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This paper is concerned with a computer virus model with two delays. Its dynamics are studied in terms of local stability and
Hopf bifurcation. Sufficient conditions for local stability of the positive equilibrium and existence of the local Hopf bifurcation are
obtained by regarding the possible combinations of the two delays as a bifurcation parameter. Furthermore, explicit formulae for
determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are obtained by using the normal
form method and center manifold theory. Finally, some numerical simulations are presented to support the theoretical results.

1. Introduction

Since the pioneering work of Kephart and White [1, 2],
many classical epidemic models such as SIR [3-5], SIRS [6-
8], SEIR [9, 10], and SEIRS [11, 12], SEIQV [13] have been
used to describe the spread of a computer virus in computer
network due to the high similarity between computer viruses
and biological viruses. In [9], Yuan and Chen proposed the
following SEIR model:
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where S(t), E(t), I(t), and R(t) denote the numbers of
nodes at time ¢ in states susceptible, exposed, infectious,
and recovered, respectively. Yuan and Chen [9] studied the
behaviors of virus propagation with the presence of antivirus

countermeasures by analyzing the equilibrium stability of
system (1).

It is well known that time delays of one or other reasons
can cause a stable equilibrium to become unstable and make
a system bifurcate periodic solutions and dynamical systems
with delay have been studied by many scholars [14-23].
Starting from this point and considering that the antivirus
software may use a period to clean the viruses in a computer,
Dong et al. [10] proposed the following model with delay:

ds (t)
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()
d1 ()

5 =aE(t)-(y+u) 1),

dR (t)
dt

where N is the total number of computers in a network.

p describes the impact of quarantine or replacement. pg,

describes the impact of implementing real-time immuniza-
tion. ppp describes the impact of cleaning the virus and

= porS (t) + pgrE (t — 1) + yI (t — 7) — uR (1),



immunizing the computers. 3 is the transmission coefficient.
« and y are the state transition rates. And 7 is the period
which a computer uses antivirus software to clean viruses.
Dong et al. [10] discussed the local stability and existence of
local Hopf bifurcation of system (2). Properties of the Hopf
bifurcation were also investigated in [10].

However, Yuan and Chen [9] Dong et al. [10] supposed
that the recovered computers have a permanent immuniza-
tion period and can no longer be infected. This is not consis-
tent with real situation. In order to overcome limitation and
considering that the recovered computers may be infected
again after a temporary immunity period, we investigate the
following system with two delays in this paper:

dfiif) =”N_ﬁl(t)s(t)_(PSR+[4)S(t)+€R(t—Tz)’
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dt

= perS (t) + pgrE (t — 7,) + yI (t - 71)

—UR(t)—eR(t-1,),
(3)

where 7, is the period that a computer uses antivirus software
to clean viruses and 7, is the temporary immunity period after
which a recovered computer may be infected again. ¢ is the
transition rate from R to S.

This paper is organized as follows. In Section 2, local
stability of the positive equilibrium and the existence of local
Hopf bifurcation are discussed. In Section 3, the direction
of the Hopf bifurcation and the stability of the bifurcating
periodic solutions are determined by using the normal form
theory and center manifold theorem. In order to illustrate the
validity of the theoretical analysis, some numerical simula-
tions are presented in Section 4. Some main conclusions are
drawn in Section 5.

2. Stability and Existence of Local
Hopf Bifurcation

In this section, we will study the stability of positive equilib-
rium and the existence of Hopf bifurcation. It is not difficult
to verify if

R = @PuN(u+e)+epsp(p+y)(atpt pep)
0 =

(u+) (u+y) (u+ psg) (@ + p + ppr)

system (3) has a unique positive equilibrium D, (S,,E,,I,,
R,), where

>1 (4)

g = ry)(atptpe)
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I, = (aBuN (u+e) +epsg (4 +y) (a+ p + pgg)
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R, is called the basic reproduction number.
Linearizing system (3) at the positive equilibrium D,
yields the following linear system:

ds(t
% =a;SEt) +asl )+ R(E-1,),
dE (t
—d: ) - Ay S (t) + apE(t) + ayl (t) + byE(t— 1)),
dI (t
% =asE(t) +asl (1),
dR (t
% =a,S(t) +auR () +buE(t—1)) + bl (t— 1))
+euR(t-1,),
(6)
where
ay =~ (u+psr +BL), a3 = =S,
ay = B, ay = —(a+u), a3 = BS.,
az = o, a3 =~ (u+y),
’ 7)
41 = Psr> Ayq = —,
by, = —Pgr- by, = per by =7,
Cy =& Cpy = —€.
Thus, the characteristic equation of system (3) at D, is
Mr AN+ A+ AL+ A,
+(BsA’ + ByA” + BiA + By) e
(8)

+ (C3)t3 +CA 2 +CA+Cy) e
+(D,A* + D;A + Dy) e Mt — g,
where

Ag = a3,y (5,035 — Ay3037) + 41305132044,
Ay = ay3a5 (ay) + Ayy) — 10y, (933 + Ayy) — G1305,03,
— G330, (ay, +ay),
Ay = (ay) +ayy) (a33 + Ggy) + ay1Gyy + A33a44 — Ay3055,
Ay =—(ay +ay +as; +ay),

By = ay,a33a44by),

B, = —ay,a33by, — ayb,, (a;, + as3),
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B, = by, (ay) +as; +ayy), B; = —by,
Co = (anas3 — x3a3,) (A11Cag — Ay1C1a) + G135, G350y,
Cy = ay iy (ay + as3) + Cyy (ar305, — a1,05))
—ayay (ay, +ay),
Cy = ¢y (ay +ay +as3) — agcpy
Cs = —tu» D, = bycy
Dy = iy (agbyy — ay1by) = byycyy (ay) +as5) -
Dy = a5 (1,656 + a3, b5614)
— Cig (091032645 + A3304,by,) .
)
Case 1 (1, = 7, = 0). Equation (8) reduces to
MAALX + ARV +A A+ A, =0, (10)

where

A=A+ By +C,+ Dy, A,=A,+B, +C, +D,,

A,=A,+B,+C, +D,, A3 =A5+B;+C;.

(1)

By the Routh-Hurwitz criterion, sufficient conditions for
all roots of (10) to have a negative real part are given in the
following form:

Det; = A3 >0,

A 1

Detz - All AlZ

> 0,

A, 1 0
Det; = |Ay; Ayy Az >0, (12)
0 Ay Ay

As 1 0 0
Ay Ap A 1 >
0 Ay Ay Ap
0 0 0 Ay

Det, = 0.

Thus, if condition (H;) (12) holds, then the positive
equilibrium D, is locally asymptotically stable in the absence
of delay.

Case 2 (1, > 0, 7, = 0). When 7; > 0, 7, = 0, (8) becomes
the following form:

A+ A23/\3 + A22/\2 +AuA+ Ay

+ (B23)L3 +B,A* + By A+ Bzo) e =0,

3
where
Ay =A+Cy, Ay =A,+C,,
A, =A, +C,, A=Ay +Cy,
(14)
B, = B, By, =B, + D,,
B,, =B, + Dy, B,y = By + D,.
Let A = iw; (w; > 0) be the root of (13). Then, we can get
3\ . 2
(Bua)1 - Bz3w1) sinT,w; + (320 - Bzzwl) COS T; W,
2 4
= Apwi —w; — Ay,
(15)
3 2\ .
(Ble1 - Bz3w1) COS T W) — (B20 - Byw; ) sin 7w,
3
= Ay — Ajw,
which follows that
wf + 6230.)? + ezza)‘l1 + enwf + e, =0, (16)
where
2 2
ey = Ay — By
2 2
ey = A% = By = 2A5A, + 2By By,
, , 17)
ey = A% — By —2A5, Ay +2A5, + 2By Bys,
2 2
ey = A%y — By —2A5.
Let wf = v,; then, (16) becomes
Vi + e23vf + ezzvf + e,V + ey = 0. (18)

Discussion about the roots of (18) is similar to that in [15].
Therefore, we have the following lemma.

Lemmal. Let

4 3 2
fi (n1) = V) +epvy +epvy ey + ey

1 3, 1,
p= Eezz - Eezs’ q= 5623 - gezzezs + e
q>3 <p>3 1 V3,
= = =+ = 5 = —— 4+ — N
% (2 3 A 2T
_ 44 o4 _
y= =L var e L - v )

V2 :ﬁli/_g‘*\/“_ﬁfﬁf{/_g_\/“_’

54 54
yo= B2 s - - v

i=1,2,3.



Then, for (18), one has the following:

(i) if e,y < 0, (18) has at least one positive root;

(ii) if e,y = 0 and a; > 0, (18) has positive roots if and only
ifvy; > 0and fi(v;;) <0;

(iii) if e,y = 0 and oy < 0, (18) has positive roots if and only
if there exists at least one v,, € {v 1, V15, Vy3} such that
Vi, > 0and f,(v;,) <0.

In what follows, we assume that (H,,): the coefficients in
f1(vy) satisfy one of the following conditions in (a)-(c):

(a) e55 < 0;
(b) e,0 =0, 01 20, v;; >0, and f,(vy;) <0;

(c) e5p = 0, ¢y < O, and there exists at least one v, €
{vi1> V12> V13} such that v, > 0 and f,(v;,) < 0.

If (H,,) holds, we know that (16) has at least a positive root
w; such that (13) has a pair of purely imaginary root +iw,.
The corresponding critical value of the delay is

6 4 2
PsWip + P4@Wig + PoWiy + Po

1
Ty = ——arccos

w w8 + quwt, + q,w? +
10 GeWip t d4Wip T Q2Wip T o 20)
2k

+ 2 k=01,2,...,
Wy

where
Po = —AzByo; P2 = AyByy — Ay By + Ay By,
Ps = Ay By — ApBy, + Ay By — By,
2
DPs = By — Ap3Bys, 90 = B (21)

2
9> = By; — 2By By,

2

2
44 = By, — 2B, Bys, 96 = B3;-

Differentiating both sides of (13) regarding t,, we can obtain

[ﬁ]‘l AP H3A 24,0+ Ay
dry] M+ A M+ AL+ A, A2+ AL

(22)
3By;A% + 2B,y A + By, T,
BysA* + BjyA3 + ByyA2 + Byyh A

= (405, +3 (A3, - 24,,) wi

2 2 2
+2 (Azz +2A,) - 2A21A23) Wiy + A - 2AzoAzz)
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X (w?o + (A223 - 2A22) wfo
+ (A222 +2A5 - 2A21A23) “)‘110
+ (A221 - 2A20A22) wfo + Azzo)_1
- (3353“"110 +2 (Bgz - 2321323) wjo
+ B§1 - 2BzoBzz)
x (B33}, + (B3, — 2B,y By ) wy

2 2 2 \71
+ (By, — 2By Byy)wyy + Bzo) .

(23)
From (16), we can get
]!
Re | 22
) [ dr ]71_710
(24)

= f1, (vi) x (353“’?0 + (Biz - 2321323) “’Allo

+ (351 - ZBzoBzz) “’fo + Bgo)_l’

where v} = w?,.

Thus, if condition (H,,) f/(v})#0 holds, then the trans-
versality condition is satisfied. According to the Hopf bifurca-
tion theorem in [24], we have the following results.

Theorem 2. Suppose that the conditions (H,,)-(H,,) hold.
Consider

(i) the positive equilibrium D,(S,,E,,I,,R,) of system
(3) is asymptotically stable for T, € [0,1,);

(ii) system (3) undergoes a Hopf bifurcation at the positive
equilibrium D, (S,,E,,I,,R,) when 1, = 1,4 and a
family of periodic solutions bifurcate from the positive
equilibrium D, (S,, E,,1,,R,) near T, = 1y,.

Case 3 (1; = 0, 7, > 0). When 7; = 0, 7, > 0, (8) becomes
the following form:

A+ A33/\3 + A32/\2 +A5A+ Ay,

(25)
+(C33A’ + CuA + Cy A + Cyg ) e 47 = 0,
where

Az = As+ Bs, Ay, =A,+B,,
A;=A,+By, Az = A, + By,

(26)

Cs3 = Csss Cs, =G+ Dy,

Cyy=C,+D,,  Cy=C,+D,
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Let A = iw, (w, > 0) be the root of (25), and we have
(C31w2 - C33w3) sin T,w, + (C30 - C32w§) COS T, W,

2 4
= Az, —w) — Aszg,

(27)
3 2\ .
(C31w2 - C33w2) COS T,w, — (C30 - C32w2) sin 7,w,
3
= Azw, — Az,
from which, we can obtain
a)g + e33a)g + e32w§ + e31w§ +e5 =0, (28)
where
2 2
e3 = Ay — C3ps
2 2
ey = A3 = C5) = 245045 +2C5Csy,
, , (29)
€3 = A3y = By, —2A5A55 +2A5, + 2C5,Cs;,
2 2
ey = Ay — G5 — 245,
Let a)% = v,, then (28) becomes
4 3 2
vy +es3V; +eg, Fey v, ey = 0. (30)
Define
4 3 2
fo (1) = vy +es3v; +exvy + ey, +esg,
m—le 3,ez n—le3 €3,€3; + €
= 5627 6% = 356 T gnfn e
NEL Y P
27 \2 3/)° 27 20 27
_ s S| 1 _
R R N -

n 2 n

2 =ﬁ2</_§+ \/“—2+ﬁ2\3_5_ Ve,
2 n n

Z; = z(/—g + \/“_2"'/32\3/_5_ Vo

3e
Vyi =z,.—f, i=1,2,3.

Next, we assume that (Hj,): the coefficients in f,(v,) satisfy
one of the following conditions in @")-(c):

!
(a") e5y < 05
(') e50 2 0,00, > 0, v, > 0,and f,(v,,) < 0;

(c") esp = 0, ) < 0, and there exists at least one v,, €
{v41> ¥23, ¥53} such that v,, > 0 and f,(v,,) < 0.

According to Lemma 1, we know that if the condition (Hj;)
holds, then (28) has at least a positive root w,, such that (25)

has a pair of purely imaginary roots tiw,,. The corresponding
critical value of the delay is

6 4 2
1 Mg,g + My + MWy, + 11
Ty, = ——arccos < . >
Wy NgW3y + M5y + Myw3, + 1y
(32)
2k
+—, k=0,1,2,...,
Wy
where

my = —A3,Cs0s my = A3gCyy — A3 C5p + A3 Gy,

my = A31C33 - A32C32 + A33C31 - C30>

2 2
mg = Cs; — A33Cs3, 1y = C» 1ny = G5 = 2C50Csy,

2 2
ny = C3, — 2C5,Cs;, ng = C3.

(33)

As in Case 2, we know that if le (v;)#0 where v; = w§o>
then Re[dA/ d'rz];zl:% # 0. That is, the transversality condition

is satisfied if the condition (Hj,) fz' (v;)#0 holds. Thus,
according to the Hopf bifurcation theorem in [24], we have
the following results.

Theorem 3. Suppose the conditions (H;,)-(Ha,) hold.

(i) The positive equilibrium D, (S,,E,,I,,R,) of system
(3) is asymptotically stable for T, € [0, T,).

(ii) System (3) undergoes a Hopf bifurcation at the positive
equilibrium D, (S, ,E,,I,,R,) when 1, = 7,, and a
family of periodic solutions bifurcate from the positive
equilibrium D (S,, E,,1,,R,) near t, = T,,.

Case 4 (1, = 7, = T > 0). Substituting 7, = 7, = 7 > 0 into
(8), then (8) becomes

A+ A43A3 + A42A2 +AgA+ Ay
+ (B’ + BpA* + Byl +By)e ™ (34)

+ (D42A2 + DA+ D40) e =0,

where
Ay =As, Ap=A4,  Ay=A, Ay=A,
By; = B3 + Cy, B, =B, +C,, By =B, +Cy,
By = By +Cy, Dy, = D,, Dy, =Dy,
Dy, = D,.
(35)

Multiplying by ", (34) becomes
B\’ + BuA® + By + By,
X ()L4+A43A3 + A\ +A41A+A40)e)" (36)

+ (DA’ + Dy A+ Dy ) e = 0.



Let A = iw (w > 0) be the root of (36); consider
(w4 —(Ap+Dy)w” + Ay + D40) COS TW
+ (A43a)3 - (A, - Dy) w) sin 7w = By,w” — By,
(w4 —(Ap-Dy)w* + Ay, - D40) sin Tw

- (A43w3 - (A, +Dy) w) cos Tw = By’ — By w,

(37)
which follows that
sin Tw = 97“’7 + gsws + 93“’3 + 9w
@b + hgw® + hyw + hyw? + by’
(38)
96’ + g,0* + g, + g
CosTw = 6 4 2 0

w® + hgw® + hyw* + hyw? + by’
where
9o = By (Dap — Aso)»
g1 = By (Ay + Dyy) — By (Ay + Dyg),
92 =By (A~ Dyp) — By (A

93 =By (Ap +Dy) =By (Ay +Dyy)

—Dyy) + By (Ayy = Dy)»

+ By3 (Ayp + Dyg) — Ay3Bygs

9s=By (Dyy — Ayp) + By (Ay

9s = A42B43 - B41 - B43 (A42 + D42) 4

—Dy;) + AyBy, — By,

gs = By, — Ag3Bys, g7 = By,
2 2
hy = Ay — Dips

hy = A%y = Djy = 2A40A4 +2DyDy,

2 2
hy = Ay =Dy =244 A5 + 244,
hy = A%, - 2A
6 = g3 42+
(39)
As is known, sin?tw + cos’*tw = 1. Thus, we have
16 14 12 10 8
W teHw teuw  t+eunw ey
(40)

+ e43w6 + e42w4 + e41w2 +ey =0,
where
€40 = hg - 9(2)) eq = 2hohy =209, - gi
e = Hy = g5 + 2hohy = 2909, - 29,95
ey = 2hohg + 2hyhy — 29096 — 29,95 — 29,94 — 9§>
eg = My — gi + 2hy + 21y — 29,9, - 29,96 - 29395

eys = 2hy + 2hyhg — 2939, — 29496 — gé’
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€46 = hé - gé +2hy - 2959,

2
ey; = 2hs — g5
(41)
Let w® = v, then (40) becomes
Vot e47v7 + 6461/6 + 6451/5 + e44v4 + e43v3
(42)

2 -
+env teyvtey =0.

In order to give the main results in this paper, we make the
following assumption.

(H,;) (42) has at least one positive real root.

Suppose that condition (H,;) holds. Without loss of
generality, we assume that (42) has eight positive real roots,
which are denoted as v,, v,, . ..., vg, respectively. Then (40) has
eight positive real roots w, = +/vy. For every fixed wy, the
corresponding critical value of time delay is

6 4 2 .

G _ 1 GsWi T g4y + Grwi + go 2jm

7, = —arccos—; < : > -

W wp + hew? + hywp + hywi +hy  wy
k=1,2,...; j=0,1,2,....
(43)
Define

T, = min {T,io) | k= 1,2,...,8} R wy = wle:TO. (44)

Taking the derivative of with respect to (36), it is easy to
obtain

H
dr
- ( (3B;5A + 2By + By + (2D + Dy ) e ™
+ (4}t3 +3A50 +2A 50 + A41) eh)

A
X ((AS + AN F AL A N+ A4O/\)e ’

(DA + DyA” + DyA) e ™)) —%.
(45)
Thus, we have
-1
Re[ ] =T (46)
ar |, Qx +Q7

where

Py = (A41 + Dy, — 3A43w§) COS T(w,
+2 (ng —Apwy + D42w0) sin Tyw, — 3B43w§ + By,
_ 2\
P = (A41 -Dy, - 3A43w0) sin T,w,
-2 (2w(3) —Apwy — D42w0) COS Tyw, + 2B, wy,
5 3 .
Qr = (“’0 — (A + Dyy) wy + (Ayy + Dy) “’0) S1N 7wy

4 2
+ (A43w0 - (A, +Dy) wo) COS ToWy,
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Q= (“’g —(Agp +Dy,) wg + (A + Dyp) “’o) COS Trwy

- (A43w3 - (A, +Dy) w(z)) sin Tyw.
(47)
Obviously, if condition PrQp + P;Q;#0 holds, then

Re[dA/ d‘r];iro # 0. Thus, by the Hopf bifurcation theorem in
[24], we have the following results.

Theorem 4. Suppose that conditions (H,,)-(H,,) hold.

(i) The positive equilibrium D,(S,,E,,I,,R,) of system
(3) is asymptotically stable for T € [0, 7).

(ii) System (3) undergoes a Hopf bifurcation at the positive
equilibrium D, (S,,E,,I,,R,) when T = 71, and a
family of periodic solutions bifurcate from the positive
equilibrium D, (S,,E,,I,,R,) near t = 1,.

Case 5 (t; > 0, 1, € (0,7,)). We consider (8) with 7, in its
stable interval, regarding 7, as a parameter.
Let A = iw,, (w;, > 0) be the root of (8); we obtain

¢ (w,) +2¢ (w;,) cos ,w;, + 26 (w,,) sin,w;, =0,
(48)

where
¢ (w,) =, + (A23 ~-Bi+Ci - 2A2)w?*

+ (A% - B; +C; —D; +2A, - 2A, A, + 2B, B,
- 2C,C5) wj,
+ (A} - B} +C1 - D} 24 - 04,
+ 2ByB, — 2C,C, + 2D,D, ) w},
+A%—B§+C§—D§,
¢ (w,) = (A5C5 - GC,) wf*
+(A,C, + B;D, - B,D, +C, — A,C; — A,C,)
X w;, + (A,C, = A,C, — A,C, + ByD,
+ ByDy - B,D,) wi, + AyC, + ByD,,
o (w,) = —Cawf* +(A,C; — A;C, + ByD, + C)) ‘U?*
+(A,C,y + A;Cy — AyC; — A,C, — B, D,
+ B,D; — B;D;) “’i*

x (AoC, = A,Cy - ByD, + B, Dy) wy,.
(49)

We assume that (Hs,;) (48) has at least finite positive roots.
And we denote the positive roots of (48) as w,;,, w,,,, and
w; - For every fixed w,;,, the corresponding critical value of
time delay is

i 1 AN+ A A 2jm
Tff) = arccos% + L,
Wy AT+ A% Wy (50)
i=1L,2k j=01,2...,

7
where
_ 2 .
Ay = Dywy;, cos Twy;, + (Dzwu* - Do) SIN TH Wy
- B,w’.. + B,w
3% 1%
. 2
A, = Dywy;, sin 1wy, — (DZwli* - Do) COS T4
- B,w’,, +B
2W1js 0>
3 .
A= (Cs“-’n* - Clwli*) SIN T Wy,
C,w’, -C A, oA
+\Gowy;, =G ) COS Ty, + ApWy;, — Wy, — Ay
3
Ay= (CSwli* - Clwli*) COS Tr Wy
C,w?,, —C,)si Az, — A
+(Lowy;, = G ) SIN Ty, + AzWy;, — AWy
(51)
Let
F=min{rl)) [i=12,.. .k L= 52
7, =minqry;, |i=1,2,...,k;, Wy = Wy by =g (52)

Next, we make the following assumption: (Hs,) Re[dA/
dT];II:TI* #0. Thus, by the Hopf bifurcation theorem in [24],
we have the following results.

Theorem 5. Suppose that conditions (Hs,)-(Hs,) hold and
T, € (0, Ty).

(i) The positive equilibrium D,(S,,E,,I,,R,) of system
(3) is asymptotically stable for T, € [0,1)).

(ii) System (3) undergoes a Hopf bifurcation at the positive
equilibrium D,(S,,E,,I,,R,) when 7, = 1| and a
family of periodic solutions bifurcate from the positive
equilibrium D, (S,,E,,I,,R,) near 1, = 1,.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will investigate the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solu-
tions w.r.t. 7, for 7, € (0, 7,,) by using the normal form theory
and the center manifold argument in [24]. We assume that
7, <1, where 7, € (0,Ty).

Letu,(t) = S(t) = S,, u,(t) = E(t) - E,, us(t) = I(t) - I,,
uy(t) = R(t) - R,, 7, = 7, + @, 4 € R, and normalize t —
(t/1,). Then system (3) can be transformed into the following
form:

u(t) = Lyu, +F(uu,), (53)

where u, = (ul(t),uz(t),u3(t),u4(t))T e C = C([—l,O],R4)
and

L=+ (490 +Cp(-2 ) +Bpn),
1 (0)¢ ) 1
. 1(0) 5 (0)
)= vw| OO,
0



where

, (55)

By the Riesz representation theorem, there exists a 4 x 4
matrix function (6, ) : [-1,0] — R* whose elements are
of bounded variation such that

0
L= L dn(0.1)$(6), ¢<C. (56)

In fact, we choose

(7 +u)(A'+B'+C'), 0=0,
(7 +u) (B +C'), 0 e [—T—Z*,0>,
T
n(6:p) = 1 -
(zf +u) B, 0 e (—1,——2*),
T
o, 6=1.
(57)
For¢ € C([-1,0], R*), we define
%, 1<6<0,
A(u) ¢ = ;
dn (0, ), 6=0,
|-, dn (6, ) ¢ (6) 65)

0, -1<6<0,
R(M)‘/’:{
F(u¢), 0=0.

Then system (53) can be transformed into the following
operator equation:

u(t) = A(p) u, + R(u)u,. (59)
The adjoint operator A of A is defined by
d
—?, 0<s<,
A" () = S (60)

J‘_Ol dﬂT (5,00¢(-s), s=0,
associated with a bilinear form
(9(s),9(8)) =9(0)¢(0)

0 0 (61)
-| j0¢(£—6>dn(0)¢(f)d5,

0=—-1

where #(0) = (0, 0).
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Let g(0) = (1,495, 94) €™ “1% be the eigenvector of
A(0) corresponding to +it; w;, and let ¢*(s) = D(1,4;,4;,
qZ)eiT:“’fS be the eigenvector of A*(0) corresponding to
—i7 w; . From the definition of A(0) and A*(0), we can get

a1 (i“’f - as3)

D=7 P— o >
(’“’1 - as;) (’“’1 — Ay, — bype M) — aya;,
s = 193,
37 7. T E—— >
(""1 - ay;) (""1 —ay — bye ) — ayas
. *
4= lw, —ay
4 Cl4e—i12*w;‘
it W
_ 13051 052€ 2 !
— — — o\ ,
Cla (l“’1 as3) (1w1 yy = by ) = ay3a55014
iT, w) P
. Ay ¢ ae _iwy +ay,
2 = P pE >
) (lwl + Gy + ) )
. it W] ® iT W] %
N (“"’1 +ay, + bye™ 1)% +byue Mg,
93 =~ >
asp
i, w]
" €14 2 Wy

d =~ 7 = P
W] + Ay + €y

(62)
From (61), we can get
(4".9) = D |1+ q,4, +q5q; + 447,

ek
1T, Wy

* —_—k
tTe 44 (G4 + €449;)

ek
1T) Wy

(9> (52295 +biyqy) +bi3q5q,) | -
(63)

*
t+ 1€

Then, we choose
D= [1 + 4y q, + q3q; + 9ady + T, e 94 (C1a + €14qy)
—it] W] —x —* a7
1 (g, (b2, +biqy) + b43‘13Q4)] >
(64)

*
+T1€

such that {(q*,q) = 1,(q",q) = 0.

Next, we can get the coefficients which can be used to
determine the direction of the Hopf bifurcation and the
stability of the bifurcating periodic solutions by following the
algorithms introduced in [24]:

920 = 287 Dgs (3 ~ 1),
0> = 2B, D, (35 - 1),
gu =btD (g5 +7,) (@ ~ 1), (65)

g =2p1' DG 1) (W1<1D (0)q; + %Wz((b (0) 4,

1
+ W (0) + oWy (0)>,
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with Wy, (0) = _igu‘Z(O)eirfw;‘e + iyllq(o)e—irl"wfe +E,,
25 o] o
Wy, (0) = igzzq (*O)eir;w;e . iyoz? (?)e—irl"wfe )
1% 31wy where E; and E, can be determined by the following equa-
tions respectively
2iwy —a 0 -a —c e i -
1~ %11 13 14 ED
k% 1
—ay  200] —ay —bpe NG —0y3 0 E?
E =2 B
0 —ay, 2iw, — as3 0 0
-2t} wy “2itf w4k 2iT; w; 0
—ay, ~bye —byse 2iw] — Ay — cye (67)
(1)
E;
-1
an 0 a3 ‘14 @
E o= _| %1 92 +byy ay 0 2
2 0 ay, O 0 0
Ay by bz aytcy
0
with Psg = 0.2, pgr = 0.2. Then, we can get a particular case of
. . system (3):
AR
) @ (68) ds (t)
1 — 2 _
Ey=-B(9:+q),  E; =P(q5+3). = = 10-0011 () S (1)~ 0218 (1) + 0.15R (¢ = 75),
Therefore, we can calculate the following values: dE (t)
, ——==0.011(t)S(t) - 0.11E(t) - 0.2E(t — 1,),
i 2 |90l 921
G, (0) = T(gugzo_zwul __>+_’ I
21} wj 3 2 # =0.1E(t) - 0.091 (),
Re {C, (0)} d
=1 R(t)
IS a1’ 2= - -
Re {V ()} 69) 5 = 028(1) +02E (t—7,)+0.08I(t-1,)

B =2Re{C, (0},

o Im{C O +Emm {)' (1))}
T T W) .

Based on the discussion above, we can obtain the following
results.

Theorem 6. For system (3), ifu > 0 (u < 0), the Hopf bifur-
cation is supercritical (subcritical). If B < 0 (B > 0) the bifur-
cating periodic solutions are stable (unstable). If T > 0 (T <
0), the period of the bifurcating periodic solutions increases
(decreases).

4. Numerical Simulation

In this section, we present some numerical simulations to
verify the theoretical analysis in Sections 2 and 3. Let N =
1000, « = 0.1, B = 001,y = 0.08, & = 0.15, 4 = 0.01,

—0.01R(t) — 0.15R(t — 7,).
(70)

Then, we can get R, 2.5996 > 1 and the unique
positive equilibrium D, (27.9,239.2915, 265.8794, 466.9290)
of system (70). Further, we have Det, = 3.4288 > 0, Det, =
5.4964 > 0, Det; = 0.6898 > 0, Det, = 9.6572¢ — 004 > 0.
That is, condition (H;) holds.

For 7, > 0, 7, = 0, by some complicated computation, we
obtain w;, = 0.6102, 7,, = 17.2530. By Theorem 2, we know
that when 7; € [0,17.2530) the positive equilibrium D, is
asymptotically stable which can be illustrated by Figures 1 and
2. However, if we let 7, = 20.05 > 17.2530 = 1y, the positive
equilibrium D, becomes unstable and a Hopf bifurcation
occurs and a branch of periodic solutions bifurcates from
the positive equilibrium D, . This property can be shown in
Figures 3 and 4. Similarly, we have w,, = 0.1181, 7,, =
52.4927 for T, = 0, T, > 0. The corresponding wave forms
and plots are shown in Figures 5, 6, 7, and 8.
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FIGURE 1: The track of the states S, E, I, and R for 7, = 15.5000 < 17.2530 = 7,,.

Fort) = 1, = 7 > 0, we get w, = 2.0670, 7, = 5.1094.
According to Theorem 4, we can conclude that when 7 €
[0,5.1094), the positive equilibrium D, is asymptotically
stable, which can be seen from Figures 9 and 10. If 7 = 5.23 >
5.1094 = 1,; then, the positive equilibrium D, becomes
unstable, and a branch of bifurcating periodic solutions
occurs, which can be shown in Figures 11 and 12.

Lastly, we have w; = 1.6115, 7, = 7.8533 for 7, > 0,
T, = 3 € (0,7y). The corresponding wave forms and phase
plots are shown in Figures 13, 14, 15, and 16. In addition, we
have /\’(’rl*) = 0.3938 + 0.11134, C,(0) = —-0.2079 — 0.6067i,

B o= 05279, B = —0.4158 < 0, T = 0.0433 > 0. Thus, by
Theorem 6, we can conclude that the Hopf bifurcation is
supercritical, the bifurcating periodic solutions are stable, and
the period of the periodic solutions increases.

5. Conclusions

Based on the SEIR model considered in the literature [10], we
propose an SEIRS model with two delays for the propagation

of computer viruses in networks. The effects of the two delays
on the dynamics of the model are investigated. It is found
that the two delays may lead to local Hopf bifurcation and
make the model unstable under some certain conditions.
When the corresponding delay is suitable and small, the
positive equilibrium is asymptotically stable. In this case,
the propagation of computer viruses can be predicted and
controlled. However, a local Hopf bifurcation occurs and
a branch of periodic solutions bifurcates from the positive
equilibrium when the corresponding delay passes though
a critical value. In such conditions, propagation of the
computer viruses is out of control. This phenomenon is
not welcome in networks. Therefore, In order to control
and even eliminate the propagation of computer viruses,
the two delays 7, and 7, in the model should remain less
than the corresponding critical value. Furthermore, by using
the normal form theory and center manifold theorem, the
properties of the Hopf bifurcation such as direction and
stability are determined. Some numerical simulations are also
included to testify the theoretical analysis.
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