 𝑢, ⟨𝜎

1
(𝑡, 𝑥, 𝜐) , 𝐷

𝑥
𝑢⟩ ,

. . . , ⟨𝜎
𝑑
(𝑡, 𝑥, 𝜐) , 𝐷

𝑥
𝑢⟩ , 𝜐) .

(75)

Remark 28. The definition and uniqueness of the viscosity
solution of above second-order partial differential equation
can be found in Appendix C in Peng [12]. So, we only need to
prove that 𝑢(𝑡, 𝑥) is a viscosity solution of (74). Besides, from
the result of Section 3, we can have that 𝑢(𝑡, 𝑥) is continuous
in [0, 𝑇] ×R𝑛.

Definition 29. A real-valued continuous function 𝑢(𝑡, 𝑥) ∈

𝐶([0, 𝑇] × R𝑛
), 𝑢(𝑇, 𝑥) ≤ Φ(𝑥), for any 𝑥 ∈ R𝑛, is called

a viscosity subsolution (super-solution) of (74); if for all
functions 𝜑 ∈ 𝐶

2,3
([0, 𝑇] × R𝑛

) satisfy 𝜑 ≥ 𝑢 and 𝜑(𝑡, 𝑥) =
𝑢(𝑡, 𝑥) at fixed (𝑡, 𝑥) ∈ [0, 𝑇) ×R𝑛, we have

𝜕
𝑡
𝜑 (𝑡, 𝑥) + 𝐹 (𝐷

2

𝑥
𝜑 (𝑡, 𝑥) , 𝐷

𝑥
𝜑 (𝑡, 𝑥) , 𝜑 (𝑡, 𝑥) , 𝑥, 𝑡)

≥ 0 (≤ 0) .

(76)

Theorem30. Under the assumptions (H3) and (H4), the value
function 𝑢(𝑡, 𝑥) defined by (33) is a viscosity solution of (74).

In order to prove the Theorem, we need three lemmas.
Firstly, we set

𝐹
1
(𝑟, 𝑥, 𝑦, 𝑧, 𝜐)

= ⟨𝑏 (𝑟, 𝑥, 𝜐) , 𝐷
𝑥
𝜑 (𝑟, 𝑥)⟩ + 𝜕

𝑡
𝜑 (𝑡, 𝑥)

+ 𝑓 (𝑟, 𝑥, 𝑦 + 𝜑 (𝑟, 𝑥) ,

𝑧 + (⟨𝜎
1
(𝑡, 𝑥, 𝜐) , 𝐷

𝑥
𝜑 (𝑟, 𝑥)⟩ ,

. . . , ⟨𝜎
𝑑
(𝑡, 𝑥, 𝜐) , 𝐷

𝑥
𝜑 (𝑟, 𝑥)⟩) , 𝜐) ,

𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑦, 𝑧, 𝜐)

= ⟨𝐷
𝑥
𝜑 (𝑟, 𝑥) , ℎ

𝑖𝑗
(𝑟, 𝑥, 𝜐)⟩

+
1

2
⟨𝐷

2

𝑥
𝜑 (𝑟, 𝑥) 𝜎

𝑖
(𝑟, 𝑥, 𝜐) , 𝜎

𝑗
(𝑟, 𝑥, 𝜐)⟩

+ 𝑔
𝑖𝑗
(𝑟, 𝑥, 𝑦 + 𝜑 (𝑟, 𝑥) ,

𝑧 + (⟨𝜎
1
(𝑡, 𝑥, 𝜐) , 𝐷

𝑥
𝜑 (𝑟, 𝑥)⟩ ,

. . . , ⟨𝜎
𝑑
(𝑟, 𝑥, 𝜐) , 𝐷

𝑥
𝜑 (𝑟, 𝑥)⟩) , 𝜐) .

(77)

Then, we consider a G-BSDE defined on the interval [𝑡, 𝑡 +
𝛿] (0 < 𝛿 ≤ 𝑇 − 𝑡):

𝑌
1,𝜐

𝑠
= ∫

𝑡+𝛿

𝑠

𝐹
1
(𝑟, 𝑋

𝑡,𝑥;𝜐

𝑟
, 𝑌

1,𝜐

𝑟
, 𝑍

1,𝜐

𝑟
, 𝜐

𝑟
) 𝑑𝑟

+ ∫

𝑡+𝛿

𝑠

𝑍
1,𝜐

𝑟
𝑑𝐵

𝑟
− (𝐾

1

𝑡+𝛿
− 𝐾

1

𝑠
)

−

𝑑

∑

𝑖,𝑗=1

∫

𝑡+𝛿

𝑠

𝐹
𝑖𝑗

2
(𝑟, 𝑋

𝑡,𝑥;𝜐

𝑟
, 𝑌

1,𝜐

𝑟
, 𝑍

1,𝜐

𝑟
, 𝜐

𝑟
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟
,

(78)

where 𝜐(⋅) ∈ U and𝑋𝑡,𝑥;𝜐

𝑠
is defined by (24).

Lemma 31. For 𝑠 ∈ [𝑡, 𝑡 + 𝛿], we have

𝐺
𝑡,𝑥;𝜐

𝑠,𝑡+𝛿
[𝜑 (𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
, 𝑡 + 𝛿)] − 𝜑 (𝑋

𝑡,𝑥;𝜐

𝑠
, 𝑠) (79)

which is the solution of (78).

Proof. From the definition of 𝐺
𝑡,𝑥;𝜐

𝑠,𝑡+𝛿
, we know that

𝐺
𝑡,𝑥;𝜐

𝑠,𝑡+𝛿
[𝜑(𝑋

𝑡,𝑥;𝜐

𝑡+𝛿
, 𝑡 + 𝛿)] is the solution of G-BSDE (29)

on [𝑡, 𝑡 + 𝛿] with terminal condition 𝜑(X𝑡,𝑥;𝜐

𝑡+𝛿
, 𝑡 + 𝛿). Applying

Itô’s formula to 𝜑(𝑋𝑡,𝑥;𝜐

𝑠
, 𝑠), we can obtain the result.
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Now we construct a simple G-BSDE by replacing the
driving process 𝑋𝑡,𝑥;𝜐

𝑠
by its deterministic initial value 𝑥 as

follows:

𝑌
2,𝜐

𝑠
= ∫

𝑡+𝛿

𝑠

𝐹
1
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
) 𝑑𝑟

+

𝑑

∑

𝑖,𝑗=1

∫

𝑡+𝛿

𝑠

𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟

− ∫

𝑡+𝛿

𝑠

𝑍
2,𝜐

𝑟
𝑑𝐵

𝑟
− (𝐾

2

𝑡+𝛿
− 𝐾

2

𝑠
) .

(80)

Lemma 32. We have the following estimate, for 𝜐(⋅) ∈ U,
󵄨󵄨󵄨󵄨󵄨
𝑌
1,𝜐

𝑡
− 𝑌

2,𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝛿

3/2
, (81)

where 𝐶 is independent of the control processes 𝜐(⋅).

Proof. By Proposition 21, we have the estimate for 𝑝 ≥ 2

𝐸
𝑡
[ sup
𝑠∈[𝑡,𝑡+𝛿]

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝑥;𝜐

𝑠
− 𝑥

󵄨󵄨󵄨󵄨󵄨

𝑝

] ≤ 𝐶 (1 + |𝑥|
𝑝
) 𝛿

𝑝/2
. (82)

By Proposition 18, we get for fixed 𝑝 > 2 and 2 < 𝑝 < 𝛽,

󵄨󵄨󵄨󵄨󵄨
𝑌
1,𝜐

𝑡
− 𝑌

2,𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐸[ sup
𝑠∈[𝑡,𝑡+𝛿]

󵄨󵄨󵄨󵄨󵄨
𝑌
1,𝜐

𝑡
− 𝑌

2,𝜐

𝑡

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝐶
{

{

{

𝐸[ sup
𝑠∈[𝑡,𝑡+𝛿]

𝐸
𝑠
[(∫

𝑡+𝛿

𝑡

𝐹
𝑟
𝑑𝑟)

𝑝

]]

2/𝑝

+𝐸[ sup
𝑠∈[𝑡,𝑡+𝛿]

𝐸
𝑠
[(∫

𝑡+𝛿

𝑡

𝐹
𝑟
𝑑𝑟)

𝑝

]]
}

}

}

,

(83)

where

𝐹
𝑟
=
󵄨󵄨󵄨󵄨󵄨
𝐹
1
(𝑟, 𝑋

𝑡,𝑥;𝜐

𝑟
, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
) − 𝐹

1
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
)
󵄨󵄨󵄨󵄨󵄨

+

𝑑

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖,𝑗

1
(𝑟, 𝑋

𝑡,𝑥;𝜐

𝑟
, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
)

−𝐹
𝑖,𝑗

2
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
)
󵄨󵄨󵄨󵄨󵄨
.

(84)

It is easy to prove that

𝐹
𝑟
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡,𝑥;𝜐

𝑟
− 𝑥

󵄨󵄨󵄨󵄨󵄨
. (85)

Then, we can deduce that |𝑌1,𝜐

𝑡
− 𝑌

2,𝜐

𝑡
| ≤ 𝐶𝛿

3/2.

Lemma 33. We have
sup
𝜐(⋅)∈U

𝑌
2,𝜐

𝑡
= 𝑌

0
(𝑡) , (86)

where 𝑌
0
(⋅) is the solution of the following ODE:

−𝑑𝑌
0

𝑠
= 𝐹

0
(𝑠, 𝑥, 𝑌

0

𝑟
, 0) 𝑑𝑠, 𝑠 ∈ [𝑡, 𝑡 + 𝛿] ,

𝑌
0

𝑡+𝛿
= 0,

(87)

where 𝐹0(𝑟, 𝑥, 𝑦, 𝑧) = sup
𝜐∈𝑉

{𝐹
1
(𝑟, 𝑥, 𝑦, 𝑧, 𝜐) + 2𝐺[(𝐹

𝑖𝑗

2
(𝑟, 𝑥,

𝑦, 𝑧, 𝜐))
𝑑

𝑖,𝑗=1
]}.

Proof. ByTheorem 16, we know that the G-BSDE (80) have a
unique solution (𝑌, 𝑍,𝐾). Hence, there exists a process

𝑉
2,𝜐

𝑠
=

𝑑

∑

𝑖,𝑗=1

∫

𝑠

𝑡

𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟

− ∫

𝑠

𝑡

2𝐺((𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐))

𝑑

𝑖,𝑗=1
)𝑑𝑟.

(88)

Here, 𝑉2,𝜐

𝑠
, 𝑠 ∈ [𝑡, 𝑡 + 𝛿] is a decreasing and continuous

process by [28]. Besides, it satisfies 𝐸[sup
𝑠∈[𝑡,𝑡+𝛿]

|𝑉
2,𝜐

𝑠
|
𝛽
] < ∞

obviously. So, 𝑌2,𝜐

𝑠
is the solution of the following G-BSDE:

𝑌
2,𝜐

𝑠
= ∫

𝑡+𝛿

𝑠

[𝐹
1
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
)

+2𝐺 [(𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

2,𝜐

𝑟
, 𝑍

2,𝜐

𝑟
, 𝜐

𝑟
))

𝑑

𝑖,𝑗=1
] ] 𝑑𝑟

− ∫

𝑡+𝛿

𝑠

𝑍
2,𝜐

𝑟
𝑑𝐵

𝑟
− (𝐾

2

𝑡+𝛿
− 𝐾

2

𝑠
) + 𝑉

2,𝜐

𝑡+𝛿
− 𝑉

2,𝜐

𝑠
,

(89)

where 𝜐(⋅) ∈ U. In addition, we have

𝑌
0

𝑡
= ∫

𝑡+𝛿

𝑠

𝐹
0
(𝑟, 𝑥, 𝑌

0

𝑟
, 𝑍

0

𝑟
) 𝑑𝑟

− ∫

𝑡+𝛿

𝑠

𝑍
0

𝑟
𝑑𝐵

𝑟
− (𝐾

0

𝑡+𝛿
− 𝐾

0

𝑠
) + (𝑉

0

𝑡+𝛿
− 𝑉

0

𝑠
) ,

(90)

where (𝑍,𝐾, 𝑉) = 0. By the comparison of Theorem 20 and
the definition of 𝐹0, we have for 𝜐(⋅) ∈ U,

𝑌
2,𝜐

𝑠
≤ 𝑌

0

𝑠
, 𝑠 ∈ [𝑡, 𝑡 + 𝛿] . (91)

On the other hand, there exists a measurable function 𝜐󸀠(𝑟, 𝑥,
𝑦, 𝑧) : [𝑡, 𝑇] ×R𝑛

×R ×R𝑑
×R → 𝑉 such that

𝐹
0
(𝑟, 𝑥, 𝑦, 𝑧) = 𝐹

1
(𝑟, 𝑥, 𝑦, 𝑧, 𝜐

󸀠
)

+ 2𝐺 [(𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑦, 0, 𝜐

󸀠
))

𝑑

𝑖,𝑗=1
] .

(92)

Then, we have 𝜐󸀠(𝑟, 𝑥, 𝑌0

𝑟
, 𝑍

0

𝑟
) ∈ U, and 𝑌0

𝑡
is the solution of

the following G-BSDE:

𝑌
0

𝑠
= ∫

𝑡+𝛿

𝑠

𝐹
1
(𝑟, 𝑥, 𝑌

0

𝑟
, 𝑍

0

𝑟
, 𝜐

󸀠

𝑟
) 𝑑𝑟

+

𝑑

∑

𝑖,𝑗=1

∫

𝑡+𝛿

𝑠

𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

0

𝑟
, 𝑍

0

𝑟
, 𝜐

󸀠

𝑟
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟

− ∫

𝑡+𝛿

𝑠

𝑍
0

𝑟
𝑑𝐵

𝑟
− (𝐾

0

𝑡+𝛿
− 𝐾

0

𝑠
) ,

(93)

where 𝑍0

𝑟,𝜐
= 0,

𝐾
0

𝑠
=

𝑑

∑

𝑖,𝑗=1

∫

𝑠

𝑡

𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

0

𝑟
, 0, 𝜐

󸀠
) 𝑑⟨𝐵

𝑖
, 𝐵

𝑗
⟩
𝑟

− ∫

𝑠

𝑡

2𝐺((𝐹
𝑖𝑗

2
(𝑟, 𝑥, 𝑌

0

𝑟
, 0, 𝜐

󸀠
))

𝑑

𝑖,𝑗=1
)𝑑𝑟.

(94)

So, 𝑌0

𝑡
≤ sup

𝜐(⋅)∈U𝑌
2,𝜐

𝑡
. Now, we have proved the lemma.
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Then, we give the proof of Theorem 30:

Proof. We set 𝜑 ∈ 𝐶
2,3
([0, 𝑇] × R𝑛

) and 𝜑(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) for
fixed (𝑡, 𝑥) ∈ [0, 𝑇] ×R𝑛. FromTheorem 26, we know

𝜑 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥) = sup
𝜐(⋅)∈U

𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑋

𝑡,𝑥

𝑡+𝛿
, 𝑡 + 𝛿)] . (95)

By 𝜑 ≥ 𝑢 (𝜑 ≤ 𝑢) and the definition of 𝐺,

sup
𝜐(⋅)∈U

{𝐺
𝑡,𝑥;𝜐

𝑡,𝑡+𝛿
[𝑢 (𝑋

𝑡,𝑥

𝑡+𝛿
, 𝑡 + 𝛿)] − 𝜑 (𝑡, 𝑥)} ≥ 0 (≤ 0) . (96)

Then, form Lemma 31,

sup
𝜐(⋅)∈U

𝑌
1,𝜐

𝑡
≥ 0 (≤ 0) . (97)

Besides, from Lemma 32,

sup
𝜐(⋅)∈U

𝑌
2,𝜐

𝑡
≥ 𝐶𝛿

3/2
(≤ 𝐶𝛿

3/2
) . (98)

Finally, Lemma 33 implies

𝑌
0
(𝑡) ≥ 𝐶𝛿

3/2
(≤ 𝐶𝛿

3/2
) . (99)

So,𝐹0(𝑟, 𝑥, 0, 0) ≥ 0 (≤ 0) and from the definition of viscosity
solution of (74), we know 𝑢(𝑡, 𝑥) is a viscosity solution of (74).
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