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The stability problem is investigated for a class of uncertain networks of neutral type with leakage, time-varying discrete, and
distributed delays. Both the parameter uncertainty and the generalized activation functions are considered in this paper. New
stability results are achieved by constructing an appropriate Lyapunov-Krasovskii functional and employing the free weighting
matrices and the linear matrix inequality (LMI) method. Some numerical examples are given to show the effectiveness and less
conservatism of the proposed results.

1. Introduction

Neural networks are a complex large-scale power system and
have very rich dynamic property. In the past years, neural net-
works have some applications in areas of associative memory
[1], pattern recognition [2], and optimization problems [3–5].
Recently, the stability problem for neural networks has been
widely investigated and some results have been reported in
[6–14].

Time delays are often encountered in various engineer-
ing, biological, and economical systems [15–23]. Due to the
finite speed of information processing, the existence of time
delays frequently causes oscillation, divergence, or instability
in neural networks. Recently, the stability of neural networks
with time delays has drawn considerable attention, andmany
results on stability of neural networks with time delays have
been reported in the literature [24–30]. In practice, the time-
varying delay often belongs to a given interval, and the lower
bound of the delays may not be zero. Recently, some papers
investigated the stability conditions for neural networks with
interval time-varying delay in the literature, for example [31].
Furthermore, due to the presence of parallel pathways of
different axonal sizes and lengths, there may exist a spatial

extent in neural networks, which may cause distributed time
delays [32–35]. Recently, the stability problem of neural
networks with neutral-type was studied in [36, 37].

More recently, more and more attention has been paid to
time delay in the leakage (or “forgetting”) term [38, 39], since
there exist some theoretical and technical difficulties when
handling the leakage delay [40]. It has been pointed out that
the leakage delay has a great impact on the dynamics of neural
networks [41, 42]. The authors in [43] showed that time
delay in the stabilizing negative feedback term has a tendency
to destabilize a system. More recently, the authors in [44]
focused on recurrent neural networks with time delay in the
leakage term and showed that all the results mentioned about
the existence and uniqueness of the equilibrium point are
independent of time delays and initial conditions.Then, it can
be seen that time delays in leakage terms do not affect the
existence and uniqueness of the equilibrium point. Recently,
some results about stability analysis for neural networks with
leakage delay have been reported in [38, 39, 41]. To men-
tion a few, the work in [14] investigated the problems
of delay-dependent stability analysis and strict (𝑄, 𝑆, 𝑅)-
𝛼-dissipativity analysis for cellular neural networks with
distributed delay. However, it should be mentioned that there
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are few results about stability analysis for uncertain neural
networks of neutral type with time-varying delay in the
leakage term and distributed delay, which motivates this
study.

In this paper, the stability problem is investigated for
uncertain neural networks of neutral type with time-varying
delay in the leakage term and time-varying distributed delay.
Firstly, by constructing a new type of Lyapunov functional
and developing some novel techniques to handle the delays
considered in this paper, some novel robust stability criteria
are proposed. Secondly, the proposed conditions can be
expressed in terms of linearmatrix inequalities (LMIs), which
can be easily solved via standard software. Finally, some
numerical examples are given to demonstrate the effective-
ness and less conservatism of the proposed results.

Notation. Throughout this paper, the notations are standard.
R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean space
and the set of all 𝑛 × 𝑚 real matrices, respectively. In this
paper, the superscript 𝑇 denotes matrix transposition. For
real symmetric matrices𝑋 and𝑌, the natation𝑋 ≥ 𝑌 (𝑋 > 𝑌

resp.) means that the𝑋−𝑌 is positive-semidefinite (positive-
definite resp.).Thenotation diag{} stands for a block-diagonal
matrix. 𝐼 is the identity matrix with appropriate dimensions.
Matrices if not explicitly stated, where the symbol “∗” stands
for the symmetric term in a matrix, are assumed to have
compatible dimensions.

2. Problem Formulation

Consider the following uncertain neural network of neutral
typewith timedelay in the leakage termanddistributed delay:

𝑥̇ (𝑡) = − (𝑊
1
+ Δ𝑊

1
(𝑡)) 𝑥 (𝑡 − 𝛿) + (𝑊

2
+ Δ𝑊

2
(𝑡)) 𝑓 (𝑥 (𝑡))

+ (𝑊
3
+ Δ𝑊

3
(𝑡)) 𝑓 (𝑡 − 𝜏 (𝑡))

+ (𝑊
4
+ Δ𝑊

4
(𝑡)) ∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ (𝑊
5
+ Δ𝑊

5
(𝑡)) 𝑥̇ (𝑡 − ℎ (𝑡)) ,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡)]
𝑇

∈ R𝑛 is the network
state vector at time 𝑡; 𝑓(𝑡) := 𝑓(𝑥(𝑡)) =

[𝑓
1
(𝑥
1
(𝑡)) 𝑓

2
(𝑥
2
(𝑡)) ⋅ ⋅ ⋅ 𝑓

𝑛
(𝑥
𝑛
(𝑡))]
𝑇

∈ R𝑛 denotes the acti-
vation function at time 𝑡; 𝑊

1
is a positive diagonal

matrix; 𝑊
1

= (𝑊
1𝑖𝑗
)
𝑛×𝑛

, 𝑊
2

= (𝑊
2𝑖𝑗
)
𝑛×𝑛

, 𝑊
3

= (𝑊
3𝑖𝑗
)
𝑛×𝑛

,
𝑊
4

= (𝑊
4𝑖𝑗
)
𝑛×𝑛

, and 𝑊
5

= (𝑊
5𝑖𝑗
)
𝑛×𝑛

are known constant
matrices; Δ𝑊

1
(𝑡), Δ𝑊

2
(𝑡), Δ𝑊

3
(𝑡), Δ𝑊

4
(𝑡), and Δ𝑊

5
(𝑡), are

unknown matrices; 𝛿 is leakage delay, 𝜏(𝑡) is time-varying
discrete delay; ℎ(𝑡) is neutral delay; and 𝑟(𝑡) is time-varying
distributed delay. They satisfy the following conditions:

0 ≤ 𝛿, 0 < 𝜏
1
≤ 𝜏 (𝑡) ≤ 𝜏

2
, ̇𝜏 (𝑡) ≤ 𝜏

𝑑
,

0 < ℎ (𝑡) ≤ ℎ, ℎ̇ (𝑡) ≤ ℎ
𝑑
< 1, 0 < 𝑟 (𝑡) ≤ 𝑟,

(2)

where 𝛿, 𝜏
1
, 𝜏
2
, 𝜏
𝑑
, ℎ, and ℎ

𝑑
are constants. The time-varying

parameter uncertainties Δ𝑊
1
(𝑡), Δ𝑊

2
(𝑡), Δ𝑊

3
(𝑡), Δ𝑊

4
(𝑡),

and Δ𝑊
5
(𝑡) are assumed to be of the form

[Δ𝑊
1
(𝑡) Δ𝑊

2
(𝑡) Δ𝑊

3
(𝑡) Δ𝑊

4
(𝑡) Δ𝑊

5
(𝑡)]

= 𝐻𝐺 (𝑡) [𝐸
1

𝐸
2

𝐸
3

𝐸
4

𝐸
5
] ,

(3)

where𝐻, 𝐸
1
, 𝐸
2
, 𝐸
3
, 𝐸
4
, 𝐸
5
are known constant matrices and

𝐺(𝑡) is an unknown time-varying matrix satisfying

𝐺(𝑡)
𝑇

𝐺 (𝑡) ≤ 𝐼. (4)

Throughout this paper, we make the following assumption:
(𝐻1) for any 𝑖 = 1, 2, . . . , 𝑛, 𝑓

𝑖
(0) = 0, there exist

constants 𝐹−
𝑖
, 𝐹+
𝑖
, for all 𝛼

1
, 𝛼
2
∈ 𝑅
𝑛 with 𝛼

1
̸= 𝛼
2
such that

𝐹
−

𝑖
≤

𝑓
𝑖
(𝛼
1
) − 𝑓
𝑖
(𝛼
2
)

𝛼
1
− 𝛼
2

≤ 𝐹
+

𝑖
. (5)

Lemma 1 (see [45]). For any positive symmetric constant
matrices 𝑀 ∈ R𝑛×𝑛, scalar 𝜏 > 0, vector function 𝜔(𝑠) ∈ R𝑛

such that the integrations concerned are well defined; then

− ∫

𝑡

𝑡−𝜏

𝜔
𝑇

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠

≤ −
1

𝜏
(∫

𝑡

𝑡−𝜏

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑀(∫

𝑡

𝑡−𝜏

𝜔 (𝑠) 𝑑𝑠) .

(6)

Lemma 2 ([46] Schur complement). Given constant matrices
Ω
1
, Ω
2
, and Ω

3
with appropriate dimensions, where Ω𝑇

1
= Ω
1

and Ω
𝑇

2
= Ω
2
> 0, then Ω

1
+ Ω
𝑇

3
Ω
−1

2
Ω
3
< 0 if and only if

[
Ω
1

Ω
𝑇

3

∗ −Ω
2

] < 0 or [
−Ω
2

Ω
3

∗ Ω
1

] < 0. (7)

In order to present novel stability criteria for neural net-
works (1), the following notations are defined:

𝐹
1
= diag (𝐹−

1
, 𝐹
−

2
, . . . , 𝐹

−

𝑛
) , 𝐹

2
= diag (𝐹+

1
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+

2
, . . . , 𝐹

+

𝑛
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𝐹
3
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1
𝐹
+

1
, 𝐹
−

2
𝐹
+

2
, . . . , 𝐹

−

𝑛
𝐹
+

𝑛
) ,

𝐹
4
= diag(

𝐹
−

1
+ 𝐹
+

1

2
,
𝐹
−

2
+ 𝐹
+

2

2
, . . . ,

𝐹
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𝑛
+ 𝐹
+

𝑛

2
) .

(8)

3. Main Results

In this section, by considering the delay in the leakage term
and distributed delay and using some new techniques, novel
stability criteria will be proposed for uncertain neural net-
work of neutral-type with time-varying delay in (1). Firstly,
considering neutral-type delay, the delay in the leakage term,
and distributed delay, we have the following theorem.

Theorem 3. For given scalars 0 ≤ 𝛿, 0 < 𝜏
1

< 𝜏
2
, 0 < ℎ,

0 < 𝑟, ℎ
𝑑

< 1, and 𝜏
𝑑
, neural network (1) under Assumption

(𝐻1) is robustly asymptotically stable, if there exist matrices
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𝑃
𝑖
> 0 (𝑖 = 1, 2, . . . , 5), 𝑄 = [𝑄

𝑖𝑗
]
2×2

> 0, 𝐾 = [𝐾
𝑖𝑗
]
2×2

> 0,
𝑍
𝑖
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1
, 𝑑
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, . . . , 𝑑

𝑛
} > 0,

𝐿 = diag {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0, positive diagonal matrices 𝑅 and

𝑆, and appropriately dimensioned matrices 𝑁
𝑘
, 𝑀
𝑘
(𝑘 =

1, 2, . . . , 14), such that the following LMIs hold:

[
𝑍
3

𝑇

∗ 𝑍
3

] > 0, (9)

[
[
[

[
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∗ ∗ ∗ −𝜀𝐼

]
]
]

]

< 0, (10)
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=
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Θ
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=
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𝑊
1

0
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𝑑
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6
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5
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2

𝑍
4
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∗ ∗ 𝑃
4
− 𝑍
2
− 𝑍
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]
]
]
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Ψ
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− 𝐹
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5
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Ψ
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𝑑
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𝑇
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99

=
𝜏
2

1

4
𝑍
1
+ 𝜏
2

1
𝑍
2
+ 𝜏
2
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𝑍
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6
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7
,
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1
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5
,𝑊
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𝑊
3
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4
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𝑇

1
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2
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𝑇

3
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4
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𝑇

5
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6
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7
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𝑇
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𝑇
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𝑇
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,
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1
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5
, 𝐸
2
, 𝐸
3
, 0, 𝐸
4
] .

(11)

Proof. By using Newton-Leibniz formulation and consid-
ering neural network (1), the following equalities hold for
appropriately dimensioned matrices𝑁 and𝑀:

2𝜂
𝑇

(𝑡)𝑁[𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡)) − ∫

𝑡

𝑡−ℎ(𝑡)

𝑥̇ (𝑡) 𝑑𝑠] = 0,

2𝜂
𝑇

(𝑡)𝑀[ − (𝑊
1
+ Δ𝑊

1
(𝑡)) 𝑥 (𝑡 − 𝛿) + (𝑊

2
+ Δ𝑊

2
(𝑡))

× 𝑓 (𝑥 (𝑡)) + (𝑊
3
+ Δ𝑊

3
(𝑡)) 𝑓 (𝑡 − 𝜏 (𝑡))

+ (𝑊
4
+ Δ𝑊

4
(𝑡)) ∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ (𝑊
5
+ Δ𝑊

5
(𝑡)) 𝑥̇ (𝑡 − ℎ (𝑡)) − 𝑥̇ (𝑡) ] = 0,

(12)

with

𝜂
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , 𝑥
𝑇

(𝑡 − 𝜏
1
) , 𝑥
𝑇

(𝑡 − 𝜏
2
) ,
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𝑥
𝑇

(𝑡 −
𝜏
1

2
) 𝑥
𝑇

(𝑡 −
𝜏
2

2
) , 𝑥
𝑇

(𝑡 − 𝛿) , 𝑥
𝑇

(𝑡 − ℎ (𝑡)) ,

𝑥̇
𝑇

(𝑡) , 𝑥̇
𝑇

(𝑡 − ℎ (𝑡)) , 𝑓
𝑇

(𝑥 (𝑡)) , 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ,

(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

, (∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

]

𝑇

.

(13)

For positive diagonal matrices 𝑅 and 𝑆, based on Assumption
(𝐻1), it can be seen that the following inequalities hold:

[
𝑥(𝑡)

𝑓(𝑥(𝑡))
]

𝑇

[
𝐹
3
𝑅 −𝐹

4
𝑅

−𝐹
4
𝑅 𝑅

][
𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
] ≤ 0,

[
𝑥 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))
]

𝑇

[
𝐹
3
𝑆 −𝐹

4
𝑆

−𝐹
4
𝑆 𝑆

] [
𝑥 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))
] ≤ 0.

(14)

Now, choosing the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡) =

7

∑

𝑖=1

𝑉
𝑖
(𝑡) , (15)

where
𝑉
1
(𝑡)

= (𝑥 (𝑡) − 𝑊
1
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
1
(𝑥 (𝑡) − 𝑊

1
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠) ,

𝑉
2
(𝑡) = 2

𝑛

∑

𝑖=1

𝑑
𝑖
∫

𝑥𝑖(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑙
𝑖
∫

𝑥𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − 𝑓
𝑖
(𝑠)) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠) 𝑃
2
𝑥 (𝑠) 𝑑𝑠 + 𝛿∫

0

−𝛿

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑃
3
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−(𝜏1/2)
𝜔
𝑇

1
(𝑠) 𝑄𝜔

1
(𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−(𝜏2/2)
𝜔
𝑇

2
(𝑠) 𝐾𝜔

2
(𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑃
4
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑇

(𝑥 (𝑠)) 𝑃
5
𝑓 (𝑥 (𝑠)) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

0

−𝜏1/2

∫

𝑡

𝑡+𝜃

𝜏
1

2
𝑥̇
𝑇

(𝑠) 𝑍
1
𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏1

∫

𝑡

𝑡+𝜃

𝜏
1
𝑥̇
𝑇

(𝑠) 𝑍
2
𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝜏1

−𝜏2

∫

𝑡

𝑡+𝜃

𝜏
12
𝑥̇
𝑇

(𝑠) 𝑍
3
𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
6
(𝑡) = 𝑟∫

0

−𝑟

∫

𝑡

𝑡+𝜃

𝑓
𝑇

(𝑥 (𝑠)) 𝑍
4
𝑓 (𝑥 (𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
7
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑍
5
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−ℎ(𝑡)

𝑥̇
𝑇

(𝑠) 𝑍
6
𝑥̇ (𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥̇
𝑇

(𝑠) 𝑍
7
𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃,

(16)

where 𝜏
12

= 𝜏
2
− 𝜏
1
, and

𝜔
𝑖
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 −
𝜏
𝑖

2
)]
𝑇

, 𝑖 = 1, 2. (17)

Then, the derivatives of𝑉
𝑖
(𝑡), (𝑖 = 1, . . . , 7) with time 𝑡 can be

obtained as

𝑉̇
1
(𝑡) = 2(𝑥 (𝑡) − 𝑊

1
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

× 𝑃
1
(𝑥̇ (𝑡) − 𝑊

1
𝑥 (𝑡) + 𝑊

1
𝑥 (𝑡 − 𝛿)) ,

𝑉̇
2
(𝑡) = 2𝑥̇

𝑇

(𝑡) 𝐷 (𝑓 (𝑥 (𝑡)) − 𝐹
1
𝑥 (𝑡))

+ 2𝑥̇
𝑇

(𝑡) 𝐿 (𝐹
2
𝑥 (𝑡) − 𝑓 (𝑥 (𝑡))) ,

𝑉̇
3
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃
2
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝛿) 𝑃
2
𝑥 (𝑡 − 𝛿)

+ 𝛿
2

𝑥
𝑇

(𝑡) 𝑃
3
𝑥 (𝑠) − 𝛿∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠) 𝑃
3
𝑥 (𝑠) 𝑑𝑠,

𝑉̇
4
(𝑡) = 𝜔

𝑇

1
(𝑡) 𝑄𝜔

1
(𝑡) − 𝜔

𝑇

1
(𝑡 −

𝜏
1

2
)𝑄𝜔
1
(𝑡 −

𝜏
1

2
)

+ 𝜔
𝑇

2
(𝑡) 𝐾𝜔

2
(𝑡) − 𝜔

𝑇

2
(𝑡 −

𝜏
2

2
)𝐾𝜔
2
(𝑡 −

𝜏
2

2
)

+ 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑃
4
𝑥 (𝑡 − 𝜏

1
)

− (1 − ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃
4
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑇

(𝑥 (𝑡)) 𝑃
5
𝑓 (𝑥 (𝑡))

− (1 − ̇𝜏 (𝑡)) 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑃
5
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑉̇
5
(𝑡) =

𝜏
2

1

4
𝑥̇
𝑇

(𝑡) 𝑍
1
𝑥̇ (𝑡) − ∫

𝑡

𝑡−(𝜏1/2)

𝜏
1

2
𝑥̇
𝑇

(𝑠) 𝑍
1
𝑥̇ (𝑠) 𝑑𝑠

+ 𝜏
2

1
𝑥̇
𝑇

(𝑡) 𝑍
2
𝑥̇ (𝑡) − ∫

𝑡

𝑡−𝜏1

𝜏
1
𝑥̇
𝑇

(𝑠) 𝑍
2
𝑥̇ (𝑠) 𝑑𝑠

+ 𝜏
2

12
𝑥̇
𝑇

(𝑡) 𝑍
3
𝑥̇ (𝑡) − ∫

𝑡−𝜏1

𝑡−𝜏2

𝜏
12
𝑥̇
𝑇

(𝑠) 𝑍
3
𝑥̇ (𝑠) 𝑑𝑠,

𝑉̇
6
(𝑡) = 𝑟

2

𝑓
𝑇

(𝑥 (𝑡)) 𝑍
4
𝑓 (𝑥 (𝑡))

− ∫

𝑡

𝑡−𝑟

𝑟𝑓
𝑇

(𝑥 (𝑠)) 𝑍
4
𝑓 (𝑥 (𝑠)) 𝑑𝑠,

𝑉̇
7
(𝑡) = 𝑥

𝑇

(𝑡) 𝑍
5
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − ℎ (𝑡)) 𝑍
5
𝑥 (𝑡 − ℎ (𝑡))

+ 𝑥̇
𝑇

(𝑡) 𝑍
6
𝑥̇ (𝑡) − (1 − ℎ̇ (𝑡)) 𝑥̇

𝑇

(𝑡 − ℎ (𝑡))
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× 𝑍
6
𝑥̇ (𝑡 − ℎ (𝑡))

+ ℎ𝑥̇
𝑇

(𝑡) 𝑍
7
𝑥̇ (𝑡) − ∫

𝑡

𝑡−ℎ

𝑥̇
𝑇

(𝑠) 𝑍
7
𝑥̇ (𝑠) 𝑑𝑠.

(18)

By Lemma 1, one can have

− ∫

𝑡

𝑡−(𝜏1/2)

𝜏
1

2
𝑥̇
𝑇

(𝑠) 𝑍
1
𝑥̇ (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡) − 𝑥 (𝑡 −
𝜏
1

2
)]
𝑇

𝑍
1
[𝑥 (𝑡) − 𝑥 (𝑡 −

𝜏
1

2
)] ,

(19)

− ∫

𝑡

𝑡−𝜏1

𝜏
1
𝑥̇
𝑇

(𝑠) 𝑍
2
𝑥̇ (𝑠) 𝑑𝑠

≤ −[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏
1
)]
𝑇

𝑍
2
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

1
)] ,

(20)

− ∫

𝑡−𝜏2

𝑡−𝜏1

𝜏
12
𝑥̇
𝑇

(𝑠) 𝑍
3
𝑥̇ (𝑠) 𝑑𝑠

= −∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝜏
12
𝑥̇
𝑇

(𝑠) 𝑍
3
𝑥̇ (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝜏
12
𝑥̇
𝑇

(𝑠) 𝑍
3
𝑥̇ (𝑠) 𝑑𝑠

≤ −
𝜏
12

𝜏 (𝑡) − 𝜏
1

𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

−
𝜏
12

𝜏
2
− 𝜏 (𝑡)

𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

= −
1

𝛼
1

𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

−
1

𝛼
2

𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

= −𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

− 𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

−
𝛼
2

𝛼
1

𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

−
𝛼
1

𝛼
2

𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡) ,

(21)

where 𝛼
1
= (𝜏(𝑡) − 𝜏

1
)/𝜏
12
and 𝛼

2
= (𝜏
2
− 𝜏(𝑡))/𝜏

12
.

It can be seen from the condition (9) that

−
𝛼
2

𝛼
1

𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

−
𝛼
1

𝛼
2

𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

+ 𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑇(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

+ 𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑇
𝑇

(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

= −𝜂
𝑇

(𝑡)

[
[
[
[

[

√
𝛼
2

𝛼
1

(𝑒
𝑇

3
− 𝑒
𝑇

2
)

−√
𝛼
1

𝛼
2

(𝑒
𝑇

2
− 𝑒
𝑇

4
)

]
]
]
]

]

𝑇

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

]

×

[
[
[
[

[

√
𝛼
2

𝛼
1

(𝑒
𝑇

3
− 𝑒
𝑇

2
)

−√
𝛼
1

𝛼
2

(𝑒
𝑇

2
− 𝑒
𝑇

4
)

]
]
]
]

]

𝜂 (𝑡) ≤ 0,

(22)
which means

−
𝛼
2

𝛼
1

𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

−
𝛼
1

𝛼
2

𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

≤ −𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑇(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡) − 𝜂
𝑇

(𝑡)

× (𝑒
2
− 𝑒
4
) 𝑇
𝑇

(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡) .

(23)

It follows from (21) and (23) that

− ∫

𝑡−𝜏2

𝑡−𝜏1

𝜏
12
𝑥̇
𝑇

(𝑠) 𝑍
3
𝑥̇ (𝑠) 𝑑𝑠

≤ −𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑇
𝑇

(𝑒
𝑇

3
− 𝑒
𝑇

2
) 𝜂 (𝑡)

− 𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑇 (𝑒
𝑇

2
− 𝑒
𝑇

4
) 𝜂 (𝑡)

− 𝜂
𝑇

(𝑡) (𝑒
3
− 𝑒
2
) 𝑍
3
(𝑒
3
− 𝑒
2
)
𝑇

𝜂 (𝑡)

− 𝜂
𝑇

(𝑡) (𝑒
2
− 𝑒
4
) 𝑍
3
(𝑒
2
− 𝑒
4
)
𝑇

𝜂 (𝑡)

= −𝜂
𝑇

(𝑡) [
𝑒
𝑇

3
− 𝑒
𝑇

2

𝑒
𝑇

2
− 𝑒
𝑇

4

]

𝑇

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

]

× [
𝑒
𝑇

3
− 𝑒
𝑇

2

𝑒
𝑇

2
− 𝑒
𝑇

4

] 𝜂 (𝑡) .

(24)

Therefore, it is straight forward to obtain that

𝑉̇ (𝑡) ≤ 2(𝑥 (𝑡) − 𝑊
1
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

× 𝑃
1
(𝑥̇ (𝑡) − 𝑊

1
𝑥 (𝑡) + 𝑊

1
𝑥 (𝑡 − 𝛿))

+ 2𝑥̇
𝑇

(𝑡) 𝐷 (𝑓 (𝑥 (𝑡)) − 𝐹
1
𝑥 (𝑡))

+ 2𝑥̇
𝑇

(𝑡) 𝐿 (𝐹
2
𝑥 (𝑡) − 𝑓 (𝑥 (𝑡)))

+ 𝑥
𝑇

(𝑡) 𝑃
2
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝛿) 𝑃
2
𝑥 (𝑡 − 𝛿)

+ 𝛿
2

𝑥
𝑇

(𝑡) 𝑃
3
𝑥 (𝑠) 𝑑𝑠 − (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 𝜔
𝑇

1
(𝑡) 𝑄𝜔

1
(𝑡) − 𝜔

𝑇

1
(𝑡 −

𝜏
1

2
)𝑄𝜔
1
(𝑡 −

𝜏
1

2
)
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+ 𝜔
𝑇

2
(𝑡) 𝐾𝜔

2
(𝑡) − 𝜔

𝑇

2
(𝑡 −

𝜏
2

2
)𝐾𝜔
2
(𝑡 −

𝜏
2

2
)

+ 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑃
4
𝑥 (𝑡 − 𝜏

1
)

− (1 − 𝜏
𝑑
) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃
4
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑓
𝑇

(𝑥 (𝑡)) 𝑃
5
𝑓 (𝑥 (𝑡))

− (1 − 𝜏
𝑑
) 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑃
5
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+
𝜏
2

1

4
𝑥̇
𝑇

(𝑡) 𝑍
1
𝑥̇ (𝑡)

− [𝑥 (𝑡) − 𝑥 (𝑡 −
𝜏
1

2
)]
𝑇

𝑍
1
[𝑥 (𝑡) − 𝑥 (𝑡 −

𝜏
1

2
)]

+ 𝜏
2

1
𝑥̇
𝑇

(𝑡) 𝑍
2
𝑥̇ (𝑡)

− [𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏
1
)]
𝑇

𝑍
2
[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

1
)]

+ 𝜏
2

12
𝑥̇
𝑇

(𝑡) 𝑍
3
𝑥̇ (𝑡)

− 𝜂
𝑇

(𝑡) [
𝑒
𝑇

3
− 𝑒
𝑇

2

𝑒
𝑇

2
− 𝑒
𝑇

4

]

𝑇

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

] [
𝑒
𝑇

3
− 𝑒
𝑇

2

𝑒
𝑇

2
− 𝑒
𝑇

4

] 𝜂 (𝑡)

+ 𝑟
2

𝑓
𝑇

(𝑥 (𝑡)) 𝑍
4
𝑓 (𝑥 (𝑡))

− ∫

𝑡

𝑡−𝑟

𝑟𝑓
𝑇

(𝑥 (𝑠)) 𝑍
4
𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝑥

𝑇

(𝑡) 𝑍
5
𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑍
5
𝑥 (𝑡 − ℎ (𝑡))

+ 𝑥̇
𝑇

(𝑡) 𝑍
6
𝑥̇ (𝑡) − (1 − ℎ

𝑑
) 𝑥̇
𝑇

(𝑡 − ℎ (𝑡)) 𝑍
6
𝑥̇ (𝑡 − ℎ (𝑡))

+ ℎ𝑥̇
𝑇

(𝑡) 𝑍
7
𝑥̇ (𝑡) − ∫

𝑡

𝑡−ℎ

𝑥̇
𝑇

(𝑠) 𝑍
7
𝑥̇ (𝑠) 𝑑𝑠

− [
𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
]

𝑇

[
𝐹
3
𝑅 −𝐹

4
𝑅

−𝐹
4
𝑅 𝑅

] [
𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
]

− [
𝑥 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))
]

𝑇

[
𝐹
3
𝑆 −𝐹

4
𝑆

−𝐹
4
𝑆 𝑆

]

× [
𝑥 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))
]

+ 2𝜂
𝑇

(𝑡)𝑀
[
[

[

− (𝑊
1
+ Δ𝑊

1
(𝑡)) 𝑥 (𝑡 − 𝛿)

+ (𝑊
2
+ Δ𝑊

2
(𝑡)) 𝑓 (𝑥 (𝑡))

+ (𝑊
3
+ Δ𝑊

3
(𝑡)) 𝑓 (𝑡 − 𝜏 (𝑡))

+ (𝑊
4
+ Δ𝑊

4
(𝑡)) ∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ (𝑊
5
+ Δ𝑊

5
(𝑡)) 𝑥̇ (𝑡 − ℎ (𝑡)) − 𝑥̇ (𝑡)

]
]

]

≤ 𝜂
𝑇

(𝑡) (Ξ + Π + Π
𝑇

+ ℎ𝑁𝑍
−1

7
𝑁
𝑇

+ ΔΞ) 𝜂 (𝑡)

− ∫

𝑡

𝑡−ℎ(𝑡)

(𝑁
𝑇

𝜂 (𝑡) + 𝑍
7
𝑥̇ (𝑠))
𝑇

× 𝑍
−1

7
(𝑁
𝑇

𝜂 (𝑡) + 𝑍
7
𝑥̇ (𝑠)) 𝑑𝑠

≤ 𝜂
𝑇

(𝑡) (Ξ + Π + Π
𝑇

+ ℎ𝑁𝑍
−1

7
𝑁
𝑇

+ ΔΞ) 𝜂 (𝑡)

≤ 𝜂
𝑇

(𝑡) (Ξ + Π + Π
𝑇

+ ℎ𝑁𝑍
−1

7
𝑁
𝑇

+ 𝜀
−1

𝑀𝐻𝐻
𝑇

𝑀
𝑇

+ 𝜀𝐸
𝑇

𝐸) 𝜂 (𝑡) ,

(25)

whereΔΞ = 𝑀𝐻𝐹(𝑡)𝐸+(𝑀𝐻𝐹(𝑡)𝐸)
𝑇. By Schur complement,

it can be seen from the condition (10) that 𝑉̇(𝑡) < 0, which
means that neural network (1) under Assumption (𝐻1) is
robustly asymptotically stable.This completes this proof.

When neural network (1) without uncertainties, we have

𝑥̇ (𝑡) = −𝑊
1
𝑥 (𝑡 − 𝛿) + 𝑊

2
𝑓 (𝑥 (𝑡)) + 𝑊

3
𝑓 (𝑡 − 𝜏 (𝑡))

+ 𝑊
4
∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝑊
5
𝑥̇ (𝑡 − ℎ (𝑡)) .

(26)

The stability condition can be easily obtained from
Theorem 3 in the following corollary.

Corollary 4. Given scalars 0 ≤ 𝛿, 0 ≤ 𝜏
1

< 𝜏
2
, 0 < ℎ,

0 < 𝑟, ℎ
𝑑

< 1, and 𝜏
𝑑
, neural network (26) is asymptotically

stable, if there exist matrices 𝑃
𝑖
> 0 (𝑖 = 1, 2, . . . , 5), 𝑄 =

[𝑄
𝑖𝑗
]
2×2

> 0, 𝐾 = [𝐾
𝑖𝑗
]
2×2

> 0, 𝑍
𝑖
> 0 (𝑖 = 1, 2, . . . , 7), 𝐷 =

diag {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} > 0, 𝐿 = diag {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0, positive

diagonal matrices 𝑅 and 𝑆, and appropriately dimensioned
matrices 𝑁

𝑘
, 𝑀
𝑘
(𝑘 = 1, 2, . . . , 14), such that the following

LMIs hold:

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

] > 0, [
Ξ + Π + Π

𝑇 √ℎ𝑁

∗ −𝑍
7

] < 0, (27)

where Ξ, Π and𝑁 have been defined in Theorem 3.

Remark 5. For neural network (1), if time delay in the leakage
term is not considered in this paper, the following model can
be obtained:

𝑥̇ (𝑡) = −𝑊
1
𝑥 (𝑡) + 𝑊

2
𝑓 (𝑥 (𝑡)) + 𝑊

3
𝑓 (𝑡 − 𝜏 (𝑡))

+ 𝑊
4
∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝑊
5
𝑥̇ (𝑡 − ℎ (𝑡)) .

(28)

In order to present stability criterion for neural network (28),
we choose the following Lyapunov-Krasovskii functional:

𝑉 (𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) +

7

∑

𝑖=2

𝑉
𝑖
(𝑡) , (29)

where 𝑉
𝑖
(𝑖 = 2, 3, 4, 5, 6, 7) is defined in (15). From the proof

of Theorem 3, the following stability condition for neural
network (28) can be obtained.
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Corollary 6. For given scalars 0 ≤ 𝜏
1
< 𝜏
2
, 0 < ℎ, 0 < 𝑟,

ℎ
𝑑

< 1, and 𝜏
𝑑
, neural network (1) under Assumption (𝐻1)

is asymptotically stable, if there exist matrices 𝑃
𝑖

> 0 (𝑖 =

1, 4, . . . , 5), 𝑄 = [𝑄
𝑖𝑗
]
2×2

> 0, 𝐾 = [𝐾
𝑖𝑗
]
2×2

> 0, 𝑍
𝑖

>

0 (𝑖 = 1, 2, . . . , 7), 𝐷 = diag {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} > 0, 𝐿 =

diag {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0, positive diagonalmatrices𝑅 and 𝑆, and

appropriately dimensionedmatrices 𝑁̂
𝑘
, 𝑀̂
𝑘
(𝑘 = 1, 2, . . . , 12),

such that the following LMIs hold:

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

] > 0, [
Ξ̂ + Π̂ + Π̂

𝑇 √ℎ𝑁̂

∗ −𝑍
7

] < 0, (30)

where

Ξ̂ = [
Θ̂
11

Θ̂
12

∗ Θ̂
22

] , Θ̂
12

=

[
[
[
[
[
[
[

[

0 𝑃
1
− 𝐹
𝑇

1
𝐷
𝑇

+ 𝐹
𝑇

2
𝐿
𝑇

0 𝐹
4
𝑅 0 0

0 0 0 0 𝐹
4
𝑆 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

,

Θ̂
11

=

[
[
[
[
[
[
[

[

Ψ̂
11

0 𝑍
2

0 𝑍
1
+ 𝑄
12

𝐾
12

∗ Ψ̂
22

𝑍
3
− 𝑇
𝑇

𝑍
3
− 𝑇 0 0

∗ ∗ 𝑃
4
− 𝑍
2
− 𝑍
3
− 𝑄
22

𝑇 −𝑄
𝑇

12
0

∗ ∗ ∗ −𝐾
22

− 𝑍
3

0 −𝐾
𝑇

12

∗ ∗ ∗ ∗ −𝑍
1
+ 𝑄
22

− 𝑄
11

0

∗ ∗ ∗ ∗ ∗ 𝐾
22

− 𝐾
11

]
]
]
]
]
]
]

]

,

Ψ̂
11

= 𝑄
11

+ 𝐾
11

− 𝑍
1
− 𝑍
2
− 𝐹
3
𝑅 + 𝑍

5
, Ψ̂

22
= − (1 − 𝜏

𝑑
) 𝑃
4
− 𝑍
3
− 𝑍
𝑇

3
− 𝐹
3
𝑆 + 𝑇 + 𝑇

𝑇

,

Ψ̂
88

= (
𝜏
2

1

4
)𝑍
1
+ 𝜏
2

1
𝑍
2
+ 𝜏
2

12
𝑍
3
+ 𝑍
6
+ ℎ𝑍
7
,

Π̂ = [𝑁̂, 0, 0, 0, 0, 0, −𝑁̂, 0, 0, 0, 0, 0] + 𝑀̂ [−𝑊
1
, 0, 0, 0, 0, 0, 0, −𝐼,𝑊

5
,𝑊
2,
𝑊
3
,𝑊
4
] ,

Θ̂
22

=

[
[
[
[
[
[
[

[

−𝑍
5

0 0 0 0 0

∗ Ψ̂
88

0 𝐷 − 𝐿 0 0

∗ ∗ − (1 − ℎ
𝑑
) 𝑍
6

0 0 0

∗ ∗ ∗ 𝑃
5
+ 𝑟
2

𝑍
4
− 𝑅 0 0

∗ ∗ ∗ ∗ − (1 − 𝜏
𝑑
) 𝑃
5
− 𝑆 0

∗ ∗ ∗ ∗ ∗ −𝑍
4

]
]
]
]
]
]
]

]

,

𝑁̂ = [𝑁
𝑇

1
, 𝑁
𝑇

2
, 𝑁
𝑇

3
, 𝑁
𝑇

4
, 𝑁
𝑇

5
, 𝑁
𝑇

6
, 𝑁
𝑇

7
, 𝑁
𝑇

8
, 𝑁
𝑇

9
, 𝑁
𝑇

10
, 𝑁
𝑇

11
, 𝑁
𝑇

12
]
𝑇

,

𝑀̂ = [𝑀
𝑇

1
,𝑀
𝑇

2
,𝑀
𝑇

3
,𝑀
𝑇

4
,𝑀
𝑇

5
,𝑀
𝑇

6
,𝑀
𝑇

7
,𝑀
𝑇

8
,𝑀
𝑇

9
,𝑀
𝑇

10
,𝑀
𝑇

11
,𝑀
𝑇

12
]
𝑇

.

(31)

Remark 7. When neural network (1) without time-varying
neutral delay ℎ(𝑡), the following model can be obtained:

𝑥̇ (𝑡) = −𝑊
1
𝑥 (𝑡 − 𝛿) + 𝑊

2
𝑓 (𝑥 (𝑡))

+ 𝑊
3
𝑓 (𝑡 − 𝜏 (𝑡)) + 𝑊

4
∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠.
(32)

In order to present stability criterion for neural network
(32), we choose the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡) =

6

∑

𝑖=1

𝑉
𝑖
(𝑡) , (33)

where𝑉
𝑖
(𝑖 = 1, . . . , 6) are defined in (15). Following the same

line of Theorem 3, the following corollary can be presented.

Corollary 8. Given scalars 0 ≤ 𝛿, 0 ≤ 𝜏
1

< 𝜏
2
, 0 < 𝑟,

and 𝜏
𝑑
, the neural network (32) under Assumptions (𝐻1)-(𝐻2)

is asymptotically stable, if there exist matrices 𝑃
𝑖

> 0 (𝑖 =

1, 2, . . . , 5), 𝑄 = [𝑄
𝑖𝑗
]
2×2

> 0, 𝐾 = [𝐾
𝑖𝑗
]
2×2

> 0, 𝑍
𝑖

>

0 (𝑖 = 1, 2, . . . , 4), 𝐷 = diag {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} > 0, 𝐿 =

diag {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
} > 0, positive diagonal matrices 𝑅 and 𝑆,

and appropriately dimensionedmatrices 𝑀̌
𝑘
(𝑘 = 1, 2, . . . , 12),

such that the following LMIs hold:

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

] > 0, Ξ̌ + Π̌ + Π̌
𝑇

< 0, (34)

where
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Ψ̌
11

= −𝑃
1
𝑊
1
− 𝑊
𝑇

1
𝑃
𝑇

1
+ 𝑃
2
+ 𝛿
2

𝑃
3
+ 𝑄
11

+ 𝐾
11

− 𝑍
1
− 𝑍
2
− 𝐹
3
𝑅,

Ψ̌
22

= − (1 − 𝜏
𝑑
) 𝑃
4
− 𝑍
3
− 𝑍
𝑇

3
− 𝐹
3
𝑆 + 𝑇 + 𝑇

𝑇

, Ψ̌
88

= (
𝜏
2

1

4
)𝑍
1
+ 𝜏
2

1
𝑍
2
+ 𝜏
2

12
𝑍
3
,

Π̂ = 𝑀̂ [0, 0, 0, 0, 0, 0, −𝑊
1
, −𝐼,𝑊

2,
𝑊
3
, 0,𝑊
4
] ,

𝑀̂ = [𝑀
𝑇

1
,𝑀
𝑇

2
,𝑀
𝑇

3
,𝑀
𝑇

4
,𝑀
𝑇

5
,𝑀
𝑇

6
,𝑀
𝑇

7
,𝑀
𝑇

8
,𝑀
𝑇

9
,𝑀
𝑇

10
,𝑀
𝑇

11
,𝑀
𝑇

12
]
𝑇

,

Θ̌
11

=

[
[
[
[
[
[
[
[
[
[
[
[

[

Ψ̌
11

0 𝑍
2

0 𝑍
1
+ 𝑄
12

𝐾
12

∗ Ψ̌
22

𝑍
3
− 𝑇
𝑇

𝑍
3
− 𝑇 0 0

∗ ∗ 𝑃
4
− 𝑍
2
− 𝑍
3
− 𝑄
22

𝑇 −𝑄
𝑇

12
0

∗ ∗ ∗ −𝐾
22

− 𝑍
3

0 −𝐾
𝑇

12

∗ ∗ ∗ ∗ −𝑍
1
+ 𝑄
22

− 𝑄
11

0

∗ ∗ ∗ ∗ ∗ 𝐾
22

− 𝐾
11

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Θ̌
12

=

[
[
[
[
[
[
[

[

𝑃
1
𝑊
1

𝑃
1
− 𝐹
𝑇

1
𝐷
𝑇

+ 𝐹
𝑇

2
𝐿
𝑇

𝐹
4
𝑅 0 𝑊

1
𝑃
1
𝑊
1

0

0 0 0 𝐹
4
𝑆 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

, Ξ̌ = [
Θ̌
11

Θ̌
12

∗ Θ̌
22

] ,

Θ̌
22

=

[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
2

0 0 0 −𝑊
1
𝑃
1
𝑊
1

0

∗ Ψ̌
88

𝐷 − 𝐿 0 −𝑃
1
𝑊
1

0

∗ ∗ 𝑃
5
+ 𝑟
2

𝑍
4
− 𝑅 0 0 0

∗ ∗ ∗ − (1 − 𝜏
𝑑
) 𝑃
5
− 𝑆 0 0

∗ ∗ ∗ ∗ −𝑃
3

0

∗ ∗ ∗ ∗ ∗ −𝑍
4

]
]
]
]
]
]
]
]
]
]
]

]

.

(35)

Consider the following neural network with time-varying
delay:

𝑥̇ (𝑡) = −𝑊
1
𝑥 (𝑡) + 𝑊

2
𝑓 (𝑥 (𝑡)) + 𝑊

3
𝑓 (𝑡 − 𝜏 (𝑡)) . (36)

By choosing the Lyapunov-Krasovskii functional

𝑉 (𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑉
2
(𝑡) + 𝑉

4
(𝑡) + 𝑉

6
(𝑡) , (37)

where 𝑉
𝑖
(𝑖 = 2, 4, 6) is defined in (15). The novel stability

condition for neural network with time-varying delay (36) can
be presented fromTheorem 3 in the following corollary.

Corollary 9. For given scalars 0 ≤ 𝜏
1

< 𝜏
2
, and 𝜏

𝑑
, neural

network (36) under Assumptions (𝐻1)-(𝐻2) is asymptotically

stable, if there exist matrices 𝑃
𝑖

> 0 (𝑖 = 1, 4, 5), 𝑄 =

[𝑄
𝑖𝑗
]
2×2

> 0, 𝐾 = [𝐾
𝑖𝑗
]
2×2

> 0, 𝑍
𝑖

> 0 (𝑖 = 1, 2, 3),
𝐷 = diag {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
} > 0, 𝐿 = diag {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} >

0, positive diagonal matrices 𝑅 and 𝑆, and appropriately
dimensioned matrices 𝑀

𝑘
(𝑘 = 1, 2, . . . , 9), such that the

following LMIs hold:

[
𝑍
3

𝑇

𝑇
𝑇

𝑍
3

] > 0, Ξ + Π + Π
𝑇

< 0, (38)

where

Θ
11

=

[
[
[
[
[

[

Ψ
11

0 𝑍
2

0 𝑍
1
+ 𝑄
12

∗ Ψ
22

𝑍
3
− 𝑇
𝑇

𝑍
3
− 𝑇 0

∗ ∗ 𝑃
4
− 𝑍
2
− 𝑍
3
− 𝑄
22

𝑇 −𝑄
𝑇

12

∗ ∗ ∗ −𝐾
22

− 𝑍
3

0

∗ ∗ ∗ ∗ −𝑍
1
+ 𝑄
22

− 𝑄
11

]
]
]
]
]

]

,



Abstract and Applied Analysis 9

Θ
12

=

[
[
[
[
[

[

𝐾
12

𝑃
1
− 𝐹
𝑇

1
𝐷
𝑇

+ 𝐹
𝑇

2
𝐿
𝑇

𝐹
4
𝑅 0

0 0 0 𝐹
4
𝑆

0 0 0 0

−𝐾
𝑇

12
0 0 0

0 0 0 0

]
]
]
]
]

]

, Ψ
77

=
𝜏
2

1

4
𝑍
1
+ 𝜏
2

1
𝑍
2
+ 𝜏
2

12
𝑍
3
,

Θ
22

=
[
[
[

[

𝐾
22

− 𝐾
11

0 0 0

∗ Ψ
77

𝐷 − 𝐿 0

∗ ∗ 𝑃
5
− 𝑅 0

∗ ∗ ∗ − (1 − 𝜏
𝑑
) 𝑃
5
− 𝑆

]
]
]

]

, Ξ = [
Θ
11

Θ
12

∗ Θ
22

] ,

Ψ
11

= 𝑄
11

+ 𝐾
11

− 𝑍
1
− 𝑍
2
− 𝐹
3
𝑅, Ψ

22
= − (1 − 𝜏

𝑑
) 𝑃
4
− 𝑍
3
− 𝑍
𝑇

3
− 𝐹
3
𝑆 + 𝑇 + 𝑇

𝑇

,

Π = 𝑀[−𝑊
1
, 0, 0, 0, 0, 0, −𝐼,𝑊

2,
𝑊
3
] , 𝑀 = [𝑀

𝑇

1
,𝑀
𝑇

2
,𝑀
𝑇

3
,𝑀
𝑇

4
,𝑀
𝑇

5
,𝑀
𝑇

6
,𝑀
𝑇

7
,𝑀
𝑇

8
,𝑀
𝑇

9
]
𝑇

.

(39)

4. Numerical Examples

In this section, two numerical examples are provided to show
the effectiveness of the proposed results.

Example 1. Consider uncertain neural network of neutral
type with leakage delay time-varying delay, and distributed
delay as follows:

𝑥̇ (𝑡) = − (𝑊
1
+ Δ𝑊

1
(𝑡)) 𝑥 (𝑡 − 𝛿) + (𝑊

2
+ Δ𝑊

2
(𝑡)) 𝑓 (𝑥 (𝑡))

+ (𝑊
3
+ Δ𝑊

3
(𝑡)) 𝑓 (𝑡 − 𝜏 (𝑡))

+ (𝑊
4
+ Δ𝑊

4
(𝑡)) ∫

𝑡

𝑡−𝑟(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ (𝑊
5
+ Δ𝑊

5
(𝑡)) 𝑥̇ (𝑡 − ℎ (𝑡)) ,

(40)

where

𝑊
1
= diag {1.6305, 1.9221, 2.5973, 1.3775} ,

𝑊
2
=

[
[
[

[

−2.5573 −1.3813 1.9574 −1.1398

−1.0226 −0.8845 0.5045 −0.2111

1.0378 1.5532 0.6645 1.1902

−0.3896 0.7079 −0.3398 −2.2543

]
]
]

]

,

𝑊
3
=

[
[
[

[

0.2853 −0.0793 0.4694 0.5354

−0.5955 1.3352 −0.9036 0.5529

−0.1497 −0.6065 −0.1641 −0.2037

−0.4348 −1.3474 −0.8275 −2.2543

]
]
]

]

,

𝑊
4
=

[
[
[

[

0.0265 0.1157 0.0578 −0.0930

0.3186 −0.1363 −0.0859 0.0742

0.2037 −0.2049 −0.0112 0.1475

−0.3161 −0.2469 −0.0736 −2.2543

]
]
]

]

,

𝑊
5
=

[
[
[

[

−0.3054 0.3682 0.1761 −0.0235

−0.0546 −0.2089 −0.0754 0.2668

0.4563 0.0023 0.1440 0.6928

−0.0115 −0.2349 0.2004 0.1574

]
]
]

]

,

𝐹
1
= diag {0, 0, 0, 0} ,

𝐹
2
= diag {1.0275, 0.9960, 0.3223, 0.2113} ,

𝐻 = 0.1 × 𝐼, 𝐸
1
= 0.1 × 𝐼, 𝐸

2
= 0.2 × 𝐼,

𝐸
3
= 0.3 × 𝐼, 𝐸

4
= 0.4 × 𝐼, 𝐸

5
= 0.5 × 𝐼.

(41)

By using Matlab LMI Toolbox, from Theorem 3, it can be
found that the uncertain neural network (1) under Assump-
tion (𝐻1) is robustly asymptotically stable for 0 < 𝛿 = 𝜏

𝑑
=

ℎ
𝑑
< 0.7. To calculate the maximum allowable 𝜏

2
= ℎ = 𝑟 for

different 𝛿 = 𝜏
𝑑
= ℎ
𝑑
in this paper, the numerical results in

Table 1 illustrate the effectiveness of the proposed results.

Example 2. Consider the neural network with time-varying
delay as follows:

𝑥̇ (𝑡) = −𝑊
1
𝑥 (𝑡) + 𝑊

2
𝑓 (𝑥 (𝑡)) + 𝑊

3
𝑓 (𝑡 − 𝜏 (𝑡)) . (42)

𝑊
1
= [

2 0

0 2
] , 𝑊

2
= [

1 1

−1 −1
] , 𝑊

3
= [

0.88 1

1 1
] ,

𝐹
2
= [

0.4 0

0 0.8
] , 𝐹

1
= diag {0, 0} .

(43)

By using Matlab LMI Toolbox, it can be found from
Corollary 9 that the maximum allowable 𝜏

2
can be obtained

to guarantee the stability of neural networkwith time-varying
delay in (42) for different 𝜏

𝑑
. Compared with the previous

results proposed in [28], it is clear that the new stability
condition in Corollary 9 is less conservative than the one in
[28] (see Table 2).

5. Conclusion

In this paper, the problem of stability analysis for neural net-
works of neutral type with time-varying delay in the leakage
term and distributed delay has been studied. By constructing
appropriate Lyapunov-Krasovskii functional and employing
some advanced methods, some novel stability criteria have
been proposed in terms of LMIs, which can be easily solved
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Table 1: Allowable upper bound 𝜏
2
= ℎ = 𝑟 for different 𝛿 = 𝜏

𝑑
= ℎ
𝑑
.

Method 𝜏
1

𝛿 = 𝜏
𝑑
= ℎ
𝑑
= 0.1 𝛿 = 𝜏

𝑑
= ℎ
𝑑
= 0.3 𝛿 = 𝜏

𝑑
= ℎ
𝑑
= 0.5

Theorem 3 𝜏
1
= 0.1 𝜏

2
= ℎ = 𝑟 = 0.2200 𝜏

2
= ℎ = 𝑟 = 0.1904 𝜏

2
= ℎ = 𝑟 = 0.1428

Theorem 3 𝜏
1
= 0.2 𝜏

2
= ℎ = 𝑟 = 0.2951 𝜏

2
= ℎ = 𝑟 = 0.2687 𝜏

2
= ℎ = 𝑟 = 0.2257

Table 2: Allowable upper bound 𝜏
2
for different 𝜏

𝑑
.

Methods 𝜏
1

𝜏
𝑑
= 0.1 𝜏

𝑑
= 0.5 𝜏

𝑑
= 0.9

[28] 𝜏
1
= 1 𝜏

2
= 3.3068 𝜏

2
= 2.5802 𝜏

2
= 2.2736

Corollary 9 𝜏
1
= 1 𝜏

2
= 3.6720 𝜏

2
= 2.6649 𝜏

2
= 2.3779

[28] 𝜏
1
= 2 𝜏

2
= 3.3125 𝜏

2
= 2.7500 𝜏

2
= 2.6468

Corollary 9 𝜏
1
= 2 𝜏

2
= 3.7871 𝜏

2
= 2.9085 𝜏

2
= 2.8008

by standard software. Two examples have been given to
illustrate the effectiveness andmerit of the proposed results. It
should be mentioned that the leakage delay handling method
proposed in this paper can also be used to investigate the
systems with the delay in the leakage term, for example, the
fault-tolerant control systems [47, 48].
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