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We propose an adaptive reorderedmethod to deal with the PageRank problem. It has been shown that one can reorder the hyperlink
matrix of PageRank problem to calculate a reduced system and get the full PageRank vector through forward substitutions. This
method can provide a speedup for calculating the PageRank vector.We observe that in the existing reorderedmethod, the cost of the
recursively reordering procedure could offset the computational reduction brought by minimizing the dimension of linear system.
With this observation, we introduce an adaptive reordered method to accelerate the total calculation, in which we terminate the
reordering procedure appropriately instead of reordering to the end. Numerical experiments show the effectiveness of this adaptive
reordered method.

1. Introduction

As the Internet develops rapidly, the development of web
search engines is becoming more and more important. As
one of the most popular search engines, Google attributes
the famous PageRank algorithm to compute the PageRank
vector, which amounts to computing the stationary distri-
bution of the transition possibility matrix that describes the
web graph with the power method. In the web graph, there
are many dangling nodes, that is, pages without links to the
other pages. These dangling nodes could trigger storage and
computational problems during the PageRank computation
[1].

First, let us introduce some principles and symbols in the
PageRank problem. The web structure with 𝑛 nodes can be
expressed in the form of a spares hyperlink matrix H. The
(𝑖, 𝑗)th element of H is 1/O

𝑖
if there is a link from node 𝑖 to

node 𝑗, and 0 otherwise, where 𝑂
𝑖
is the number of the node

𝑖’s outlink. This spares matrix is called transition possibility
matrix. The row sums are 1 for the nondangling nodes and 0
for the dangling nodes.The PageRank vector is the stationary
distribution for the Markov Chain related to H. With the
existence of the dangling nodes, there are rows with all 0
entries, making H not stochastic. To remedy this, one can
replace the 0𝑇 rows with k𝑇 = e𝑇/𝑛, called personalization

vector, where e is the vector of all ones. This replacement
gives

Q = H + ak𝑇, (1)

where a is an indexing vector with its element 𝑎
𝑖
= 1 if

row 𝑖 of H is 0𝑇 row. To guarantee the existence and
uniqueness of the PageRank vector, one more rank-1 update
is needed, which yields the stochastic and irreducible Google
matrix

G = 𝛼Q + (1 − 𝛼) ek𝑇, (2)

where 0 < 𝛼 < 1. Then, the power method is used on
G to calculate the stationary vector, that is, the PageRank
vector [2]. Due to the slow convergence rate of the
power method, many acceleration methods have been pro-
posed, such as the extrapolation methods [3], the adap-
tive method [4], and some other numerical methods [5–
11].

With the large amount of the dangling nodes in the web,
there aremany 0𝑇 rows in the hyperlinkmatrixH. It is worth-
while to considermethods to take advantage of these identical
rows. Lee et al. give a two-stage algorithm to improve
the PageRank computation by lumping the dangling nodes
and aggregating the nondangling nodes [12]. By recursively
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using the lumping procedure, Langville and Meyer propose
a reordered algorithm [13]. In their algorithm, the top left
submatrix gets smaller as the reordering procedure proceeds,
by recursively reordering the 0𝑇 rows of the top left submatrix
to the bottom, until there is no 0𝑇 rows in the new top left
submatrix.The stationary vector of the final top left submatrix
is easy to compute since its dimension is much smaller
compared to the origin matrix. Then, forward substitutions
are carried on to get the full PageRank vector.

Although it much easier to calculate the PageRank vector
with a reduced matrix, the continual reorderings are con-
suming. In this paper, we try to find a compromise between
getting a reduced submatrix and saving the calculation
spent on reordering. We give a threshold for the recursively
reordered method and terminate the reordering procedure
halfway, which we call the adaptive reordered method.

This paper is organized as follows. We briefly review the
reorderedmethod [13] in Section 2. In Section 3, an improved
reordered method with an adaptive stopping criterion is
presented. Numerical experiments on two realistic matrices
are presented using both original reordered method and
adaptive reordered method in Section 4. Conclusions and
future work are presented in Section 5.

2. Reordered Method for
the PageRank Problem

In this section, we briefly introduce the reordered method
given by Langville and Meyer [13].

Theorem 2.1 in [13] reveals the relationship between the
PageRank vector and the solution to the previous linear
system that solving

x𝑇 (I − 𝛼P) = k𝑇 (3)

and letting 𝜋𝑇 = x𝑇/x𝑇e produces the PageRank vector.
On the other side, the nodes of web can be classified

into dangling nodes (D) and nondangling nodes (ND). In
the hyperlink matrix H, the rows corresponding to dangling
nodes are all 0𝑇 rows. By permuting the rows and columns
of H, we can achieve the aim that all the 0𝑇 rows are at the
bottom of H. As each of dangling nodes and nondangling
nodes corresponds to its particular row, one can permute
the rows of H and then get P, whose rows corresponding to
dangling nodes are all at the bottom:

P = (P11 P
12

0 0 ) , (4)

where P
11

represents the links among nondangling nodes
and P

12
represents the links from nondangling nodes to

dangling nodes. The zero rows at the bottom correspond to
the dangling nodes. According to the definition of hyperlink
matrix, we can draw the conclusions that P

11
≥ 0, P

12
≥ 0,

and the row sums of P
11

and P
12

are all equal to 1. Then,

the coefficient matrix in the previous linear system is

(I − 𝛼P) = (I − 𝛼P11 −𝛼P120 I ) , (5)

and its inverse is

(I − 𝛼P)−1 = ((I − 𝛼P11)
−1
𝛼 ((I − 𝛼P

11
)
−1
)P
12

0 I
) . (6)

Then, the solution x𝑇 to the linear system x𝑇(I−𝛼P) = k𝑇 can
be written as

x𝑇 = k𝑇(I − 𝛼P)−1

= (k𝑇
1
(I − 𝛼P

11
)
−1
| 𝛼k𝑇
1
(I − 𝛼P

11
)
−1P
12
+ k𝑇
2
) ,

(7)

where the personalization vector k𝑇 has been partitioned into
nondangling and dangling parts, corresponding to k𝑇

1
and k𝑇
2

separately.
Based on the previous idea, Langville and Meyer come

out with a method that recursively permutes the top left
block until the final P

11
has no zero rows. The recursive

permutations make the dimension of P
11

smaller than just
permuting once. Eventually, one can get a matrix with the
following form:

P =(

P
11

P
12

P
13
⋅ ⋅ ⋅ P
1𝑏

0 P
23
⋅ ⋅ ⋅ P
2𝑏

0 ⋅ ⋅ ⋅ P
3𝑏

d
...
0

), (8)

where 𝑏 ≥ 2 is the number of blocks of each row. Then, the
corresponding coefficient matrix of linear system is

(I − 𝛼P) =(

I − 𝛼P
11
−𝛼P
12
−𝛼P
13
⋅ ⋅ ⋅ −𝛼P

1𝑏

I −𝛼P
23
⋅ ⋅ ⋅ −𝛼P

2𝑏

I ⋅ ⋅ ⋅ −𝛼P
3𝑏

d
...
I

).

(9)

This reordered method can be described in Algorithm 1.
This reordered method reduced the computation of the

PageRank vector that one just needs to solve a much smaller
linear system, x𝑇

1
(I−𝛼P

11
) = k𝑇
1
, and the forward substitution

in the third step gives the full PageRank vector. However,
the recursively reordering procedure in the first step is time
consuming and may bring too much overhead if 𝑏, the
number of blocks, is too large. So it is imperative to introduce
some mechanism to overcome this drawback, which we will
describe in the following section.

3. Adaptive Reordered Method for
the PageRank

3.1. Adaptive ReorderedMethod. In this section, we introduce
an adaptive reordered method. This method is based on



Journal of Applied Mathematics 3

(1) Reorder the hyperlink matrix so that in the top left submatrix all the zero rows
are at the bottom in every reordering procedure, until there is no 0𝑇 rows in the
new top left submatrix.

(2) Solve x𝑇
1
(I − 𝛼P

11
) = v𝑇
1
using Jacobi method.

(3) For 𝑖 = 2 to 𝑏, Compute x𝑇
𝑖
= 𝛼∑

𝑖−1

𝑗=1
x𝑇
𝑗
P
𝑗𝑖
+ v𝑇
𝑖
.

(4) Compute 𝜋𝑇 = [x𝑇
1

x𝑇
2
⋅ ⋅ ⋅ x𝑇

𝑏
] /

󵄩
󵄩
󵄩
󵄩
󵄩
[x𝑇
1

x𝑇
2
⋅ ⋅ ⋅ x𝑇

𝑏
]

󵄩
󵄩
󵄩
󵄩
󵄩1
.

Algorithm 1: The reordered algorithm [13].

(1) Reorder the hyperlink matrix so that in the top left submatrix all the zero rows
are at the bottom in every reordering procedure, until the given stopping criterion
is reached.

(2) Solve x𝑇
1
(I − 𝛼P

11
) = v𝑇
1
using Jacobi method.

(3) For 𝑖 = 2 to 𝑏, Compute x𝑇
𝑖
= 𝛼∑

𝑖−1

𝑗=1
x𝑇
𝑗
P
𝑗𝑖
+ v𝑇
𝑖
.

(4) Compute 𝜋𝑇 = [x𝑇
1

x𝑇
2
⋅ ⋅ ⋅ x𝑇

𝑏
] /

󵄩
󵄩
󵄩
󵄩
󵄩
[x𝑇
1

x𝑇
2
⋅ ⋅ ⋅ x𝑇

𝑏
]

󵄩
󵄩
󵄩
󵄩
󵄩1
.

Algorithm 2: The adaptive reordered algorithm.

Langville and Meyer’s work in [13] and utilizes a stopping
criterion that once the criterion is reached, the reordering
procedurewill be terminated.The adaptive reorderedmethod
can both get rid of the potential overhead brought by the
recursive reordering and keep the merit of reduction of
computation. The adaptive reordered algorithm is shown in
Algorithm 2.

According to Langville andMeyer’s work, themerit of the
reordered method lies in the second step of Algorithm 1 that
the computation is reduced because of the obtained smaller
linear system. But the consuming recursively reordering
procedure could bring too much overheads that offset this
merit, or even worse. So, we consider to bring in a stopping
criterion to make a compromise between reordering’s merit
and overhead.

3.2. Analysis of the Adaptive Reordered Method. From the
merit-and-overhead analysis previous, we can get the idea
that once the overhead of the first step exceeds the compu-
tational reduction brought by the smaller linear system in
the second step, the recursively reordering procedure should
be terminated. We assume that, before deciding whether the
next reordering procedure is necessary, the rank of the top
left block is 𝑟

1
, and after the following reordering step, the

rank of the new top left block is 𝑟
2
. Apparently, 𝑟

1
≥ 𝑟
2
. The

new reordering step will bring an extra reordering expense
which is approximately 𝑂(𝑟2

1
), an extra reordering expense

which is 𝑂(𝑟
2
(𝑟
1
− 𝑟
2
)) approximately. It also brings the

computational reduction which is approximately 𝑂(130(𝑟2
1
−

𝑟
2

2
)), in which 130 is the approximate times of matrix-vector

products in Jacobi method before the result reaches the
precision demand. With these analyses, we can obtain the
following stopping criterion.

Stopping Criterion. Once 130(𝑟2
1
− 𝑟
2

2
) ≤ 𝑟
2

1
+ 𝑟
2
(𝑟
1
− 𝑟
2
), the

reordering procedure in the first step of Algorithm 2 stops.

With this stopping criterion, our adaptive reordered
method would stop at the appropriate time, which both
reduces the dimension of the linear system to be solved
and saves the excessive expense of the recursively reordering
procedure.

4. Numerical Experiments

In this section, we present the numerical experiments to
compare the adaptive reordered method to the original
reorderedmethod [13].The experiments are on twomatrices.
The first matrix is wb-cs-stanford.mat [14], which contains
9914 pages, and the secondmatrix is Stanford.mat [15], which
contains 281903 pages. Both matrices are direct graph and
before the experiments they are firstly turned into row-
stochastic matrices that all the row sums are 1. Similar
to [13], we also choose Jacobi method to solve the linear
system. We use 𝛼 = 0.85 as the damping factor and 𝜏 =
10
−10 as the convergence tolerance. The numerical experi-

ments are carried out on MATLAB. We call the reordered
method and the adaptive reordered method RD and aRD
for short. The performances of both methods are as fol-
lows.

Figures 1 and 2 show the structures of the original matrix
and those being reordered using RD and aRD. One can
observe that the rough shapes of the matrices reordered by
both methods are similar, which means in both methods
that the dimensions of the linear systems to be solved in the
second step are almost equal and the expenses of solving the
linear systems are close. Actually, in the experiment onwb-cs-
stanford.mat, the dimension of P

11
when using aRD is 6592

and that is 6585 when using RD.
Table 1 shows 𝑏 and the time spent on the reordering

step of the two methods applied on the two matrices. In this
table, 𝑡1 represents the time spent on reordering step and
𝑡2 the time on the remaining steps, and 𝑡 is the sum of 𝑡1
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Figure 1: The resulted image of the original wb-cs-stanford.mat (a) and matrices reordered using RD and aRD ((b) and (c)).

and 𝑡2. With respect to wb-cs-stanford.mat, there are four
blocks if aRD is used and their sizes are 6592, 88, 356, and 2861
successively, while there are seven blocks when RD is used
and their sizes are 6585, 3, 4, 17, 88, 356, and 2861. Comparing
these two sets of data, one can tell that, when using RD, the
follow-up reorderings that get the subdivided blocks, 6585,
3, 4, and 17, does not reduce the dimension of the top left
block substantially, which means that these reorderings are
not very useful. Our adaptive reordered method also saves
much expense when it is applied to Stanford.mat. There are
141 blocks when using RD while there are only 3 blocks when
using aRD. After reviewing the data, we find that the sizes
of blocks of aRD are 258177, 3338, and 20315 and those of
RD are 257824, . . ., 14, 73, 3338, and 20315, where the sizes

omitted are all trivial and the reorderings spent on those
blocks are not worthy. As one more block brings in one more
reordering operation, the data of this table shows that aRD
saves much more expense of reordering procedure than RD
does.

5. Conclusion

In this paper, we introduce an adaptive reordered method for
solving the PageRank problem. Comparing to the original
reordered method [13], we bring in an effective stopping
criterion which can both get rid of the overhead brought
by the recursively reordering procedure and keep its fast
computational speed. Numerical results with two examples
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Figure 2: The resulted image of the original Stanford.mat (a) and matrices reordered using RD and aRD ((b) and (c)).

Table 1: Comparison of RD and aRD.

wb-cs-stanford Stanford

RD

𝑏 7 141
𝑡1 0.0315 66.95
𝑡2 0.1250 17.09
𝑡 0.1565 84.04

aRD

𝑏 4 3
𝑡1 0.0184 1.45
𝑡2 0.1100 9.13
𝑡 0.1284 10.58

demonstrate the good performance of this method. Jacobi
method is utilized in this paper, and meanwhile other
acceleration methods and preconditioning approaches can
also be utilized together, which could enhance the effect of
the reordered method. These are topics that deserve to be
studied and will be our work in the future.
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