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This paper is devoted to investigate the tracking control and generalized synchronization of the hyperchaotic Lorenz-Stenflo system
using the tracking model and the feedback control scheme. We suppress the chaos to unstable equilibrium via three feedback
methods, and we achieve three globally generalized synchronization controls. Novel tracking controllers with corresponding
parameter update laws are designed such that the Lorenz-Stenflo systems can be synchronized asymptotically. Moreover, numerical
simulations are presented to demonstrate the effectiveness, through the contrast between the orbits before being stabilized and the
ones after being stabilized.

1. Introduction

Study of chaotic control and generalized synchronization
has received great attention in the past several decades [1–
10]; many hyperchaotic systems have been proposed and
studied in the last decade, for example, a new hyperchaotic
Rössler system [4], the hyperchaotic L system [5], Chua’s
circuit [6], the hyperchaotic Chen system [7, 8], and so
forth. Hyperchaotic system has been proposed for secure
communication and the presence of more than one positive
Lyapunov exponent clearly improves the security of the com-
munication scheme [9–12]. Therefore, hyperchaotic system
generates more complex dynamics than the low-dimensional
chaotic system, which has much wider application than the
low-dimensional chaotic system.

Until now, a variety of approaches have been proposed
for the synchronization of low-dimensional chaotic systems,
including Q-S method [13, 14], active control [15, 16], adap-
tive control [17–24], and time-delay feedback control [25].
Recently, Stenflo [26] presented a new hyperchaotic Lorenz-
Stenflo (LS) system:

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑑𝑤,

̇𝑦 = 𝑥 (𝑐 − 𝑧) − 𝑦,

𝑧̇ = 𝑦𝑥 − 𝑏𝑧,

𝑤̇ = −𝑥 − 𝑎𝑤.

(1)

In (1), 𝑥, 𝑦, 𝑧, and 𝑤 are the state variables of the system
and 𝑎, 𝑏, 𝑐, and 𝑑 are real constant parameters. System (1)
is generated from the originally three-dimensional Lorenz
chaotic system by introducing a new control parameter 𝑏 and
a state variable 𝑤.

In this paper, we will consider chaos control and general-
ized synchronization related to hyperchaotic Lorenz-Stenflo
system. we found that the feedback control achieved in the
low-dimensional system like many other studies of dynamics
in low-dimensional systems. We suppress the hyperchaotic
Lorenz-Stenflo system to unstabilize equilibrium via three
control methods: linear feedback control, speed feedback
control, and doubly-periodic function feedback control. By
designing a nonlinear controller, we achieve the generalized
synchronization of two Lorenz-Stenflo systems up to a scaling
factor. Moreover, numerical simulations are applied to verify
the effectiveness of the obtained controllers.

2. The Hyperchaotic Lorenz-Stenflo System

In the following we would like to consider the hyperchaotic
cases of system (1). When 𝑎 = 1.0, 𝑏 = 0.7, 𝑐 = 26, and
𝑑 = 1.5, system (1) exhibits hyperchaotic behavior. Simulated
results are depicted in Figures 1 and 2. Figures 1(a)–1(d) depict
the projection of the chaotic attractor in different spaces;
Figures 2(a)–2(d) depict the states of system (1) before being
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Figure 1: Chaotic attractor in different spaces: (a) (𝑥, 𝑦, 𝑧), (b) (𝑥, 𝑦, 𝑤), (c) (𝑥, 𝑤, 𝑧), and (d) (𝑦, 𝑤, 𝑧).

stabilized, respectively. The volume of the elements in the
phase space 𝛿𝑋(𝑡) = 𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑤 and the divergence of flow
(1) are defined by

∇𝑋 =

𝜕𝑋

𝜕𝑥

+

𝜕𝑋

𝜕𝑦

+

𝜕𝑋

𝜕𝑧

+

𝜕𝑋

𝜕𝑤

= − (2𝑎 + 𝑏 + 1) , (2)

where 𝑋 = (𝑥̇, ̇𝑦, 𝑧̇, 𝑤̇) = [𝑎(𝑦 − 𝑥) + 𝑑𝑤, 𝑥(𝑐 − 𝑧) − 𝑦, 𝑦𝑥 −
𝑏𝑧, −𝑥 − 𝑎𝑤].

System (1) is dissipative when 2𝑎 + 𝑏 + 1 > 0. Moreover,
an exponential contraction rate is given by

𝑑𝑋 (𝑡)

𝑑𝑡

= − (2𝑎 + 𝑏 + 1)𝑋 (𝑡) .
(3)

It is clear that 𝑋(𝑡) = 𝑋
0
𝑒

−(2𝑎+𝑏+1)𝑡, which implies that the
solutions of system (1) are bounded as 𝑡− > +∞. It is easy to
find the three equilibria 𝐸

1
(0, 0, 0, 0),

𝐸

2
(

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑑 + 𝑎

2
,

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑎

2
,

(𝑐 − 1) 𝑎

2
− 𝑑

𝑎

2
,

−

√
(𝑑 + 𝑎

2
) 𝑏 (𝑎

2
𝑐 − 𝑎

2
− 𝑑)

(𝑑 + 𝑎

2
) 𝑎

) ,

𝐸

3
(−

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑑 + 𝑎

2
,

−

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑎

2
,

(𝑐 − 1) 𝑎

2
− 𝑑

𝑎

2
,

√
(𝑑 + 𝑎

2
) 𝑏 (𝑎

2
𝑐 − 𝑎

2
− 𝑑)

(𝑑 + 𝑎

2
) 𝑎

) .

(4)

To determine the stability of the equilibria point 𝐸
1
(0,

0, 0, 0), evaluating the Jacobian matrix of system (1) at 𝐸
1

yields

𝐽|𝐸
1

= (

−𝑎 𝑎 0 𝑑

𝑐 −1 0 0

0 0 −𝑏 0

−1 0 0 −𝑎

) . (5)
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Figure 2: The states of system (1) before being stabilized: (a) 𝑥-𝑡, (b) 𝑦-𝑡, (c) 𝑧-𝑡, and (d) 𝑤-𝑡.

If 𝑎 = 1.0, 𝑏 = 0.7, 𝑐 = 26, and 𝑑 = 1.5, the four eigenvalues
of the characteristic polynomial of Jacobian matrix (5) are

𝜆

1
= 3.94975, 𝜆

2
= −5.9497, 𝜆

3
= −1, 𝜆

4
= −0.7.

(6)

Thus, the equilibria 𝐸
1
is a saddle point of the hyperchaotic

system (1). The Jacobian matrix of system (1) at 𝐸
2
yields

𝐽|𝐸
2

=

(

(

(

(

(

(

(

−𝑎 𝑎 0 𝑑

𝑐 −1

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑑 + 𝑎

2
0

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑎

2

√
((𝑐 − 1) 𝑎

2
− 𝑑) 𝑏 (𝑑 + 𝑎

2
)

𝑑 + 𝑎

2
−𝑏 0

−1 0 0 −𝑎

)

)

)

)

)

)

)

. (7)

If 𝑎 = 1.0, 𝑏 = 0.7, 𝑐 = 26, and 𝑑 = 1.5, the four eigenvalues
of the characteristic polynomial of Jacobian matrix (7) are

𝜆

1
= 4.8887, 𝜆

2
= −6.3032,

𝜆

3
= −1.1427 + 0.5438𝑖, 𝜆

4
= −1.1427 − 0.5438𝑖.

(8)

Thus, the equilibria 𝐸
2
are unstable, and 𝐸

3
is similar.
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Figure 3: The states of system (9): (a) 𝑥-𝑡, (b) 𝑦-𝑡, (c) 𝑧-𝑡, (d) 𝑤-𝑡.

3. The Hyperchaotic Control for
Lorenz-Stenflo System

In this section, we control the hyperchaotic system (1)
such that all trajections converge to the equilibrium point
(0, 0, 0, 0). The controlled hyperchaotic Lorenz-Stenflo sys-
tem is given by

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑑𝑤 + 𝑢

1
,

̇𝑦 = 𝑥 (𝑐 − 𝑧) − 𝑦 + 𝑢

2
,

𝑧̇ = 𝑦𝑥 − 𝑏𝑧 + 𝑢

3
,

𝑤̇ = −𝑥 − 𝑎𝑤 + 𝑢

4
,

(9)

where 𝑢
1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
are external control inputs which will

be suitably derived from the trajectory of the chaotic system
(1), specified by (𝑥, 𝑦, 𝑧, 𝑤) to the equilibrium (0, 0, 0) of
uncontrolled system 𝑢

𝑖
= 0 (𝑖 = 1, 2, 3, 4).

3.1. Linear Function Feedback Control. For the modified
hyperchaotic Lorenz-Stenflo system (9), if one of the follow-
ing feedback controllers 𝑢

𝑖
(𝑖 = 1, 2, 3, 4) is chosen for the

system (9), then 𝑢
1
= −𝑘

1
𝑥

1
, 𝑢
2
= −𝑘

2
𝑦, 𝑢
3
= −𝑘

3
𝑧,

𝑢

4
= −𝑘

4
𝑤, andwhere 𝑘

𝑖
’s are feedback coefficients.Therefore

controlled system (9) is rewritten as

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑑𝑤 − 𝑘

1
𝑥,

̇𝑦 = 𝑥 (𝑐 − 𝑧) − 𝑦 − 𝑘

2
𝑦,

𝑧̇ = 𝑦𝑥 − 𝑏𝑧 − 𝑘

3
𝑧,

𝑤̇ = −𝑥 − 𝑎𝑤 − 𝑘

4
𝑤

(10)

whose Jacobian matrix is

𝐽 = (

−𝑎 − 𝑘

1
𝑎 0 𝑑

𝑐 −1 − 𝑘

2
0 0

0 0 −𝑏 − 𝑘

3
0

−1 0 0 −𝑎 − 𝑘

4

). (11)

The characteristic equation of 𝐽 is

𝜆

4
+ (−𝐵 − 𝐴 − 𝐷 − 𝐶) 𝜆

3

+ (𝐶𝐷 + 𝐴𝐵 + 𝐵𝐷 + 𝐵𝐶 − 𝑐𝑎 + 𝐴𝐷 + 𝐴𝐶 + 𝑑) 𝜆

2
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Figure 4: The states of system (19): (a) 𝑥-𝑡, (b) 𝑦-𝑡, (c) 𝑧-𝑡, and (d) 𝑤-𝑡.

+ (−𝐴𝐵𝐷 − 𝐴𝐵𝐶 − 𝐵𝐶𝐷+𝑐𝑎𝐷

+𝑐𝑎𝐶 − 𝐴𝐶𝐷 − 𝑑𝐶 − 𝑑𝐵) 𝜆 + 𝐸 = 0,

(12)

where 𝐴 = −𝑎 − 𝑘
1
, 𝐵 = −1 − 𝑘

2
, 𝐶 = −𝑏 − 𝑘

3
, 𝐷 = −𝑎 − 𝑘

4
,

and 𝐸 = 𝐴𝐵𝐶𝐷 − 𝑐𝑎𝐶𝐷 + 𝑑𝐵𝐶.
The abbreviated characteristic equation is

𝜆

4
+ 𝑅

1
𝜆

3
+ 𝑅

2
𝜆

2
+ 𝑅

3
𝜆 + 𝐸 = 0, (13)

where 𝑅
1
= −𝐵−𝐴−𝐷−𝐶, 𝑅

2
= 𝐶𝐷+𝐴𝐵+𝐵𝐷+𝐵𝐶− 𝑐𝑎+

𝐴𝐷+𝐴𝐶+ 𝑑, and 𝑅
3
= −𝐴𝐵𝐷−𝐴𝐵𝐶−𝐵𝐶𝐷+ 𝑐𝑎𝐷 + 𝑐𝑎𝐶 −

𝐴𝐶𝐷 − 𝑑𝐶 − 𝑑𝐵, 𝑅
4
= 𝐸.

According to the Routh-Hurwitz criterion, constraints
are imposed as follows:

𝐻

1
= 𝑅

1
= −𝐵 − 𝐴 − 𝐷 − 𝐶 > 0,

𝐻

2
=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

1
𝑅

3

1 𝑅

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= 𝑅

1
𝑅

2
− 𝑅

3

= (−𝐴 − 𝐶 − 𝐵)𝐷

2

+ ((−2𝐴 − 2𝐶) 𝐵 − 𝐵

2
− 𝐴

2
− 𝐶

2
− 𝑑 − 2𝐴𝐶)𝐷

+ (−𝐴 − 𝐶) 𝐵

2
− 𝐴

2
𝐶 + (−2𝐴𝐶 + 𝑐𝑎 − 𝐴

2
− 𝐶

2
) 𝐵

+ (−𝑑 − 𝐶

2
+ 𝑐𝑎)𝐴 > 0,

𝐻

3
=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

1
𝑅

3
0

1 𝑅

2
𝐸

0 𝑅

1
𝑅

3

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= 𝑅

1
𝑅

2
𝑅

3
− 𝐸𝑅

2

1
− 𝑅

2

3
> 0,

𝐻

4
=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑅

1
𝑅

3
0 0

1 𝑅

2
𝑅

4
0

0 𝑅

1
𝑅

3
0

0 1 𝑅

2
𝑅

4

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

= 𝑅

1
𝑅

2
𝑅

3
𝑅

4
− 𝑅

2

1
𝑅

2

4
− 𝑅

2

3
𝑅

4
> 0.

(14)

This characteristic polynomial has four roots, all with
negative real roots, under the condition of 𝐻

1
> 0, 𝐻

2
> 0,

𝐻

3
> 0, and𝐻

4
> 0. Therefore, the equilibria (0,0,0,0) are the

stablemanifold𝑊𝑠 and the controlled chaotic Lorenz-Stenflo
system (9) is asymptotically stable. The concrete dynamics of
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Figure 5: The states of system (25): (a) 𝑥-𝑡, (b) 𝑦-𝑡, (c) 𝑧-𝑡, and (d) 𝑤-𝑡.

(9) can be demonstrated by Proposition 1, while the Maple
program is demonstrated in Appendix A.

Proposition 1. If one chooses the control coefficients 𝑘
1
= 8,

𝑘

2
= 4, 𝑘

3
= 3, and 𝑘

4
= 2 and the parameters 𝑎 = 1.0,

𝑏 = 0.7, 𝑐 = 26, and 𝑑 = 1.5, the controlled chaotic Lorenz-
Stenflo system (9) is asymptotically stable at the equilibrium
(0, 0, 0, 0).

Proof. When the parameterswere selected by the above value,
we obtain the Jacobian matrix

𝐽 = (

−9.0 1.0 0 1.5

26 −5 0 0

0 0 −3.7 0

−1 0 0 −3.0

) . (15)

The characteristic equation of 𝐽 is given by

𝜆

4
+ 20

7

10

𝜆

3
+ 125

2

5

𝜆

2
+ 295

3

4

𝜆 + 238

13

20

= 0. (16)

According to Appendix A, we easily obtain

𝐻

1
= 20

7

10

> 0, 𝐻

2
= 2300 > 0,

𝐻

3
= 578 > 0, 𝐻

4
=

69

500

> 0,

(17)

which yields the eigenvalues via the compute simulation

𝜆

1
= −12.36844706, 𝜆

2
= −1.931149367,

𝜆

3
= −2.700403573, 𝜆

4
= −3.70000.

(18)

Thus the zero solution of system (9) is exponentially stable,
Proposition 1 is proved.

Numerical simulations are used to investigate the con-
trolled chaotic Lorenz-Stenflo system (1) using the fourth-
order Runge-Kutta scheme with time step 0.01. The param-
eters and the corresponding feedback coefficients are given
by the above value. The initial values are taken as [𝑥(0) =
1, 𝑦(0) = 0.7, 𝑧(0) = 20, 𝑤(0) = 0.1]. The behaviors of
the states (𝑥, 𝑦, 𝑧, 𝑤) of the controlled chaotic Lorenz-Stenflo
system (1) with time are displayed in Figures 3(a)–3(d).
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Figure 6:The solutions of the master and slave systems without active control law. (a) Signals 𝑥
1
(the dashed line) and 𝑥

2
(the solid line). (b)

Signals 𝑦
1
(the dashed line) and 𝑦

2
(the solid line). (c) Signals 𝑧

1
(the dashed line) and 𝑧

2
(the solid line). (d) Signals𝑤

1
(the dashed line) and

𝑤

2
(the solid line).

3.2. Speed Function FeedbackControl. Suppose that𝑢
1
= 𝑢

3
=

0; 𝑢
2
and 𝑢

4
are of the speed forms 𝑢

2
= 𝑘

2
(−𝑏𝑧 + 𝑥𝑦) and

𝑢

4
= −𝑘

4
[𝑎(𝑦 − 𝑥) + 𝑑𝑤], where 𝑘

2
and 𝑘
4
are speed feedback

coefficients. Therefore the controlled chaotic system (9) is
rewritten as

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑑𝑤,

̇𝑦 = 𝑥 (𝑐 − 𝑧) − 𝑦 + 𝑘2
(−𝑏𝑧 + 𝑥𝑦) ,

𝑧̇ = 𝑦𝑥 − 𝑏𝑧,

𝑤̇ = −𝑥 − 𝑎𝑤 − 𝑘

4
[𝑎 (𝑦 − 𝑥) + 𝑑𝑤] .

(19)

The Jacobian matrix is

𝐽 = (

−𝑎 𝑎 0 𝑑

𝑐 −1 −𝑘

2
𝑏 0

0 0 −𝑏 0

−1 + 𝑘

4
𝑎 −𝑘

4
𝑎 0 −𝑎 − 𝑘

4
𝑑

) . (20)

The characteristic equation of 𝐽 is

𝜆

4
+ (1 − 𝑘

1
+ 2𝑎 + 𝑏) 𝜆

3

+ (2𝑎𝑏 − 𝑘

1
𝑏 − 𝑘

1
𝑎 + 2𝑎 − 𝑘

1
+ 𝑏 + 𝑑 + 𝑎

2
− 𝑐𝑎) 𝜆

2

+ (−𝑐𝑎

2
− 𝑐𝑎𝑏 + 2𝑎𝑏 + 𝑑𝑏 + 𝑎

2
𝑏 − 𝑘

1
𝑎

+𝑎

2
− 𝑘

1
𝑏 − 𝑘

1
𝑏𝑎 + 𝑑) 𝜆

− 𝑐𝑎

2
𝑏 − 𝑘

1
𝑏𝑎 + 𝑎

2
𝑏 + 𝑑𝑏 = 0.

(21)

Proposition 2. If one chooses the control coefficients: 𝑘
2
= 9,

𝑘

4
= −1 and the parameters 𝑎 = 1.0, 𝑏 = 0.7, 𝑐 = 26, and
𝑑 = 1.5, the controlled chaotic Lorenz-Stenflo system (9) is
asymptotically stable at the equilibrium (0, 0, 0, 0).

Similar to Proposition 1, the proof of Proposition 2 is
straightforward and thus is omitted.

In the following, we give the eigenvalues via the compute
simulation. When the parameters were selected by the above
value, we obtain the Jacobian matrix

𝐽 = (

−1.0 1.0 0 1.5

26 −1 −6.3 0

0 0 −0.7 0

−2.0 1.0 0 0.5

) . (22)
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Figure 7:The solutions of the drive and response systems with control law. (a) Signals 𝑥
1
(the dashed line) and 𝑥

2
(the solid line). (b) Signals

𝑦

1
(the dashed line) and 𝑦

2
(the solid line). (c) Signals 𝑧

1
(the dashed line) and 𝑧

2
(the solid line). (d) Signals𝑤

1
(the dashed line) and𝑤

2
(the

solid line).

The characteristic equation of 𝐽 changes the following:

𝜆

4
+ 2.2𝜆

3
− 21.95𝜆

2
− 39.6𝜆 − 16.45 = 0. (23)

The eigenvalues of the above equation are

𝜆

1
= −5.10412, 𝜆

2
= −1,

𝜆

3
= −0.70000, 𝜆

4
= −4.60412.

(24)

Numerical simulations are used to investigate the controlled
chaotic Lorenz-Stenflo system (20) using the fourth-order
Runge-Kutta scheme with time step 0.01. The initial values
are taken as [𝑥(0) = 1, 𝑦(0) = 0.7, 𝑧(0) = 20, 𝑤(0) = 0.1]. The
behaviors of the states (𝑥, 𝑦, 𝑧, 𝑤) of the controlled chaotic
Lorenz-Stenflo system (20) with time are displayed in Figures
4(a)–4(d).

3.3.The Doubly Periodic Function Feedback Control. Suppose
that 𝑢

2
= 0, 𝑢

3
= 0, and 𝑢

4
= 0; 𝑢

1
is of the doubly periodic

function 𝑢
1
= 𝑘

1
𝑐𝑛(𝑥,𝑚), where 𝑘

1
is speed feedback

coefficients and 0 < 𝑚 < 1 is the modulus of Jacobi

elliptic function. Therefore the controlled chaotic system (9)
is rewritten as

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑑𝑤 + 𝑘

1
𝑐𝑛 (𝑥,𝑚) ,

̇𝑦 = 𝑥 (𝑐 − 𝑧) − 𝑦,

𝑧̇ = 𝑦𝑥 − 𝑏𝑧,

𝑤̇ = −𝑥 − 𝑎𝑤.

(25)

The Jacobian matrix is

𝐽 = (

−𝑎 + 𝑘

1
𝑎 0 𝑑

𝑐 −1 0 0

−1 0 0 −𝑎

) . (26)

The characteristic equation of 𝐽 is

𝜆

4
+ (1 − 𝑘

1
+ 2𝑎 + 𝑏) 𝜆

3

+ (2𝑎𝑏 − 𝑘

1
𝑏 − 𝑘

1
𝑎 + 2𝑎 − 𝑘

1
+ 𝑏

+𝑑 + 𝑎

2
− 𝑐𝑎) 𝜆

2
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Figure 8: The dynamics of synchronization errors. (a) Signal 𝑒
1
, (b) signal 𝑒

2
, (c) signal 𝑒

3
and (d) signal 𝑒

4
.

+ (−𝑐𝑎

2
− 𝑐𝑎𝑏 + 2𝑎𝑏 + 𝑑𝑏 + 𝑎

2
𝑏 − 𝑘

1
𝑎

+𝑎

2
− 𝑘

1
𝑏 − 𝑘

1
𝑏𝑎 + 𝑑) 𝜆

− 𝑐𝑎

2
𝑏 − 𝑘

1
𝑏𝑎 + 𝑎

2
𝑏 + 𝑑𝑏 = 0.

(27)

Proposition 3. If one chooses the control coefficients 𝑘
1
= −30,

𝑚 = 0.3 and the parameters 𝑎 = 1.0, 𝑏 = 0.7, 𝑐 = 26, and
𝑑 = 1.5, the controlled chaotic Lorenz-Stenflo system (9) is
asymptotically stable at the equilibrium (0, 0, 0, 0).

The proof of Proposition 3 is the same as Proposition 1,
which is straightforward and thus is omitted.

In the following, we give the eigenvalues via the compute
simulation. When the parameters were selected by the above
value, we obtain the Jacobian matrix

𝐽 = (

−31.0 1.0 0 1.5

26 −1 0 0

0 0 −0.7 0

−1.0 0 0 −1.0

) . (28)

The characteristic equation of 𝐽 changes the following:

𝜆

4
+ 33.7𝜆

3
+ 61.60𝜆

2
+ 33.450𝜆 + 4.55 = 0. (29)

The eigenvalues of the above equation are

𝜆

1
= −31.795569, 𝜆

2
= −0.20443,

𝜆

3
= −1, 𝜆

4
= −0.70000.

(30)

Thus the zero solution of system (9) is exponentially stable;
Proposition 3 is proved.

Numerical simulations are used to investigate the con-
trolled chaotic Lorenz-Stenflo system (25) using the fourth-
order Runge-Kutta scheme with time step 0.01. The initial
values are taken as [𝑥(0) = 1, 𝑦(0) = 0.7, 𝑧(0) = 20, 𝑤(0) =
0.1]. The behaviors of the states (𝑥, 𝑦, 𝑧, 𝑤) of the controlled
chaotic Lorenz-Stenflo system (25) with time are displayed in
Figures 5(a)–5(d).
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Figure 9: The projection of the synchronized attractors in different spaces: (a) (𝑥, 𝑦, 𝑧), (b) (𝑥, 𝑦, 𝑤), (c) (𝑥, 𝑤, 𝑧), and (d) (𝑦, 𝑤, 𝑧). The solid
line denotes and the drive system; the dashed line denotes respond system synchronized.

4. Globally Exponential Hyperchaotic
Projective Synchronization Control

Consider two chaotic systems given by

𝑥̇

𝑚
= 𝑓 (𝑥

𝑚
, 𝑡) , (31)

̇𝑦

𝑠
= 𝑔 (𝑦

𝑠
, 𝑡) + 𝑢 (𝑥

𝑚
, 𝑦

𝑠
, 𝑡) , (32)

where 𝑥
𝑚
= (𝑥

1𝑚
, 𝑥

2𝑚
, . . . 𝑥

𝑛𝑚
)

𝑇, 𝑦
𝑠
= (𝑦

1𝑠
, 𝑦

2𝑠
, . . . 𝑦

𝑛𝑠
)

𝑇,
𝑓, 𝑔 ∈ 𝐶

𝑟
[𝑅

+
× 𝑅

𝑛
, 𝑅

𝑛
], 𝑢 ∈ 𝐶𝑟[𝑅

+
× 𝑅

𝑛
× 𝑅

𝑛
, 𝑅

𝑛
], and

𝑟 ≥ 1. 𝑅

+
comprises the set of non negative real numbers.

Assume that (31) is themaster system, (32) is the slave system,
and 𝑢(𝑥

𝑚
, 𝑦

𝑠
, 𝑡) is the control vector. Let the error state be

𝑒 (𝑡) = [𝑒

1
(𝑡) , 𝑒

2
(𝑡) . . . , 𝑒

𝑛
(𝑡)]

𝑇

= [𝑥

1𝑚
− (𝑎

11
𝑦

1𝑠
+ 𝑎

12
) 𝑦

1𝑠
, . . . , 𝑥

𝑛𝑚

− (𝑎

𝑛1
𝑦

𝑛𝑠
+ 𝑎

𝑛2
) 𝑦

1𝑠
] .

(33)

Then the error dynamics of 𝑒(𝑡) are defined by

̇𝑒 (𝑡) = 𝑓 (𝑥

𝑚
, 𝑡) − 𝑔 (𝑦

𝑠
, 𝑡) − 𝑢 (𝑥

𝑚
, 𝑦

𝑠
, 𝑡) . (34)

The slave and master systems are said to be exponential,
hyperchaotic, projective and synchronized if, for all 𝑥

𝑚
(𝑡

0
),

𝑦

𝑠
(𝑡

0
) ∈ 𝑅

𝑛, and 𝑖 ∈ 𝑅𝑛, 󵄩󵄩󵄩
󵄩

𝑥

𝑚
− (𝑎

𝑖1
𝑦

𝑠
+ 𝑎

𝑖2
)𝑦

𝑠

󵄩

󵄩

󵄩

󵄩

→ 0 as
𝑡 → ∞.

Lemma 4 (see [27, 28]). The zero solution of the error
dynamical system (34) is globally and exponentially stable; the
master-slave systems (31) and (32) are globally and exponen-
tially projective, synchronized, if there exists a positive definite
quadratic polynomial 𝑉 = (𝑒

1
, 𝑒

2
, . . . 𝑒

𝑛
)𝑃(𝑒

1
, 𝑒

2
, . . . 𝑒

𝑛
)

𝑇 such
that 𝑑𝑉/𝑑𝑡 = (𝑒

1
, 𝑒

2
, . . . 𝑒

𝑛
)𝑄(𝑒

1
, 𝑒

2
, . . . 𝑒

𝑛
)

𝑇. Moreover, the
following negative Lyapunov exponent estimation for the error
dynamical system (34) holds:
𝑛

∑

𝑖=1

𝑒

2

𝑖
(𝑡) ≤

𝜆max (𝑃)

𝜆min (𝑃)

𝑛

∑

𝑖=1

𝑒

2

𝑖
(0) exp [−

𝜆max (𝑄)

𝜆min (𝑃)
(𝑡)] , (35)

where 𝑃 = 𝑃𝑇 ∈ 𝑅𝑛×𝑛 and 𝑄 = 𝑄𝑇 ∈ 𝑅𝑛×𝑛 are both positive
definite matrices, 𝜆max(𝑃) and 𝜆min(𝑃) stand for the minimum
and maximum eigenvalues of the matrix 𝑃, respectively, and
𝜆min(𝑄) denotes the minimum eigenvalue of the matrix 𝑄.

In the following, we consider the hyperchaotic system (1)
as a master system:

𝑥̇

𝑚
= 𝑎 (𝑦

𝑚
− 𝑥

𝑚
) + 𝑑𝑤

𝑚
,

̇𝑦

𝑚
= 𝑥

𝑚
(𝑐 − 𝑧

𝑚
) − 𝑦

𝑚
,

𝑧̇

𝑚
= 𝑦

𝑚
𝑥

𝑚
− 𝑏𝑧

𝑚
,

𝑤̇

𝑚
= −𝑥

𝑚
− 𝑎𝑤

𝑚

(36)
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Figure 10: Simulated phase portraits of the chaotic system (1), projected on (a) the 𝑥-𝑦 plane, (b) the 𝑥-𝑧 plane, (c) the 𝑥-𝑤 plane, (d) the
𝑦-𝑧 plane, (e) the 𝑦-𝑤 plane, and (f) the 𝑧-𝑤 plane.

and the system related to (36), given by

𝑥̇

𝑠
= 𝑎 (𝑦

𝑠
− 𝑥

𝑠
) + 𝑑𝑤

𝑠
+ 𝑢

1
,

̇𝑦

𝑠
= 𝑥

𝑠
(𝑐 − 𝑧

𝑠
) − 𝑦

𝑠
+ 𝑢

2
,

𝑧̇

𝑠
= 𝑦

𝑠
𝑥

𝑠
− 𝑏𝑧

𝑠
+ 𝑢

3
,

𝑤̇

𝑠
= −𝑥

𝑠
− 𝑎𝑤

𝑠
+ 𝑢

4
,

(37)

as a slave system, where the subscripts “𝑚” and “𝑠” stand for
themaster system and slave system, respectively. Let the error
state be

𝑒 (𝑡) = (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
)

𝑇

= [𝑥

𝑚
− (𝑎

11
𝑥

𝑠
+ 𝑎

12
) 𝑥

𝑠
,
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Figure 11: The solutions of the master and slave systems with control law. (a) Signals 𝑥
1
(the dashed line) and 𝑥

2
(the solid line). (b) Signals

𝑦

1
(the dashed line) and 𝑦

2
(the solid line). (c) Signals 𝑧

1
(the dashed line) and 𝑧

2
(the solid line). (d) Signals𝑤

1
(the dashed line) and𝑤

2
(the

solid line).

𝑦

𝑚
− (𝑎

21
𝑦

𝑠
+ 𝑎

22
) 𝑦

𝑠
,

𝑧

𝑚
− (𝑎

31
𝑧

𝑠
+ 𝑎

32
) 𝑧

𝑠
,

𝑤

𝑚
− (𝑎

41
𝑤

𝑠
+ 𝑎

42
) 𝑤

𝑠
]

𝑇
.

(38)

Then the derivative of 𝑒(𝑡) along the trajectories of (36) and
(37), we obtain the error system:

̇𝑒

1
= 𝑎 (𝑦

𝑚
− 𝑥

𝑚
) + 𝑑𝑤

𝑚
− 2𝑎

11
𝑥

𝑠

× [𝑎 (𝑦

𝑠
− 𝑥

𝑠
) + 𝑏𝑤

𝑠
+ 𝑢

1
]

− [𝑎 (𝑦

𝑠
− 𝑥

𝑠
) + 𝑏𝑤

𝑠
+ 𝑢

1
] 𝑎

12
,

̇𝑒

2
= (𝑐 − 𝑧

𝑚
) 𝑥

𝑚
− 𝑦

𝑚
− 2𝑎

21
𝑦

𝑠

× [(𝑐 − 𝑧

𝑠
) 𝑥

𝑠
− 𝑦

𝑠
+ 𝑢

2
]

− [(𝑐 − 𝑧

𝑠
) 𝑥

𝑠
− 𝑦

𝑠
+ 𝑢

2
] 𝑎

22
,

̇𝑒

3
= − 𝑏𝑧

𝑚
+ 𝑥

𝑚
𝑦

𝑚
− 2𝑎

31
𝑧

𝑠

× (−𝑑𝑧

𝑠
+ 𝑥

𝑠
𝑦

𝑠
+ 𝑢

3
)

− (−𝑑𝑧

𝑠
+ 𝑥

𝑠
𝑦

𝑠
+ 𝑢

3
) 𝑎

32
,

̇𝑒

4
= − 𝑥

𝑚
− 𝑎𝑤

𝑚
− 2𝑎

41
𝑤

𝑠
(−𝑥

𝑠
− 𝑎𝑤

𝑠
+ 𝑢

4
)

− (−𝑥

𝑠
− 𝑎𝑤

𝑠
+ 𝑢

4
) 𝑎

42
.

(39)

To demonstrate the synchronization control between systems
(36) and (37), we have the following cases based on [29–44].

Case 1 (modified projective synchronization control).

Theorem I. When [𝑎
11
, 𝑎

12
, 𝑎

21
, 𝑎

22
, 𝑎

31
, 𝑎

32
, 𝑎

41
, 𝑎

42
] = [0,𝑚,

0,𝑚, 0,𝑚, 0,𝑚], 𝑎 > 0 and 𝑏 > 0. For the hyperchaotic system
(1), if one of the following families of feedback controllers 𝑢

𝑖
(𝑖 =

1, 2, 3, 4) is given for the slave system (36):

𝑢

1
=

(𝑑 − 𝑏)𝑚𝑤

2
− V
1

𝑚

,

𝑢

2
=

(1 − 𝑚)𝑚𝑥2
𝑧

2
− V
2

𝑚

,

𝑢

3
=

(𝑚𝑥

2
𝑦

2
− 𝑏𝑧

2
+ 𝑑𝑧

2
− 𝑥

2
𝑦

2
)𝑚 − V

3

𝑚

,

𝑢

4
=

−𝑥

1
+ 𝑚𝑥

2
− V
4

𝑚

,

(40)
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Figure 12: The dynamics of synchronization errors. (a) Signal 𝑒
1
, (b) signal 𝑒

2
, (c) signal 𝑒

3
, and (d) signal 𝑒

4
.

there exist many possible choices for V
1
, V
2
, V
3
, and V

4
. Then the

zero solution of the error dynamical system (39) is globally and
exponentially stable, and thus globally exponential modified
projective synchronization can be achieved.

The concrete proof of Theorem I can be demonstrated by
Appendix B. In the following, tracking numerical simulations
are used to solve differential equations (36), (37), and (42)
with Runge-Kutta integration method. The initial values of
the drive system and response system are 𝑥

1
(0) = 0.1, 𝑦

1
(0) =

0.1, 𝑧
1
(0) = 20, and 𝑤

1
(0) = 0.1 and 𝑥

2
(0) = 0.2, 𝑦

2
(0) = 0.2,

𝑧

2
(0) = 21, and 𝑤

2
(0) = 0.2 respectively. The parameters are

chosen to be 𝑚 = −2, 𝑎 = 1.0, 𝑏 = 0.7, 𝑑 = 1.5, and 𝑐 =
26 so that the Lorenz-Stenflo hyperchaotic system exhibits
a chaotic behavior if no control is applied. The numerical
simulation of the master and the slave systems without active
synchronization control law is shown in Figures 6(a)–6(d).
The diagram of the solutions of the master and the slave
systems with feedback control law is presented in Figures
7(a)–7(d). The synchronization errors are shown in Figures
8(a)–8(d). Figures 9(a)–9(d) depicts the projection of the

synchronized attractors. Figures 10(a)–10(f) depicts the phase
portraits of the synchronized attractors.

Case 2 (generalized projective synchronization control).

Theorem II. When [𝑎
11
, 𝑎

12
, 𝑎

21
, 𝑎

22
, 𝑎

31
, 𝑎

32
, 𝑎

41
, 𝑎

42
] = [0,

𝑚

1
, 0, 𝑚

2
, 0, 𝑚

3
, 0, 𝑚

4
], 𝑚
𝑖
’s are different, 𝑎 > 0 and 𝑏 > 0.

For the hyperchaotic system (1), if one of the following families
of feedback controllers 𝑢

𝑖
(𝑖 = 1, 2, 3, 4) is given for the slave

system (36):

𝑢

1
=

(𝑚

2
− 𝑚

1
) 𝑎𝑦

2
+ (𝑑𝑚

4
− 𝑚

1
𝑏)𝑤

2
− V
1

𝑚

1

,

𝑢

2
=

(𝑚

1
− 𝑚

2
) 𝑐𝑥

2
+ (𝑚

2
− 𝑚

1
𝑚

3
) 𝑐𝑥

2
− V
2

𝑚

2

,

𝑢

3
=

(𝑑 − 𝑏)𝑚

3
𝑧

2
+ (𝑚

1
𝑚

2
− 𝑚

3
) 𝑐𝑥

2
− V
3

𝑚

3

,

𝑢

4
=

−𝑥

1
+ 𝑚

4
𝑥

2
− V
4

𝑚

4

,

(41)
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Figure 13: The function projection of the synchronized attractors in different spaces: (a) (𝑥, 𝑦, 𝑧), (b) (𝑥, 𝑦, 𝑤), (c) (𝑥, 𝑤, 𝑧), and (d) (𝑦, 𝑤, 𝑧).
The solid line denotes the drive system; the dashed line denotes respond system synchronized.

there exist many possible choices for V
1
, V
2
, V
3
, and V

4
. Then the

zero solution of the error dynamical system (39) is globally and
exponentially stable, and thus globally exponential generalized
projective synchronization.

The concrete proof ofTheorem II can be demonstrated by
Appendix B. In the following, tracking numerical simulations
are used to solve differential equations (36), (37), and (39)
with Runge-Kutta integration method. The parameters are
chosen to be 𝑚

1
= 2, 𝑚

2
= 3, 𝑚

3
= 3, and 𝑚

4
= 5. The

initial values and others parameters are the same as the above
cases so that the Lorenz-Stenflo hyperchaotic system exhibits
a chaotic behavior if no control is applied. The diagram
of the solutions of the master and the slave systems with
feedback control law is presented in Figures 11(a)–11(d). The
synchronization errors are shown in Figures 12(a)–12(d).

Case 3 (function synchronization control [45–58]).

Theorem III. When 𝑓
1
= 𝑎

11
𝑥

2
+ 𝑎

12
, 𝑓
2
= 𝑎

21
𝑦

2
+ 𝑎

22
,

𝑓

3
= 𝑎

31
𝑧

2
+ 𝑎

32
, 𝑓
4
= 𝑎

41
𝑤

2
+ 𝑎

42
, 𝑎
𝑖1
̸= 0, 𝑎 > 0, 𝑏 > 0.

For the hyperchaotic system (1), if one of the following families
of feedback controllers 𝑢

𝑖
(𝑖 = 1, 2, 3, 4) is given for the slave

system (36):

𝑢

1
=

(𝑓

2
− 𝑓

1
) 𝑎𝑦

2
+ (𝑑𝑓

4
− 𝑓

1
𝑏)𝑤

2
− 𝑘

1
𝑒

1

𝑓

1

,

𝑢

2
=

(𝑓

1
− 𝑓

2
) 𝑐𝑥

2
+ (𝑓

2
− 𝑓

1
𝑓

3
) 𝑐𝑥

2
− 𝑘

2
𝑒

2

𝑓

2

,

𝑢

3
=

(𝑑 − 𝑏) 𝑓

3
𝑧

2
+ (𝑓

1
𝑓

2
− 𝑓

3
) 𝑐𝑥

2
− 𝑘

3
𝑒

3

𝑓

3

,

𝑢

4
=

−𝑥

1
+ 𝑓

4
𝑥

2
− 𝑘

4
𝑒

4

𝑓

4

,

(42)

where 𝑘
1
> 0, 𝑘

2
> 0, 𝑘

3
> 0, and 𝑘

4
> 0, then the zero solution

of the error dynamical system (39) is globally stable, and thus
global function, projective synchronization occurs between the
master systems (36) and (37).

The concrete Proof of Theorem III can be demonstrated
by Appendix B. In the following, tracking numerical simula-
tions are used to solve differential equations (36), (37), and
(39) with Runge-Kutta integration method.The initial values
and the parameters are the same as the above cases so that
the Lorenz-Stenflo hyperchaotic system exhibits a chaotic
behavior if no control is applied.The diagram of the solutions



Abstract and Applied Analysis 15

0

0 5 10 15 20
t

−0.05

−0.15

−0.1

−0.2

−0.25

−0.3

e 1

(a)

0 5 10 15 20

0

t

−0.4

−0.2

−0.6

−0.8

−1

e 2

(b)

0 5 10 15 20
t

0

−0.4

−0.2

−0.6

−0.8

−1

e 3

(c)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
t

e 4

(d)

Figure 14: The dynamics of synchronization errors. (a) Signal 𝑒
1
, (b) signal 𝑒

2
, (c) signal 𝑒

3
and (d) signal 𝑒

4
.

of the master and the slave systems with active control law is
presented in Figures 13(a)–13(d). The synchronization errors
are shown in Figures 14(a)–14(d).

5. Summary and Conclusions

In this paper, we have introduced the tracking control
and generalized synchronization of the hyperchaotic sys-
tem which is different from the Lorenz-Stenflo attractor.
We suppress the chaos to unstabilize equilibrium via three
feedback methods, and we achieve three globally generalized
synchronization controls of two Lorenz-Stenflo systems. As
a result, some powerful controllers are obtained. Then, we
investigate the hyperchaotic system applying the complex
system calculus technique. Moreover, numerical simulations
are used to verify the effectiveness of our results, through the
contrast between the orbits before being stabilized and the
ones after being stabilized.

Appendices

A. The Maple Program

>restart: with(student): with(PDEtools): with(linalg):
with (LinearAlgebra):
> 𝐽 := 𝑚𝑎𝑡𝑟𝑖𝑥(4, 4, [[𝐴, 𝑎, 0, 𝑑], [𝑐, 𝐵, 0, 0], [0, 0, 𝐶, 0],

[−1, 0, 0, 𝐷]]);
> 𝑈 := 𝑐ℎ𝑎𝑟𝑚𝑎𝑡(𝐽, 𝜆);
> 𝑝𝑜𝑙𝑦1 := 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(𝑑𝑒𝑡(𝑈), 𝜆);
> 𝑎1 := 𝑐𝑜𝑒𝑓𝑓(𝑝𝑜𝑙𝑦1, 𝜆, 3);
> 𝑎2 := 𝑐𝑜𝑒𝑓𝑓(𝑝𝑜𝑙𝑦1, 𝜆, 2);
> 𝑎3 := 𝑐𝑜𝑒𝑓𝑓(𝑝𝑜𝑙𝑦1, 𝜆, 1);
> 𝑎4 := 𝑐𝑜𝑒𝑓𝑓(𝑝𝑜𝑙𝑦1, 𝜆, 0);
> 𝐻 := 𝑚𝑎𝑡𝑟𝑖𝑥(4, 4, [𝑎1, 𝑎3, 0, 0, 1, 𝑎2, 𝑎4, 0, 0, 𝑎1,

𝑎3, 0, 0, 1, 𝑎2, 𝑎4]);
> 𝐻11 := 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥(𝐻, 1..1, 1..1);
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> 𝐻22 := 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥(𝐻, 1..2, 1..2);
> 𝐻33 := 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥(𝐻, 1..3, 1..3);
> 𝐻44 := 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥(𝐻, 1..4, 1..4);
> 𝐻1 := 𝑑𝑒𝑡(𝐻11);
> 𝐻2 := 𝑑𝑒𝑡(𝐻22);
> 𝐻3 := 𝑑𝑒𝑡(𝐻33);
> 𝐻4 := 𝑑𝑒𝑡(𝐻44).

B. The Proof of Theorem

Proof of Theorem I. Consider the controller (40) and choose
the following V

𝑖
:

V
1
= −𝑎𝑒

2
− 𝑑𝑒

4
,

V
2
= −𝑐𝑒

1
+ 𝑒

1
𝑒

3
+ 𝑒

1
𝑚𝑧

2
+ 𝑚𝑥

2
𝑒

3
,

V
3
= −𝑒

2
𝑒

1
− 𝑒

2
𝑚𝑥

2
− 𝑚𝑦

2
𝑒

1
,

V
4
= (𝑎 − 1) 𝑒4

.

(B.1)

Then the system (39) is reduced into

̇𝑒

1
= −𝑎𝑒

1
,

̇𝑒

2
= −𝑒

2
,

̇𝑒

3
= −𝑏𝑒

3
,

̇𝑒

4
= −𝑒

4
.

(B.2)

Let us consider the Lyapunov function for the system (B.2) as
follows:

𝑉 (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
) =

1

2

(𝑒

2

1
+ 𝑒

2

2
+ 𝑒

2

3
+ 𝑒

2

4
) . (B.3)

In addition, the derivative of 𝑉 has the form

𝑑𝑉 (𝑡)

𝑑𝑡

= − (𝑎𝑒

2

1
+ 𝑒

2

2
+ 𝑏𝑒

2

3
+ 𝑒

2

4
) ,

(B.4)

which is negatively defined. So (B.2) is asymptotically stable.
This implies that the two Lorenz-Stenflo hyperchaotic sys-
tems are projective and synchronized.

Proof of Theorem II. Consider the controller (41) and choose
V
𝑖
as follows:

V
1
= −𝑎𝑒

2
− 𝑑𝑒

4
,

V
2
= −𝑐𝑒

1
+ 𝑒

1
𝑒

3
+ 𝑒

1
𝑚

3
𝑧

2
+ 𝑚

1
𝑥

2
𝑒

3
,

V
3
= −𝑒

2
𝑒

1
− 𝑒

2
𝑚

1
𝑥

2
− 𝑚

2
𝑦

2
𝑒

1
,

V
4
= (𝑎 − 1) 𝑒4

.

(B.5)

Then the following steps are the same (B.2), (B.3), and (B.4).
Sowe know that the two Lorenz-Stenflo hyperchaotic systems
are modified, projective, and synchronized.

Proof of Theorem III. Consider the controller (42) and
choose the following positive definite, quadratic form of
Lyapunov function:

𝑉 (𝑡) =

1

2

[𝑒

2

1
+ 𝑒

2

2
+ 𝑒

2

3
+ 𝑒

2

4
] . (B.6)

We differentiate 𝑉(𝑡) and substitute the trajectory of system
(39) which yields

𝑑𝑉 (𝑡)

𝑑𝑡

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨(18)

= 𝑒

1
̇𝑒

1
+ 𝑒

2
̇𝑒

2
+ 𝑒

3
̇𝑒

3

= −𝑘

1
𝑒

2

1
− 𝑘

2
𝑒

2

2
− 𝑘

3
𝑒

2

3
− 𝑘

4
𝑒

2

4

= − [𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
] 𝑃[𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
]

𝑇
,

(B.7)

where 𝑃 = diag(𝑘
1
, 𝑘

2
, 𝑘

3
, 𝑘

4
), which implies that the con-

clusion of Theorem III is true. So (39) is asymptotically
stable. This implies that the two Lorenz-Stenflo hyperchaotic
systems are projective synchronized functions.
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