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The optimal rate of convergence of the wave equation in both the energy and the 𝐿2-norms using continuous Galerkin method is
well known. We exploit this technique and design a fully discrete scheme consisting of coupling the nonstandard finite difference
method in the time and the continuous Galerkin method in the space variables. We show that, for sufficiently smooth solution,
the maximal error in the 𝐿2-norm possesses the optimal rate of convergence 𝑂(ℎ2 + (Δ𝑡)2) where h is the mesh size and Δ𝑡 is the
time step size. Furthermore, we show that this scheme replicates the properties of the exact solution of the wave equation. Some
numerical experiments should be performed to support our theoretical analysis.

1. Introduction

Most physical phenomena such as the acoustics, electromag-
netic, and elastic problems aremodeled by the wave equation.
Thequalitative solution of themodel in the spacetime domain
is always a very delicate but a fundamental issue that needs
careful study. Our point of departure of this paper is to
consider the following model of the wave equation: find
𝑢(𝑥, 𝑡) such that

𝜕
2
𝑢

𝜕𝑡2
− Δ𝑢 = 𝑓 in (𝑥, 𝑡) ∈ Ω × (0, 𝑇) , (1)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , (2)

𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑢
1
(𝑥) 𝑥 ∈ Ω, (3)

where Ω is a smooth bounded domain in R2 with smooth
boundary 𝜕Ω. Problem (1)–(3) consists of constant coef-
ficients and 𝑓(𝑥, 𝑡) the source term, 𝑢

0
(𝑥) and 𝑢

1
(𝑥) are

prescribed as the initial data. Furthermore, (0, 𝑇) is taken to
be a finite time interval and the boundary conditions satisfied
by 𝑢(𝑥, 𝑡) are given by

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) . (4)

The methods which have been heavily used for the study of
the wave equation (1)–(4) in physical life are the continuous
as well as the discontinuous Galerkin methods; see [1, 2] for
more details.The reason for these methods may be due to the
way they dealwith heterogeneousmedia and arbitrary shaped
geometric objects, represented by unstructured grids.

The advantages of the continuous Galerkin method are
enormous. Firstly, the convergence theory of this method
is based on lower regularity (differentiability) requirements
than the finite difference and the spectral methods. Secondly,
the method retains the important energy conservation prop-
erties provided by the discrete version of the initial/boundary
valued problem such as the one under consideration.Thirdly,
the computation and the analysis from the Galerkin method
could be extended in the approximation of the nonlinear
wave equation. Furthermore, the method could be applicable
to problems of any desired order of accuracy. Formore details
on these advantages, see in [3–5].

The apriori error estimate for continuous Galerkin
approximation of the wave equation (1)–(4) was first derived
by Dupont [6] and later improved by Baker [7], both for con-
tinuous and discrete time schemes. Gekeler [8] analyzed gen-
eral multistep methods for the time discretization of second-
order hyperbolic equation, when a Galerkin procedure is
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used in space.The nonclassical finite element treatment of the
wave equation can be seen in Johnson [9] and Richter [10].

In this paper, we exploit and present a reliable technique
consisting of coupling the nonstandard finite difference
(NSFD) method in time and the continuous Galerkin (CG)
method in the space variables. A similar approach was done
for the first time using parabolic problems more specifically
the diffusion equations in the nonsmooth domain as seen in
[11]. The NSFD method was initiated by Mickens in [12] and
major contributions to the foundation of the NSFD method
could be seen in [13, 14]. Since its initiation, theNSFDmethod
has been extensively applied to many concrete problems in
engineering and science; see [12, 15, 16] for an overview. This
paper compliments the technique used in [11]. The technique
is geared toward obtaining a sufficiently smooth solution, the
maximal error in the 𝐿2-norm, and to show that the error
across the entire interval convergences optimally as 𝑂(ℎ2 +
Δ𝑡
2
) where ℎ is the mesh size and Δ𝑡 is the time step size.

The reliability of this technique comes from the fact that the
NSFD-CGmethod preserves both the energy features and the
hyperbolicity of the exact solution of the wave equation (1)–
(4).

The organization of the paper is as follows. Under Sec-
tion 2, we review some of the useful spaces and their notations
needed in the paper. In Section 3, we gather essential tools
necessary to prove the main result of the paper. We present,
in Section 4, a reliable scheme NSFD-CG and show that
the numerical solution obtained from this scheme attains
the optimal convergence rate in the energy as well as in
the 𝐿2-norms. Furthermore, we show that the scheme under
consideration replicates the properties of the exact solution.
Section 5 is devoted to some numerical experiments using
a numerical example which confirms the optimal rate of
convergence of the solution proved analytically in Section 4.
The concluding remarks are given in Section 6 and these
underline how the work fits in the existing literature and also
how it can be extended for further work.

2. Notations

In this section, we will review some of the spaces which we
will be using in the paper together with their notations and
possibly properties. For 𝑠 ≥ 0,𝐻𝑠(Ω) will denote the Sobolev
space of real-valued functions onΩ, and the norm on𝐻𝑠(Ω)
will be denoted by ‖ ⋅ ‖

𝑠
. See [17] for the definitions and the

relevant properties of these spaces. In a particular case, where
𝑠 = 0 the space𝐻0(Ω) = 𝐿

2
(Ω) and its inner product together

with the norm will be denoted, respectively, by

(𝑢, V) = ∫
Ω

𝑢V 𝑑𝑥, 𝑢, V ∈ 𝐿
2
(Ω) ,

‖𝑢‖
𝐿
2
(Ω)

= {(𝑢, 𝑢)}
1/2
, 𝑢 ∈ 𝐿

2
(Ω) .

(5)

In addition, 𝐶∞
0
(Ω) will denote the space of infinitely dif-

ferentiable functions with support compactly contained in
Ω. The space 𝐻

1

0
(Ω) will denote the subspace of 𝐻1(Ω)

obtained by completing 𝐶
∞

0
(Ω) with respect to the norm

‖ ⋅ ‖
1
. Following [17], for 𝑋 a Hilbert space, we will more

generally use the Sobolev space 𝐻𝑠[(0, 𝑇); 𝑋], where 𝑠 ≥ 0

and in the case where 𝑠 = 0 we will have 𝐻0[(0, 𝑇); 𝑋] ≡

𝐿
2
[(0, 𝑇); 𝑋] with norm

‖V‖𝐿2[(0,𝑇);𝑋] = (∫

𝑇

0

‖V (⋅, 𝑡)‖𝑋𝑑𝑡)

1/2

. (6)

In practice, 𝑋 will be the Sobolev space 𝐻𝑚(Ω) or 𝐻𝑚
0
(Ω).

Associated with (1) is the bilinear form

𝑎 (𝑢, V) = ∫
Ω

∇𝑢∇V 𝑑𝑥, 𝑢, V ∈ 𝐻
1
(Ω) . (7)

𝑎(⋅, ⋅) will be symmetric and positive definite; that is,

𝑎 (𝑢, V) = 𝑎 (V, 𝑢) , 𝑎 (𝑢, 𝑢) ≥ 0. (8)

3. The Continuous Galerkin Method

Having the previously mentioned notations in place, we
proceed under this section to gather essential tools necessary
to prove the main result of our paper. We begin by stating the
following weak problem of (1)–(4).

Find 𝑢 ∈ 𝐿
2
[(0, 𝑇);𝐻

1

0
(Ω)] given 𝑓 ∈ 𝐿

2
[(0, 𝑇); 𝐿

2
(Ω)]

such that

(
𝜕
2
𝑢 (⋅, 𝑡)

𝜕𝑡2
, V) − 𝑎 (𝑢 (⋅, 𝑡) , V) = (𝑓 (⋅, 𝑡) , V)

∀V ∈ 𝐻
1

0
(Ω) , 𝑡 ≥ 0,

(𝑢 (⋅, 0) , V) = (𝑢
0
, V) ,

(
𝜕𝑢 (⋅, 0)

𝜕𝑡
, V) = (𝑢

1
, V) .

(9)

See [8] for the existence and the uniqueness of a solution
𝑢 of (9). Hence forth, in appropriate places to follow,
additional conditions on the regularity of 𝑢 which guarantee
the convergence results will be imposed. We continue next
by providing the framework for stating the discrete version of
(9). To this end, we letT

ℎ
be a regular family of triangulations

of Ω consisting of compatible triangles 𝑇 of diameter ℎ
𝑇
≤

ℎ; see [17] for more. For each mesh size T
ℎ
, we associate

the finite element space 𝑉
ℎ
of continuous piecewise linear

function that are zero on the boundary

𝑉
ℎ
:= {V
ℎ
∈ 𝐶
0
(Ω) ; V

ℎ
|
𝜕Ω

= 0, V
ℎ
|
𝑇
∈ 𝑃
1
, ∀𝑇 ∈ T

ℎ
} , (10)

where 𝑃
1
is the space of polynomials of degree less than or

equal to 1 and 𝑉
ℎ
is a finite dimensional subspace of the

Sobolev space 𝐻1
0
(Ω). It is well known that 𝑉

ℎ
parametrized

by ℎ ∈ (0, 1) possesses the following approximation proper-
ties: there exists a constant 𝐶 such that if V ∈ 𝐻1

0
(Ω) ∩𝐻

2
(Ω)

we have

inf
𝜒∈𝑉
ℎ

{
󵄩󵄩󵄩󵄩V − 𝜒

󵄩󵄩󵄩󵄩 + ℎ
󵄩󵄩󵄩󵄩V − 𝜒

󵄩󵄩󵄩󵄩1
} ≤ 𝐶ℎ

2
‖V‖2. (11)
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By the use of the energymethod andGronwall’s Lemma, there
exists a discrete Galerkin solution 𝑢

ℎ
∈ 𝑉
ℎ
such that

(
𝜕
2
𝑢
ℎ

𝜕𝑡2
, V
ℎ
) − 𝑎 (𝑢

ℎ
, V
ℎ
) = (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
, 𝑡 ∈ [0, 𝑇] ,

(𝑢
ℎ
, V
ℎ
) = (𝑃

ℎ
𝑢
0
, V
ℎ
) ,

(
𝜕𝑢
ℎ

𝜕𝑡
, V
ℎ
) = (𝑃

ℎ
𝑢
1
, V
ℎ
) ,

(12)

where 𝑃
ℎ
denote the 𝐿2-projection onto 𝑉

ℎ
. Furthermore, we

let 𝑢 ∈ 𝐻
2
(Ω) and we define the Galerkin projection 𝜋

ℎ
𝑢 of

𝑢 in 𝑉
ℎ
by requiring that

𝑎 (𝜋
ℎ
𝑢, V) = 𝑎 (𝑢, V) , ∀V ∈ 𝑉

ℎ
, (13)

𝜕
𝑘
(𝜋
ℎ
𝑢)

𝜕𝑡𝑘
= 𝜋
ℎ
(
𝜕
𝑘
𝑢

𝜕𝑡𝑘
) , 𝑘 = 0, 1, 2, 𝑡 ∈ [0, 𝑇] . (14)

The previous essential tools lead to the immediate conse-
quence of the approximation properties (11).

Lemma 1. Let 𝑢 be the solution of (9). Then, there exists
a unique mapping 𝜋

ℎ
𝑢 ∈ 𝐿

2
[(0, 𝑇); 𝑉

ℎ
] which satisfies

(13). Furthermore, if for some integer 𝑘 ≥ 0, 𝜕𝑘𝑢/𝜕𝑡𝑘 ∈

𝐿
𝑝
[(0, 𝑇);𝐻

2
(Ω)], then

𝜕
𝑘
(𝜋
ℎ
𝑢)

𝜕𝑡𝑘
∈ 𝐿
𝑝
[(0, 𝑇) ; 𝑉

ℎ
] ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝜕

𝜕𝑡
)

𝑘

[𝑢 − 𝜋
ℎ
𝑢]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝[(0,𝑇);𝐿2(Ω)]

≤ 𝐶ℎ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝜕

𝜕𝑡
)

𝑘

𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝[(0,𝑇);𝐻2(Ω)]

(15)

for some constant 𝐶 independent of the mesh size.

4. Coupled Nonstandard Finite Difference and
Continuous Galerkin Methods

Instead of the continuous Galerkin method summarized
previously, we present in this section a reliable schemeNSFD-
CG consisting of the nonstandard finite difference method
in time and the continuous Galerkin method in the space
variable. We show that the numerical solution obtained from
the scheme NSFD-CG attained the optimal convergence in
both the energy and 𝐿

2-norms. We proceed, in this regard,
by letting the step size 𝑡

𝑛
= 𝑛Δ𝑡 for 𝑛 = 0, 1, 2, . . . , 𝑁. For a

sufficiently smooth function V(𝑥, 𝑡), we set

(
𝜕

𝜕𝑡
)

𝑘

V
𝑛
= (

𝜕

𝜕𝑡
)

𝑘

V (⋅, 𝑡
𝑛
) , V

𝑛
= V (⋅, 𝑡

𝑛
) , 𝑘 ≥ 0. (16)

With this, we proceed to find the NSFD-CG approximation
{𝑈
𝑛

ℎ
} such that 𝑈𝑛

ℎ
≈ 𝑢
𝑛

ℎ
at discrete time 𝑡

𝑛
. That is, find a

sequence {𝑈𝑛
ℎ
}
𝑁

𝑛=0
in 𝑉
ℎ
such that

(𝛿
2
𝑈
𝑛

ℎ
, V
ℎ
) + 𝑎 (𝑈

𝑛

ℎ
, V
ℎ
) = (𝑓

𝑛
, V
ℎ
) ,

∀V
ℎ
∈ 𝑉
ℎ
, 𝑛 = 1, 2, . . . , 𝑁 − 1,

(17)

where

𝛿
2
𝑈
𝑛

ℎ
=
𝑈
𝑛+1

ℎ
− 2𝑈
𝑛

ℎ
+ 𝑈
𝑛−1

ℎ

(𝜓 (Δ𝑡))
2

, 𝑛 = 1, 2, . . . , 𝑁 − 1 (18)

and 𝜓(Δ𝑡) = 2 sin(Δ𝑡/2) restricted between 0 < 𝜓(Δ𝑡) < 1.
The initial conditions 𝑈0

ℎ
∈ 𝑉
ℎ
and 𝑈1

ℎ
∈ 𝑉
ℎ
are given by

(𝑈
0

ℎ
, V
ℎ
) = (𝑃

ℎ
𝑢
0
, V
ℎ
) , (19)

(𝑈
1

ℎ
, V
ℎ
) = (𝑈

0

ℎ
+ 𝜓 (Δ𝑡) 𝑃

ℎ
𝑢
1
+
(𝜓 (Δ𝑡))

2

2
𝑈̃
0

ℎ
, V
ℎ
) ,

∀V
ℎ
∈ 𝑉
ℎ
,

(20)

where 𝑈̃0
ℎ
∈ 𝑉
ℎ
is defined by

(𝑈̃
0

ℎ
, V
ℎ
) = (𝑓

0
, V
ℎ
) − 𝑎 (𝑢

0
, V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
. (21)

If 𝑓 = 0 in (1), we will have in view of (17) an exact scheme

(
𝑈
𝑛+1

ℎ
− 2𝑈
𝑛

ℎ
+ 𝑈
𝑛−1

ℎ

4sin2 (Δ𝑡/2)
, V
ℎ
) + (∇𝑈

𝑛

ℎ
, ∇V
ℎ
) = 0, (22)

which according to Mickens [12] replicates both the energy
preserving features and the properties of the exact solution
(1)–(4). In order to state and prove the main result, we need
a framework on which this result is based. To this end, we
proceed by decomposing the error denoted by 𝑒𝑛 = 𝑢

𝑛
− 𝑈
𝑛

ℎ

into the following error equation:

𝑒
𝑛
= 𝑢
𝑛
− 𝑤
𝑛

ℎ
+ 𝑤
𝑛

ℎ
− 𝑈
𝑛

ℎ
= 𝜂
𝑛
− 𝜙
𝑛
, (23)

where 𝑤𝑛
ℎ
= 𝜋
ℎ
𝑢
𝑛
∈ 𝑉
ℎ
is the Galerkin projector of 𝑢𝑛.

Due to the regularity assumptionmentioned earlier, the exact
solution 𝑢 of (1)–(4) satisfies

(
𝜕
2
𝑢
𝑛

𝜕𝑡2
, V
ℎ
) + 𝑎 (𝑢

𝑛
, V
ℎ
) = (𝑓

𝑛
, V
ℎ
) ,

∀V
ℎ
∈ 𝑉
ℎ
, 𝑛 = 1, 2, . . . , 𝑁.

(24)

Subtracting (17) from (24) and using some properties of the
Galerkin projection in the space we have

(𝛿
2
𝑤
𝑛

ℎ
− 𝛿
2
𝑈
𝑛

ℎ
, V
ℎ
) + 𝑎 (𝑤

𝑛

ℎ
− 𝑢
𝑛
, V
ℎ
)

= (𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2
, V
ℎ
) ,

(25)

from where we obtain in view of (23)

(𝛿
2
𝜙
𝑛
, V
ℎ
) + (𝜙

𝑛
, V
ℎ
) = (𝑟

𝑛
, V
ℎ
) ,

∀V
ℎ
∈ 𝑉
ℎ
, 𝑛 = 1, 2, . . . , 𝑁 − 1,

(26)

where 𝑟𝑛 = 𝛿
2
𝑤
𝑛

ℎ
−𝜕
2
𝑢
𝑛
/𝜕𝑡
2. In view of the necessity for error

bound, we set

𝑟
𝑛
=

{{{{

{{{{

{

𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2
, for 𝑛 = 1, 2, . . . , 𝑁 − 1

𝜙
1
− 𝜙
0

(𝜓 (Δ𝑡))
2

for 𝑛 = 0,

(27)
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from where we define

𝑅
𝑛
= 𝜓 (Δ𝑡)

𝑛

∑

𝑚=0

𝑟
𝑚
. (28)

The previously mentioned framework leads to the following
main result.

Theorem 2. Let 𝑢 be the solution of (9) and {𝑈
𝑛

ℎ
}
𝑁

𝑛=0
in

𝑉
ℎ

a sequence defined by (17)–(21). Suppose that 𝑢 ∈

𝐿
2
[(0, 𝑇);𝐻

2
(Ω)], 𝜕𝑢/𝜕𝑡 ∈ 𝐿

2
[(0, 𝑇);𝐻

2
(Ω)], and 𝜕𝑘𝑢/𝜕𝑡𝑘 ∈

𝐿
2
[(0, 𝑇); 𝐿

2
(Ω)] for 𝑘 = 3, 4. Then, there exists a constant

𝐶 > 0 independent of Δ𝑡 and the mesh refinement size ℎ:

max
0≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑢 (⋅, Δ𝑡) − 𝑈
𝑛

ℎ

󵄩󵄩󵄩󵄩0
≤ 𝐶 [ℎ

2
+ (Δ𝑡)

2
] . (29)

Furthermore, the discrete solution replicates all the properties
of solution of the hyperbolic equation in the limiting case of the
space independent equation.

We prove the previousTheorem 2 thanks to the following
series of results.

Proposition 3. The following result holds for a constant 𝐶 > 0

that is independent of Δ𝑡 and the mesh refinement size ℎ:

max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩0

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝑒
0󵄩󵄩󵄩󵄩󵄩0

+ max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩0

+𝜓 (Δ𝑡) max
𝑛=0,...,𝑁−1

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

) .

(30)

Proof. In view of (23), we have the following relation using
triangular inequality:

max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩0

≤ max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩0

+ max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩0

. (31)

We bound 𝜙𝑛 in (31) by first taking partial sums of the first
term of (26), seconded by adding the remaining terms from
𝑛 = 1 to𝑚 for 1 ≤ 𝑚 ≤ 𝑁 − 1, and multiplying both sides by
𝜓(Δ𝑡) yields

(
𝜙
𝑚+1

− 𝜙
𝑚

𝜓 (Δ𝑡)
, V
ℎ
) − (

𝜙
1
− 𝜙
0

𝜓 (Δ𝑡)
, V
ℎ
) + 𝜓 (Δ𝑡)

𝑚

∑

𝑛=1

𝑎 (𝜙
𝑚
, V
ℎ
)

= 𝜓 (Δ𝑡)

𝑚

∑

𝑛=1

(𝑟
𝑛
, V
ℎ
) .

(32)

In view of (28), we can define

Φ
𝑚
= 𝜓 (Δ𝑡)

𝑚

∑

𝑛=1

𝜙
𝑚
,

Φ
0
= 0

(33)

and using this in (32) we have

(
𝜙
𝑚+1

− 𝜙
𝑚

𝜓 (Δ𝑡)
, V
ℎ
) + 𝑎 (Φ

𝑚
, V
ℎ
) = (𝑅

𝑚
, V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
.

(34)

If we choose V
ℎ
= 𝜙
𝑚+1

+ 𝜙
𝑚
∈ 𝑉
ℎ
in (34) and multiply the

result by 𝜓(Δ𝑡), this yields
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑚+1󵄩󵄩󵄩󵄩󵄩

2

0
−
󵄩󵄩󵄩󵄩𝜙
𝑚󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡) 𝑎 (Φ

𝑚
, 𝜙
𝑚+1

+ 𝜙
𝑚
)

= 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=1

(𝑅
𝑚
, 𝜙
𝑚+1

+ 𝜙
𝑚
) ,

for 0 ≤ 𝑚 ≤ 𝑁 − 1.

(35)

Summing this from 𝑚 = 0 to 𝑚 = 𝑛 − 1 for 1 ≤ 𝑛 ≤ 𝑁 − 1

gives

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
−
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

𝑎 (Φ
𝑚
, 𝜙
𝑚+1

+ 𝜙
𝑚
)

= 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

(𝑅
𝑚
, 𝜙
𝑚+1

+ 𝜙
𝑚
) .

(36)

Since 𝑎 is symmetric,Φ0 = 0, and

Φ
𝑚+1

− Φ
𝑚−1

= 𝜓 (Δ𝑡) (𝜙
𝑚
+ 𝜙
𝑚+1

) , 𝑚 = 1, 2, . . . , 𝑁 − 1,

(37)

then, we deduce in view of the third term of (36)

𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

𝑎 (Φ
𝑚
, 𝜙
𝑚+1

+ 𝜙
𝑚
)

=

𝑛−1

∑

𝑚=0

𝑎 (Φ
𝑚
, Φ
𝑚+1

+ Φ
𝑚−1

)

=

𝑛−1

∑

𝑚=0

𝑎 (Φ
𝑚
, Φ
𝑚+1

)

−

𝑛−1

∑

𝑚=0

𝑎 (Φ
𝑚+1

, Φ
𝑚−1

)

= 𝑎 (Φ
𝑛−1

, Φ
𝑛
) .

(38)

By symmetry and coercivity properties of 𝑎 and the fact that

Φ
𝑛
− Φ
𝑛−1

= 𝜓 (Δ𝑡) 𝜙
𝑛 for 𝑛 = 1, 2, . . . , 𝑁, (39)

we have in view of (38)

(𝜓 (Δ𝑡))
2

2
𝑎 (𝜙
𝑛
, 𝜙
𝑛
)

=
1

2
𝑎 (Φ
𝑛
− Φ
𝑛−𝑖
, Φ
𝑛
− Φ
𝑛−1

)

=
1

2
𝑎 (Φ
𝑛
, Φ
𝑛
) − 𝑎 (Φ

𝑛
, Φ
𝑛−1

)

+
1

2
𝑎 (Φ
𝑛−1

, Φ
𝑛−1

)

(40)
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and so

(𝜓 (Δ𝑡))
2

2
𝑎 (𝜙
𝑛
, 𝜙
𝑛
) ≥ −𝑎 (Φ

𝑛
, Φ
𝑛−1

) (41)

and this together with (36) yields

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
−
(𝜓 (Δ𝑡))

2

2
𝑎 (𝜙
𝑛
, 𝜙
𝑛
)

≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

(𝑅
𝑛
, 𝜙
𝑚
+ 𝜙
𝑚+1

) ,

for 1 ≤ 𝑛 ≤ 𝑁.

(42)

By Poincare inequality together with the continuity and
coercivity of 𝑎, we have the following inequality:

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
−
(𝜓 (Δ𝑡))

2

2

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0

≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

(𝑅
𝑛
, 𝜙
𝑚
+ 𝜙
𝑚+1

) .

(43)

We suppose at this stage that ℎ and Δ𝑡 satisfy the CFL
condition such that 𝜓(Δ𝑡)/ℎ < 1. With this condition, the
previous inequality becomes

𝐶
Δ𝑡

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

(𝑅
𝑛
, 𝜙
𝑚
+ 𝜙
𝑚+1

) ,

1 ≤ 𝑛 ≤ 𝑁

(44)

from where we have 1/2 < 𝐶
Δ𝑡
= 1 − (𝜓(Δ𝑡))

2
/2ℎ
2
< 1 and

1/2 < 𝐶
Δ𝑡
< 1. By the use of Cauchy-Schwarz inequality on

(44) and some algebraic manipulations, we have

𝐶
Δ𝑡

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

(𝑅
𝑚
, 𝜙
𝑚
+ 𝜙
𝑚+1

)

≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

󵄩󵄩󵄩󵄩𝑅
𝑚󵄩󵄩󵄩󵄩0

(
󵄩󵄩󵄩󵄩𝜙
𝑚󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑚+1󵄩󵄩󵄩󵄩󵄩0

)

≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+ 2𝜓 (Δ𝑡)

𝑛−1

∑

𝑚=0

󵄩󵄩󵄩󵄩𝑅
𝑚󵄩󵄩󵄩󵄩0

max
𝑚=0,...,𝑛

󵄩󵄩󵄩󵄩𝜙
𝑚󵄩󵄩󵄩󵄩0

≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+
𝐶
Δ𝑡

2
max
𝑚=1,...,𝑛

󵄩󵄩󵄩󵄩𝜙
𝑚󵄩󵄩󵄩󵄩

2

0

+
2

𝐶
Δ𝑡

(𝜓(Δ𝑡)

𝑛−1

∑

𝑚=0

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

)

2

for 0 ≤ 𝑚 ≤ 𝑛

(45)

and since the right-hand side is independent of 𝑛, then

(𝐶
Δ𝑡
−
𝐶
Δ𝑡

2
)
󵄩󵄩󵄩󵄩𝜙
𝑚󵄩󵄩󵄩󵄩

2

0
≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+

2

𝐶
Δ𝑡

(𝜓(Δ𝑡)

𝑁−1

∑

𝑛=0

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

)

2

(46)

which then implies that

𝐶
Δ𝑡

2

󵄩󵄩󵄩󵄩𝜙
𝑚󵄩󵄩󵄩󵄩

2

0
≤
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩

2

0
+

2

𝐶
Δ𝑡

(𝜓(Δ𝑡)

𝑁−1

∑

𝑛=0

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

)

2

. (47)

Furthermore, we have

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
≤

2

𝐶
Δ𝑡

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩

2

0
+
4(𝜓 (Δ𝑡))

2

𝐶
Δ𝑡

(

𝑁−1

∑

𝑛=0

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

)

2

(48)

and hence the following result:

max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝜙
𝑛󵄩󵄩󵄩󵄩0

≤ √
2

𝐶
Δ𝑡

󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩0

+
2𝜓 (Δ𝑡)

𝐶
Δ𝑡

𝑁−1

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

. (49)

With (49) and the fact that
󵄩󵄩󵄩󵄩󵄩
𝜙
0󵄩󵄩󵄩󵄩󵄩0

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
0󵄩󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩󵄩
𝜂
0󵄩󵄩󵄩󵄩󵄩0

(50)

we have in viewof (31) the desired estimate of the proposition.

We now proceed to bound the term containing 𝑅
𝑛 on

the right-hand side of Proposition 3. We achieve this by
estimating in the 𝐿2-norm the function 𝑟𝑛 for the cases 𝑛 = 0

and follow by the case when 𝑛 ≥ 1.

Lemma 4. There holds
󵄩󵄩󵄩󵄩󵄩
𝑟
0󵄩󵄩󵄩󵄩󵄩0

≤ 𝐶[(𝜓 (Δ𝑡))
−1

ℎ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

+𝜓 (Δ𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
𝑢

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

] ,

(51)

with a constant 𝐶 > 0 that is independent of ℎ and the mesh
size.

Proof. In view of (27), we have 𝑟0 = (𝜓(Δ𝑡))
−2
(𝜙
1
− 𝜙
0
). We

estimate ‖𝜙1 − 𝜙0‖
0
by taking V

ℎ
∈ 𝑉
ℎ
arbitrary as follows:

(𝜙
1
− 𝜙
0
, V
ℎ
)

= (𝑤
1

ℎ
− 𝑈
1

ℎ
, V
ℎ
) − (𝑤

0

ℎ
− 𝑈
0

ℎ
, V
ℎ
)

= ((𝜋
ℎ
− 𝐼) (𝑢

1
− 𝑢
0
) , V
ℎ
) + (𝑢

1
− 𝑈
1
, V
ℎ
) ,

(52)

where we have used (𝑢
0
−𝑈
0

ℎ
, V
ℎ
) = (𝑢

0
−𝑃
ℎ
𝑢
0
, V) = 0 in view

of (19). It now follows from (52) that
󵄨󵄨󵄨󵄨((𝜋ℎ − 𝐼) (𝑢1 − 𝑢0) , Vℎ)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡
1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝜕

𝜕𝑡
(𝜋
ℎ
− 𝐼) 𝑢 (⋅, 𝑠) , V

ℎ
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠 By Lemma 1

≤ ∫

𝑡
1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

((𝜋
ℎ
− 𝐼)

𝜕𝑢 (⋅, 𝑠)

𝜕𝑡
, V
ℎ
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠 By (18)

≤ 𝐶𝜓 (Δ𝑡) ℎ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

󵄩󵄩󵄩󵄩Vℎ
󵄩󵄩󵄩󵄩0
.

(53)
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We now proceed to estimate the term (𝑢
1
− 𝑈
1

ℎ
, V) in (52)

as follows: by Taylor’s formula and the fact 𝑢(⋅, 0) = 𝑢
0
and

𝜕𝑢(⋅, 0)/𝜕𝑡 = 𝑢
1
in (1)–(3), we have

𝑢
1
= 𝑢
0
+ 𝜓 (Δ𝑡) 𝑢

1
+
(𝜓 (Δ𝑡))

2

2

𝜕
2
𝑢 (⋅, 0)

𝜕𝑡2

+
1

2
∫

𝑡
1

0

(𝜓 (Δ𝑡) − 𝑠)
2 𝜕
3
𝑢 (⋅, 𝑠)

𝜕𝑡3
𝑑𝑠.

(54)

In view of the definition of 𝑈1
ℎ
in (20) and the fact that

(𝑢
0
− 𝑃
ℎ
𝑢
0
, V) = 0, (𝑢

1
− 𝑃
ℎ
𝑢
1
, V) = 0 (55)

we have

𝑈
1

ℎ
= 𝑈
0

ℎ
+ 𝜓 (Δ𝑡) 𝑃

ℎ
𝑢
1
+
(𝜓 (Δ))

2

2
𝑈̃
0

ℎ
. (56)

We then deduce from (54) and (56) that

(𝑢
1
− 𝑈
1

ℎ
, V
ℎ
) =

(𝜓 (Δ𝑡))
2

2
(
𝜕
2
𝑢 (⋅, 0)

𝜕𝑡2
− 𝑈̃
0

ℎ
, V
ℎ
)

+
1

2
∫

𝑡
1

0

(𝜓 (Δ𝑡) − 𝑠)
2

(
𝜕
3
𝑢 (⋅, 𝑠)

𝜕𝑡3
, V
ℎ
)𝑑𝑠.

(57)

But by the definition of 𝑈̃0
ℎ
in (20) we have in view of (21) that

(
𝜕
2
𝑢 (⋅, 𝑠)

𝜕𝑡2
− 𝑈̃
0

ℎ
, V
ℎ
)

= (𝑓
0
, V
ℎ
) − 𝑎 (𝑢

0
, V
ℎ
) − (𝑓

0
, V
ℎ
) + 𝑎 (𝑢

0
, V
ℎ
) = 0

(58)

implying that
󵄨󵄨󵄨󵄨󵄨
(𝑢
1
− 𝑈
1

ℎ
, V)

󵄨󵄨󵄨󵄨󵄨

≤
1

2
∫

𝑡
1

0

(𝜓 (Δ𝑡) − 𝑠)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝜕
3
𝑢 (⋅, 𝑠)

𝜕𝑡3
, V)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

≤ 𝐶(𝜓 (Δ𝑡))
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
3
𝑢

𝜕𝑡3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

‖V‖0.

(59)

Since𝜙1−𝜙0 ∈ 𝑉
ℎ
, then (52) together with (53) and (59) yields

󵄩󵄩󵄩󵄩󵄩
𝜙
1
− 𝜙
0󵄩󵄩󵄩󵄩󵄩0

≤ 𝐶(𝜓 (Δ𝑡) ℎ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

+(𝜓 (Δ𝑡))
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
3
𝑢

𝜕𝑡3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

)

(60)

and dividing throughout by (𝜓(Δ𝑡))2 yields

󵄩󵄩󵄩󵄩󵄩
𝑟
0󵄩󵄩󵄩󵄩󵄩0

≤ 𝐶((𝜓 (Δ𝑡))
−1

ℎ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

+𝜓 (Δ𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
3
𝑢

𝜕𝑡3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

)

(61)

as required.

Lemma 5. For 1 ≤ 𝑛 ≤ 𝑁 − 1, there holds

󵄩󵄩󵄩󵄩𝑟
𝑛󵄩󵄩󵄩󵄩0

≤ 𝐶(
ℎ
2

𝜓 (Δ𝑡)
∫

𝑡
𝑛+1

𝑡
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
𝑢 (⋅, 𝑠)

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

𝑑𝑠

+𝜓 (Δ𝑡) ∫

𝑡
𝑛+1

𝑡
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢(⋅, 𝑠)

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

𝑑𝑠)

(62)

with a constant 𝐶 > 0 that is independent of ℎ and mesh size.

Proof. In view of (27), we have

𝑟
𝑛
= 𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2
, for 𝑛 = 1, 2, . . . , 𝑁 − 1. (63)

By the triangular inequality, we have

󵄩󵄩󵄩󵄩𝑟
𝑛󵄩󵄩󵄩󵄩0

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

≤
󵄩󵄩󵄩󵄩󵄩
𝛿
2
(𝜋
ℎ
− 𝐼)𝑢
𝑛󵄩󵄩󵄩󵄩󵄩0

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

(64)

and using the following identity
V (⋅, 𝑡
𝑛+1

) − 2V (⋅, 𝑡
𝑛
) + V (⋅, 𝑡

𝑛−1
)

= Δ𝑡∫

𝑡
𝑛+1

𝑡
𝑛−1

(1 −

󵄨󵄨󵄨󵄨𝑠 − 𝑡𝑛
󵄨󵄨󵄨󵄨

Δ𝑡
)
𝜕
2V (⋅, 𝑠)

𝜕𝑡2
𝑑𝑠

(65)

on the first term of the right-hand side of (64) we have
󵄩󵄩󵄩󵄩󵄩
𝛿
2
(𝜋
ℎ
− 𝐼) 𝑢

𝑛󵄩󵄩󵄩󵄩󵄩0

≤
1

𝜓 (Δ𝑡)
∫

𝑡
𝑛+1

𝑡
𝑛−1

(1 −

󵄨󵄨󵄨󵄨𝑠 − 𝑡𝑛
󵄨󵄨󵄨󵄨

Δ𝑡
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
(𝜋
ℎ
− 𝐼)𝑢

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

𝑑𝑠

≤ 𝐶
ℎ
2

𝜓 (Δ𝑡)
∫

𝑡
𝑛+1

𝑡
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
𝑢(⋅, 𝑠)

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

𝑑𝑠

(66)

after the use of Lemma 1 and (14).
The second term of (64) can be estimated by the use of

the identity

𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2

=
1

6(Δ𝑡)
2
∫

𝑡
𝑛+1

𝑡
𝑛−1

(Δ𝑡 −
󵄨󵄨󵄨󵄨𝑠 − 𝑡𝑛

󵄨󵄨󵄨󵄨)
3 𝜕
4
𝑢 (⋅, 𝑠)

𝜕𝑡4
𝑑𝑠

(67)

which is obtained from Taylor’s formulae with integral
remainder. This is deduced as follows:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿
2
𝑤
𝑛

ℎ
−
𝜕
2
𝑢
𝑛

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

≤
1

6(Δ𝑡)
2
∫

𝑡
𝑛+1

𝑡
𝑛−1

(Δ𝑡 −
󵄨󵄨󵄨󵄨𝑠 − 𝑡𝑛

󵄨󵄨󵄨󵄨)
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢 (⋅, 𝑠)

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

𝑑𝑠

≤
1

6(Δ𝑡)
2
∫

𝑡
𝑛+1

𝑡
𝑛−1

(𝜓 (Δ𝑡))
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢(⋅, 𝑠)

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

𝑑𝑠

≤
𝜓 (Δ𝑡)

6
∫

𝑡
𝑛+1

𝑡
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢(⋅, 𝑠)

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0

𝑑𝑠

(68)

using the relation that 𝜓(Δ𝑡) − |𝑠 − 𝑡
𝑛
| ≤ 𝜓(Δ𝑡) in (68).
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In view of (64) using (66) and (68), we have the desired
result for the bound of ‖𝑟𝑛‖

0
.Wenow assemble Lemmas 4 and

5 in the next proposition to obtain the bound 𝑅𝑛 as follows.

Proposition 6. For 0 ≤ 𝑛 ≤ 𝑁 − 1, there holds

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

≤ 𝐶(𝜓 (Δ𝑡))
2

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
3
𝑢

𝜕𝑡3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿
2
(Ω)]

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

)

+ 𝐶ℎ
2
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻
2
(Ω)]

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
𝑢

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

) .

(69)

Proof. Using the bounds on ‖𝑟𝑛‖
0
in Lemmas 4 and 5, we have

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

≤ 𝜓 (Δ𝑡)
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𝑟
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𝑁−1

∑

𝑚=1

𝑟
𝑚
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2

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
3
𝑢

𝜕𝑡3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

)

+ 𝐶ℎ
2
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
𝑢

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐻2(Ω)]

)

(70)

and the proof is completed.

With all these results, we are now in the position to prove
the main result as follows.

Proof of Theorem 2. Using Proposition 3 and the fact that

𝜓 (Δ𝑡)

𝑁−1

∑

𝑛=0

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

≤ 𝑇 max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

(71)

we have

max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶(

󵄩󵄩󵄩󵄩󵄩
𝑒
0󵄩󵄩󵄩󵄩󵄩0

+ max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩0

+ 𝑇 max
𝑛=0,...,𝑁−1

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩0

) .

(72)

By the use of Lemma 1, we can bound the second term on the
right-hand side as follows.

max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩0

≤ 𝐶ℎ
2
‖𝑢‖𝐿2[(0,𝑇);𝐻2(Ω)]. (73)

From the approximation property of the 𝐿2-projection, we
have

󵄩󵄩󵄩󵄩󵄩
𝑒
0󵄩󵄩󵄩󵄩󵄩0

≤ 𝐶ℎ
2󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩2
≤ 𝐶ℎ
2
‖𝑢‖𝐿2[(0,𝑇);𝐻2(Ω)]. (74)

Finally, by the bound of max
𝑛=0,...,𝑁−1

‖𝑅
𝑛
‖
0
obtained via

Proposition 6, we have the result

max
𝑛=0,...,𝑁

󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩0

≤ 𝐶ℎ
2
‖𝑢‖𝐿2[(0,𝑇);𝐻2(Ω)]

+ 𝐶(𝜓 (Δ𝑡))
2

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
3
𝑢

𝜕𝑡3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
4
𝑢

𝜕𝑡4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2[(0,𝑇);𝐿2(Ω)]

) .

(75)

In view of the relationship

𝜓 (Δ𝑡) = 2 sin(Δ𝑡
2
) ≈ Δ𝑡 + 0 [(Δ𝑡)

2
] (76)

as proposed for such schemes in Mickens [12], we have
the required estimate as Δ𝑡 → 0. Furthermore, using the
fact that its uniform convergence results imply pointwise
convergence for 𝑥 ∈ Ω󸀠 completes the proof.

5. Numerical Experiments

In this section, we present the numerical experiments on
problem (1) using both the standard finite difference (SFD)
and NSFD-CG methods. These experiments are performed
in Ω = (0, 1)

2
× (0, 𝑇) where Ω was discretized using regular

meshes of sizes ℎ = 1/𝑀 in the space and Δ𝑡 = 𝑇/𝑁 in
the time. The 𝑀 and 𝑁 in such a discretization denote the
number of nodes and time respectively. The initial data was
considered to be 𝑢

0
(𝑥) = 𝑥

1
𝑥
2
(1 − 𝑥

1
)(1 − 𝑥

2
) and 𝑢

1
(𝑥) = 0

where these data were deduced from the exact solution

𝑢 (𝑥, 𝑡) = 𝑥
1
𝑥
2
(1 − 𝑥

1
) (1 − 𝑥

2
) cos (𝜋𝑡) . (77)

Using the previous exact solution we obtained the right-hand
side 𝑓 of (1). In the computation, (1) together with (17)–(20)
led to a system of equations

AX = b. (78)

In solving for X in the above system, we took the following
values of 𝑀 = 10, 15, 20, 25, 50, and 100. For a fix 𝑀 = 20,
𝑁 = 10, and 𝑇 = 1, we had Figures 1–3 illustrating various
solutions corresponding to their respective schemes.

Figure 1 shows the exact solution, Figure 2 the solution
from the SFD-CG, and Figure 3 the solution from the NSFD-
CG schemes, followed by Tables 1 and 2 which demonstrate
various optimal rates of convergence in both 𝐻

1 and 𝐿
2-

norms of these schemes.
These optimal rates of convergence were calculated by

using the formula

Rate =
ln (𝑒
2
/𝑒
1
)

ln (ℎ
2
/ℎ
1
)
, (79)

where ℎ
1
and ℎ
2
together with 𝑒

1
and 𝑒
2
are successive triangle

diameters and errors, respectively. These results are self-
explanatory and we could conclude that the results as shown
by these experiments exhibit the desired results as expected
from our theoretical analysis.
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Figure 1: The Exact solution.
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Figure 2: Approximate solution for SFD-CG scheme.

6. Conclusion

We presented a reliable scheme of the wave equation con-
sisting of the nonstandard finite difference method in time
and the continuous Galerkin method in the space variable
(NSFD-CG). We proved theoretically that the numerical
solution obtained from this scheme attains the optimal
rate of convergence in both the energy and the 𝐿2-norms.
Furthermore, we showed that the scheme under investigation
replicates the properties of the exact solution of the wave
equation. We proceeded by the help of a numerical example
and showed that the optimal rate of convergence as proved
theoretically is guaranteed in both the energy and the 𝐿2-
norms. This convergence results hold for any fully discrete
NSFD-CG method where the scheme under consideration
has a bilinear form which is symmetric, continuous, and
coercive.

The method presented in this paper can be extended
to the nonlinear hyperbolic or parabolic problems with
either smooth or nonsmooth domain if at all these cases
followed the procedure as proposed by Mickens [12]. We will
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Figure 3: Approximate solution for NSFD-CG scheme.

Table 1: NSFD method error in both 𝐿2 and𝐻1-norms.

𝑀 𝐿
2-error 𝐻

1-error Rate 𝐿2 Rate𝐻1

10 3.800𝐸 − 3 1.67𝐸 − 2
15 1.700𝐸 − 3 1.110𝐸 − 2 1.983 1.0073
20 1.000𝐸 − 3 8.200𝐸 − 3 1.8445 0.9688
25 6.591𝐸 − 4 6.700𝐸 − 3 1.8678 1.0134
50 2.012𝐸 − 4 3.400𝐸 − 3 1.7119 0.9786
100 5.098𝐸 − 5 1.800𝐸 − 3 1.9806 0.9175

Table 2: SFD method error in both 𝐿2 and𝐻1-norms.

𝑀 𝐿
2-error 𝐻

1-error Rate 𝐿2 Rate𝐻1

10 3.400𝐸 − 3 1.700𝐸 − 2
15 1.700𝐸 − 3 1.130𝐸 − 2 1.709 1.007
20 1.050𝐸 − 3 8.500𝐸 − 3 1.674 0.989
25 1.600𝐸 − 3 6.800𝐸 − 3 1.887 1.000
50 5.170𝐸 − 4 3.500𝐸 − 3 1.629 0.958
100 1.799𝐸 − 4 1.900𝐸 − 3 1.522 0.881

also exploit another form of nonstandard finite differential
method as proposed in [18, 19].
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