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We consider the nonlinear vonKármán equations withmemory term.We show the exponential decay result of solutions. Our result
is established without imposing the usual relation between 𝑔 and its derivative.This result improves on earlier ones concerning the
exponential decay.

1. Introduction

In this paper we consider the exponential decay rate of
solutions for the nonlinear von Kármán equations with
memory term:


𝑢


𝜌

𝑢

− ℎΔ𝑢


+ Δ
2
𝑢 − ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ
2
𝑢 (𝑠) 𝑑𝑠 = [𝑢, V] ,

in Ω × (0,∞) ,

(1)

Δ
2V = − [𝑢, 𝑢] , in Ω × (0,∞) , (2)

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) , 𝑢


(𝑥, 𝑦, 0) = 𝑢

1
(𝑥, 𝑦) , in Ω,

(3)

and the boundary conditions

V =
𝜕V

𝜕]
= 0, on Γ × (0,∞) ,

𝑢 =
𝜕𝑢

𝜕]
= 0, on Γ

0
× (0,∞) ,

B
1
𝑢 −B

1
{∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠} = 0, on Γ
1
× (0,∞) ,

B
2
𝑢 − ℎ

𝜕𝑢


𝜕]
−B
2
{∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠} = 0,

on Γ
1
× (0,∞) ,

(4)

where Ω is an open bounded set of R2, with a sufficiently
smooth boundary Γ = Γ

0
∪ Γ
1
. Here, Γ

0
and Γ

1
are closed

and disjoint. The constants ℎ, 𝜌 > 0. Let us denote by ] =

(]
1
, ]
2
) the external unit normal to Γ and by 𝜂 = (−]

2
, ]
1
) the

corresponding unit tangent vector. The von Kármán bracket
is given by

[𝑢, V] = 𝑢
𝑥𝑥
V
𝑦𝑦
+ 𝑢
𝑦𝑦
V
𝑥𝑥
− 2𝑢
𝑥𝑦
V
𝑥𝑦
. (5)

Here, we are denoting by B
1
, B
2
the following differential

operators:

B
1
𝑢 = Δ𝑢 + (1 − 𝜇) 𝐵

1
𝑢,

B
2
𝑢 =

𝜕Δ𝑢

𝜕]
+ (1 − 𝜇) 𝐵

2
𝑢,

(6)

where 𝐵
1
and 𝐵

2
are given by

𝐵
1
𝑢 = 2]

1
]
2
𝑢
𝑥𝑦
− ]2
1
𝑢
𝑦𝑦
− ]2
2
𝑢
𝑥𝑥
,

𝐵
2
𝑢 =

𝜕

𝜕𝜂
[(]2
1
− ]2
2
) 𝑢
𝑥𝑦
+ ]
1
]
2
(𝑢
𝑦𝑦
− 𝑢
𝑥𝑥
)] ,

(7)

and the constant 𝜇 (0 < 𝜇 < 1/2) represents Poisson’s ratio.
This system describes the transversal displacement

𝑢(𝑥, 𝑦, 𝑡) and the Airy stress function V(𝑥, 𝑦, 𝑡) of a vibrating
plate.The dissipation in (1) is due to the term −𝑔∗Δ

2
𝑢, where

𝑔 is positive real function and the convolution product ∗ is
given by (𝑔 ∗ 𝑢)(𝑡) = ∫

𝑡

0
𝑔(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠. A material whose



2 Abstract and Applied Analysis

contained term is −𝑔 ∗ Δ2𝑢 is called viscoelastic and is said
to be “endowed with long-range memory” since the stress at
any instant depends on the complete history of strain that the
material has undergone.

Problems related to

𝑓 (𝑢

) 𝑢

− Δ𝑢 − Δ𝑢


= 0 (8)

are interesting not only from the point of view of PDE general
theory, but also due to its applications in Mechanics. For
instance, when the material density, 𝑓(𝑢), is equal to 1, (8)
describes the extensional vibrations of thin rods; see Love [1]
for the physical details. When the material density 𝑓(𝑢) is
not constant, we are dealing with a thin rod which possesses
a rigid surface and whose interior is somehow permissive
to slight deformations such that the material density varies
according to the velocity.

On the other hand, the problem of stability of the
solutions to the following wave equation with memory was
studied by many authors [2–6]:


𝑢


𝜌

𝑢

− Δ𝑢 − Δ𝑢


+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝐹 (𝑢, 𝑢

) = 0,

𝑥 ∈ Ω, 𝑡 > 0.

(9)

Cavalcanti et al. [2] showed an exponential and polynomial
decay for the viscoelastic wave equation (9) with 𝐹(𝑢, 𝑢) =
−𝛾Δ𝑢

 under the usual conditions

−𝑐
1
𝑔 (𝑡) ≤ 𝑔



(𝑡) ≤ −𝑐
2
𝑔 (𝑡) , 0 ≤ 𝑔



(𝑡) ≤ 𝑐
3
𝑔 (𝑡) (10)

for some 𝑐
𝑖
, 𝑖 = 1, 2, 3. Han andWang [3] proved the uniform

decay for the nonlinear viscoelastic equation under condition

𝑔


(𝑡) ≤ −𝑐𝑔 (𝑡) , (11)

where 𝑐 > 0. Park and Kang [7] studied the uniform decay
for a nonlinear viscoelastic problem with damping. They
obtained the exponential decay estimate under condition (11).
Later, this assumption was relaxed by several authors. Mes-
saoudi and Tatar [6] investigated exponential and polynomial
decay for a quasilinear viscoelastic equation under condition
on 𝑔 such as

𝑔


(𝑡) ≤ −𝜉𝑔
𝑝

(𝑡) , for 1 ≤ 𝑝 < 3

2
, 𝑡 ≥ 0, (12)

where 𝜉 > 0, by choosing a suitable perturbed energy.
Liu [5] showed exponential and polynomial decay for the
system of two coupled quasilinear viscoelastic equation,
under condition (12). Messaoudi and Tatar [8] proved the
exponential decay rate for a quasilinear viscoelastic equation
under the conditions

𝑔


(𝑡) ≤ 0,

∫

∞

0

𝑔 (𝑡) 𝑒
𝛼𝑡
𝑑𝑡 < +∞ for some large 𝛼 > 0.

(13)

They improved some earlier results concerning the expo-
nential decay. Han and Wang [4] studied the general decay

rate for the nonlinear viscoelastic equations under the more
general conditions on 𝑔 such as

𝑔


(𝑡) ≤ −𝜉 (𝑡) 𝑔 (𝑡) ,


𝜉

(𝑡)


𝜉 (𝑡)


≤ 𝑘,

𝜉 (𝑡) > 0, 𝜉


(𝑡) ≤ 0, ∀𝑡 > 0.

(14)

When 𝜌 = 0, the problem of stability of the solutions to
the viscoelastic system with memory has been studied by
many authors. In [9, 10], the authors proved exponential
and polynomial decay for the viscoelastic wave equation
under conditions (10). Berrimi and Messaoudi [11] studied
exponential and polynomial decay rates under condition
(12). Messaoudi [12] investigated the general decay rate for
the viscoelastic equations under general conditions (14).
Guesmia andMessaoudi [13] obtained general stability for the
Timoshenko system under weaker condition on 𝑔 such as

𝑔


(𝑡) ≤ −𝜉 (𝑡) 𝑔 (𝑡) , (15)

where 𝜉 is a nonincreasing and positive function. As for
problem of stability of the solutions to a viscoelastic system
under condition (15), we also refer the reader to [14–16] and
references therein. These general decay estimates extended
and improved on some earlier results—exponential or poly-
nomial decay rates.

The problem of stability of the solutions to a von Kármán
system with dissipative effects has been studied by several
authors. For example, in [17, 18] the authors studied the von
Kármán equation in the presence of thermal effects. In [19–
23] the authors considered the von Kármán system with
frictional dissipations effective in the boundary. It is shown
in these works that these dissipations produce uniform rate
of decay of the solution when 𝑡 goes to infinity. Rivera and
Menzala [24] and Rivera et al. [25] studied the stability of the
solutions to a von Kármán system for viscoelastic plates with
memory and boundarymemory conditions.They proved that
the energy decays uniformly exponentially or algebraically
with the same rate of decay as the relaxation function. Later,
Santos and Soufyane [26] generalized the decay result of [24].
Raposo and Santos [27] considered the general decay of the
solutions to a vonKármán platemodel (1)–(4) for 𝜌 = 0.They
showed that the energy decays with a similar rate of decay of
the relaxation function, which is not necessarily decaying in
a polynomial or exponential fashion. Kang [28] investigated
the general decay of the solution to a von Kármán system
with memory and boundary damping. Recently, Kang [29]
proved that solutions for a von Kármán plate with memory
decay exponentially to zero as time goes to infinity in case
𝑔

(𝑡)+𝛾𝑔(𝑡) ≥ 0 for all 𝑡 ≥ 0 provided that [𝑔(𝑡)+𝛾𝑔(𝑡)]𝑒𝛼𝑡 ∈

𝐿
1
(0,∞) for some 𝛼 > 0.
In this paper, we establish an exponential decay of the

solutions to the nonlinear von Kármán plate model (1)–(4)
without assumption (15), which is the usual relation between
𝑔 and its derivative. Instead of (15), we require the function
𝑒
𝛼𝑡
𝑔(𝑡) to have sufficiently small𝐿1-norms on (0,∞) for some

𝛼 > 0. This result improves on earlier ones concerning
the exponential decay of the solutions to the von Kármán
equations.
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The organization of this paper is as follows. In Section 2,
we give some notations and introduce the relative results of
Airy stress function and von Kármán bracket. In Section 3,
we prove that the energy decreases exponentially. The con-
struction of the Lyapunov function is inspired in multiplier
techniques that was used in [8].

2. Preliminaries

In this section, we present some material needed in the proof
of our result and state the main result. Throughout this paper
we denote

(𝑢, V) = ∫
Ω

𝑢 (𝑥, 𝑦) V (𝑥, 𝑦) 𝑑Ω (16)

and define

𝑉 = {V ∈ 𝐻1 (Ω) | V = 0 on Γ
0
} ,

𝑈 = {𝑢 ∈ 𝐻
2

(Ω) | 𝑢 =
𝜕𝑢

𝜕]
= 0 on Γ

0
} .

(17)

For a Banach space 𝑋, ‖ ⋅ ‖
𝑋
denotes the norm of 𝑋. For

simplicity, we denote ‖ ⋅ ‖
𝐿
2
(Ω)

by ‖ ⋅ ‖. We define for all 1 ≤
𝑝 < ∞

‖𝑢‖
𝑝

𝑝
= ∫
Ω

𝑢 (𝑥, 𝑦)

𝑝

𝑑Ω. (18)

A simple calculation, based on the integration by parts
formula, yields

(Δ
2
𝑢, V) = 𝑎 (𝑢, V) + (B

2
𝑢, V)
Γ
− (B

1
𝑢,
𝜕V

𝜕]
)

Γ

, (19)

where the bilinear symmetric form 𝑎(𝑢, V) is given by

𝑎 (𝑢, V) = ∫
Ω

{𝑢
𝑥𝑥
V
𝑥𝑥
+ 𝑢
𝑦𝑦
V
𝑦𝑦
+ 𝜇 (𝑢

𝑥𝑥
V
𝑦𝑦
+ 𝑢
𝑦𝑦
V
𝑥𝑥
)

+2 (1 − 𝜇) 𝑢
𝑥𝑦
V
𝑥𝑦
} 𝑑Ω,

(20)

where 𝑑Ω = 𝑑𝑥𝑑𝑦. Since Γ
0
̸= 0, we know that √𝑎(𝑢, 𝑢) is

equivalent to the𝐻2(Ω) norm; that is,

𝑐
0
‖𝑢‖
2

𝐻
2
(Ω)

≤ 𝑎 (𝑢, 𝑢) ≤ 𝑐
1
‖𝑢‖
2

𝐻
2
(Ω)
, (21)

where 𝑐
0
and 𝑐

1
are generic positive constants. This and

Sobolev embedding theorem imply that for some positive
constants 𝐶

𝑝
and 𝐶

𝑠

‖𝑢‖
2
≤ 𝐶
𝑝
𝑎 (𝑢, 𝑢) , ‖∇𝑢‖

2
≤ 𝐶
𝑠
𝑎 (𝑢, 𝑢) , ∀𝑢 ∈ 𝑈. (22)

We establish the following hypotheses on the relaxation
function 𝑔 (see [8]). The relaxation function 𝑔 : R

+
→ R
+

is nonincreasing 𝐶1 function satisfying

𝑔 (0) > 0, 𝑙 := ∫

∞

0

𝑔 (𝑠) 𝑑𝑠 < 1, (23)

𝑔


(𝑡) ≤ 0, ∫

∞

0

𝑒
𝛼𝑡
𝑔 (𝑡) 𝑑𝑡 < +∞, for some 𝛼 > 0.

(24)

To simplify calculation in our analysis, we introduce the
following notation:

𝑔◻𝑢 := ∫

𝑡

0

𝑔 (𝑡 − 𝑠) ‖𝑢 (⋅, 𝑡) − 𝑢 (⋅, 𝑠)‖
2
𝑑𝑠,

𝑔◻𝜕
2
𝑢 := ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑢 (⋅, 𝑡) − 𝑢 (⋅, 𝑠) , 𝑢 (⋅, 𝑡) − 𝑢 (⋅, 𝑠)) 𝑑𝑠.

(25)

From the symmetry of 𝑎(⋅, ⋅), we have that, for any V ∈

𝐶
1
(0, 𝑇;𝐻

2
(Ω)),

𝑎 (𝑔 ∗ V, V) = −
1

2
𝑔 (𝑡) 𝑎 (V, V) +

1

2
𝑔

◻𝜕
2V −

1

2

𝑑

𝑑𝑡

× {𝑔◻𝜕
2V − (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝑎 (V, V)} .

(26)

Now, we introduce the relative results of the Airy stress
function and von Kármán bracket [⋅, ⋅].

Lemma 1 (see [30]). Let 𝑢, 𝑤 be functions in𝐻2(Ω) and V in
𝐻
2

0
(Ω), where Ω is an open bounded and connected set of R2

with regular boundary. Then,

∫
Ω

𝑤 [V, 𝑢] 𝑑Ω = ∫
Ω

V [𝑤, 𝑢] 𝑑Ω. (27)

Lemma 2 (see [20, 31]). If 𝑢, V ∈ 𝐻2(Ω), then [𝑢, V] ∈ 𝐿2(Ω)
and satisfies

‖[𝑢, V]‖ ≤ 𝑐‖𝑢‖
𝐻
2
(Ω)
‖V‖
𝑊
2,∞
(Ω)
,

‖V‖
𝑊
2,∞
(Ω)

≤ 𝑐‖𝑢‖
2

𝐻
2
(Ω)
.

(28)

The energy of problem (1)–(4) is given by

𝐸 (𝑡) =
1

𝜌 + 2


𝑢


(𝑡)


𝜌+2

𝜌+2
+
1

2
𝑎 (𝑢, 𝑢)

+
ℎ

2


∇𝑢


(𝑡)


2

+
1

4
‖ΔV (𝑡)‖2.

(29)

The existence of solutions can be proved by the Faedo-
Galerkin method; see [2, 9].

Theorem 3. Assume that the kernel 𝑔 is a positive continuous
function satisfying (23). Let (𝑢

0
, 𝑢
1
) ∈ 𝐻

4
(Ω) × 𝐻

2
(Ω). Then,

the system (1)–(4) has a unique weak solution 𝑢 such that

𝑢 ∈ 𝐿
∞
(0,∞;𝑈 ∩ 𝐻

4

(Ω)) ,

𝑢

∈ 𝐿
∞
(0,∞;𝑉 ∩ 𝐻

2

(Ω)) ,

𝑢

∈ 𝐿
2
(0,∞;𝐻

1

0
(Ω)) .

(30)

3. Exponential Decay of the Energy

In this section we will prove the exponential decay rates. To
demonstrate the stability of the system (1)–(4), the lemmas
below are essential.The following result shows the dissipative
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property of the system (1)–(4).Multiplying (1) by 𝑢(𝑡), we get
the identity

𝐸


(𝑡) = 𝑎 (𝑔 ∗ 𝑢, 𝑢

) . (31)

Define the modified energy by

𝐹 (𝑡)=
1

𝜌 + 2


𝑢


𝜌+2

𝜌+2
+
ℎ

2


∇𝑢


2

+
1

2
(1 − ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝑎 (𝑢, 𝑢)

+
1

2
𝑔◻𝜕
2
𝑢 +

1

4
‖ΔV‖2,

(32)

and applying (26) to (31), we have

𝐹


(𝑡) = −
1

2
𝑔 (𝑡) 𝑎 (𝑢, 𝑢) +

1

2
𝑔

◻𝜕
2
𝑢. (33)

This implies that 𝐹(𝑡) is nonincreasing, and one easily sees
that

𝐸 (𝑡) ≤
1

1 − 𝑙
𝐹 (𝑡) , ∀𝑡 ≥ 0. (34)

Therefore, it is enough to obtain the desired decay for the
modified energy 𝐹(𝑡), which will be done below. The key
point for showing our desired result is finding a Lyapunov
functional 𝐿 which is equivalent to 𝐹(𝑡). First, we introduce
three functionals and establish several lemmas. So, let

Φ
1
(𝑡) = ∫

𝑡

0

𝐺 (𝛼; 𝑡 − 𝑠) 𝑎 (𝑢 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠 (35)

with

𝐺 (𝛼; 𝑡) = 𝑒
−𝛼𝑡

∫

+∞

𝑡

𝑒
𝛼𝑠
𝑔 (𝑠) 𝑑𝑠,

Φ
2
(𝑡) =

1

𝜌 + 1
∫
Ω


𝑢


𝜌

𝑢

𝑢 𝑑Ω + ℎ∫

Ω

∇𝑢

∇𝑢𝑑Ω,

Φ
3
(𝑡) = −

1

𝜌 + 1
∫
Ω


𝑢


𝜌

𝑢

∫

𝑡

0

𝑔 (𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠)) 𝑑𝑠 𝑑Ω

− ℎ∫
Ω

∇𝑢

∫

𝑡

0

𝑔 (𝑡 − 𝑠) (∇𝑢 (𝑡) − ∇𝑢 (𝑠)) 𝑑𝑠 𝑑Ω.

(36)

We define the modified energy by

𝐿 (𝑡) = 𝑁𝐹 (𝑡) +

3

∑

𝑖=1

𝛾
𝑖
Φ
𝑖
(𝑡) , 𝑡 ≥ 0; (37)

for some positive constants 𝛾
𝑖
is to be specified later.

Lemma 4. Assume that 𝑔 satisfies (23) and (24). For 𝑁 > 0

large enough, there exist 𝛼
1
> 0 and 𝛼

2
> 0 such that

𝛼
1
𝐹 (𝑡) ≤ 𝐿 (𝑡) ≤ 𝛼

2
(𝐹 (𝑡) + Φ

1
(𝑡)) , ∀𝑡 ≥ 0. (38)

Proof. From Young inequality, we deduce

Φ2 (𝑡)
 ≤

1

𝜌 + 2


𝑢


𝜌+2

𝜌+2
+

1

(𝜌 + 1) (𝜌 + 2)
‖𝑢‖
𝜌+2

𝜌+2

+
ℎ

2


∇𝑢


2

+
ℎ

2
‖∇𝑢‖
2
.

(39)

Considering the embedding 𝐻1
0
(Ω) → 𝐿

𝜌+2
(Ω) and taking

(22) into account, it holds that

Φ2 (𝑡)
 ≤

1

𝜌 + 2


𝑢


𝜌+2

𝜌+2
+

𝐶
𝜌+2

(𝜌 + 1) (𝜌 + 2)
‖∇𝑢‖
𝜌+2

+
ℎ

2


∇𝑢


2

+
ℎ

2
‖∇𝑢‖
2

≤
1

𝜌 + 2


𝑢


𝜌+2

𝜌+2

+ (
𝐶
𝜌+2
𝐶
𝑠

(𝜌 + 1) (𝜌 + 2)
(2𝐶
𝑠
𝐸 (0))

𝜌/2

+
ℎ𝐶
𝑠

2
)

× 𝑎 (𝑢, 𝑢) +
ℎ

2


∇𝑢


2

,

(40)

where 𝐶 comes from the inequality ‖𝑢‖
𝜌+2

≤ 𝐶||∇𝑢|| for all
𝑢 ∈ 𝐻

1

0
(Ω). On the other hand, by Young inequality, Hölder

inequality and (22) can be estimated as
Φ3 (𝑡)



≤
ℎ

2


∇𝑢


2

+
ℎ

2

× ∫
Ω

(∫

𝑡

0

𝑔 (𝑡 − 𝑠) |∇𝑢 (𝑡) − ∇𝑢 (𝑠)| 𝑑𝑠)

2

𝑑Ω

+
1

𝜌 + 2


𝑢


𝜌+2

𝜌+2
+

1

(𝜌 + 1) (𝜌 + 2)

× ∫
Ω

(∫

𝑡

0

𝑔 (𝑡 − 𝑠) |𝑢 (𝑡) − 𝑢 (𝑠)| 𝑑𝑠)

𝜌+2

𝑑Ω

≤
ℎ

2


∇𝑢


2

+
ℎ𝑙𝐶
𝑠

2
𝑔◻𝜕
2
𝑢 +

1

𝜌 + 2


𝑢


𝜌+2

𝜌+2

+
1

(𝜌 + 1) (𝜌 + 2)
(∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

𝜌+1

× ∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) |𝑢 (𝑡) − 𝑢 (𝑠)|
𝜌+2
𝑑𝑠 𝑑Ω

≤
ℎ

2


∇𝑢


2

+
1

𝜌 + 2


𝑢


𝜌+2

𝜌+2

+ (
ℎ𝑙𝐶
𝑠

2
+

𝑙
𝜌+1
𝐶
𝜌+2
𝐶
𝑠

(𝜌 + 1) (𝜌 + 2)
(2𝐶
𝑠
𝐸 (0))

𝜌/2

)𝑔◻𝜕
2
𝑢.

(41)

Thus, from (40) and (41) we obtain
𝐿 (𝑡) − 𝑁𝐹 (𝑡) − 𝛾1Φ1 (𝑡)



≤
1

𝜌 + 2
(𝛾
2
+ 𝛾
3
)

𝑢


𝜌+2

𝜌+2
+
ℎ

2
(𝛾
2
+ 𝛾
3
)

∇𝑢


2

+ (
𝐶
𝜌+2
𝐶
𝑠

(𝜌 + 1) (𝜌 + 2)
(2𝐶
𝑠
𝐸 (0))

𝜌/2

+
ℎ𝐶
𝑠

2
) 𝛾
2
𝑎 (𝑢, 𝑢)

+ (
ℎ𝑙𝐶
𝑠

2
+

𝑙
𝜌+1
𝐶
𝜌+2
𝐶
𝑠

(𝜌 + 1) (𝜌 + 2)
(2𝐶
𝑠
𝐸 (0))

𝜌/2

)

× 𝛾
3
𝑔◻𝜕
2
𝑢 ≤ 𝑐
0
𝐹 (𝑡) ,

(42)
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where 𝑐
0
is a positive constant depending on 𝛾

2
, 𝛾
3
, ℎ,

𝜌, 𝑙, 𝐶, and𝐶
𝑠
. Choosing𝑁 > 0 large, we complete the proof

of Lemma 4.

Lemma 5. For each 𝑡
0
> 0 and sufficiently large𝑁 > 0, there

exists positive constant 𝑐
2
such that

𝐿


(𝑡) ≤ −𝑐
2
(𝐹 (𝑡) + Φ

1
(𝑡)) , ∀𝑡 ≥ 𝑡

0
. (43)

Proof. By differentiating Φ
1
(𝑡) and using Young inequality,

we get

Φ


1
(𝑡) = 𝑔

𝛼
𝑎 (𝑢, 𝑢) − 𝛼Φ

1
(𝑡)

− ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑢 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠,

= 𝑔
𝛼
𝑎 (𝑢, 𝑢) − 𝛼Φ

1
(𝑡) − 𝑔◻𝜕

2
𝑢

+ (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝑎 (𝑢, 𝑢)

− 2∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑢 (𝑡) , 𝑢 (𝑠)) 𝑑𝑠

≤ −𝛼Φ
1
(𝑡) − 𝑔◻𝜕

2
𝑢

+ (𝑔
𝛼
+
1

4𝛿
− ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝑎 (𝑢, 𝑢) + 𝛿𝑙𝑔◻𝜕
2
𝑢,

(44)

where 𝑔
𝛼
= ∫
∞

0
𝑒
𝛼𝑠
|𝑔(𝑠)|𝑑𝑠, 𝛼 > 0, and 𝛿 > 0. Using (1)–(4),

we have

Φ


2
(𝑡) = −𝑎 (𝑢, 𝑢) + 𝑎 (𝑔 ∗ 𝑢, 𝑢) + ([𝑢, V] , 𝑢)

+
1

𝜌 + 1


𝑢


𝜌+2

𝜌+2
+ ℎ


∇𝑢


2

.
(45)

We use the following inequality:

𝑎 (𝑔 ∗ 𝑢, 𝑢) = ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑢 (𝑠) − 𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑠

+ ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠𝑎 (𝑢, 𝑢)

≤ (𝜂 + ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝑎 (𝑢, 𝑢) +
𝑙

4𝜂
𝑔◻𝜕
2
𝑢;

(46)

then we obtain

Φ


2
(𝑡) ≤

1

𝜌 + 1


𝑢


𝜌+2

𝜌+2
+ ℎ


∇𝑢


2

− (1 − 𝜂 − ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝑎 (𝑢, 𝑢) − ‖ΔV‖2 +
𝑙

4𝜂
𝑔◻𝜕
2
𝑢,

(47)

where 𝜂 > 0. Similarly we deduce

Φ


3
(𝑡) = ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑢 (𝑡) − 𝑢 (𝑠) , 𝑢 (𝑡)) 𝑑𝑠

− ∫

𝑡

0

𝑔 (𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠) , [𝑢, V]) 𝑑𝑠

− ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑢 (𝑡) − 𝑢 (𝑠) ,

∫

𝑡

0

𝑔 (𝑡 − 𝜏) 𝑢 (𝜏) 𝑑𝜏) 𝑑𝑠

− ℎ∫

𝑡

0

𝑔


(𝑡 − 𝑠) (∇𝑢 (𝑡) − ∇𝑢 (𝑠) , ∇𝑢


(𝑡)) 𝑑𝑠

− ℎ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

∇𝑢


2

−
1

𝜌 + 1

× ∫

𝑡

0

𝑔


(𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠) ,

𝑢


𝜌

𝑢

) 𝑑𝑠

−
1

𝜌 + 1
∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

𝑢


𝜌+2

𝜌+2

= (1 − ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)∫

𝑡

0

𝑔 (𝑡 − 𝑠)

× 𝑎 (𝑢 (𝑡) − 𝑢 (𝑠) , 𝑢 (𝑡)) 𝑑𝑠

− ∫

𝑡

0

𝑔 (𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠) , [𝑢, V]) 𝑑𝑠

+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠)

× 𝑎(𝑢 (𝑡) − 𝑢 (𝑠) ,

∫

𝑡

0

𝑔 (𝑡 − 𝜏) (𝑢 (𝑡) − 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

− ℎ∫

𝑡

0

𝑔


(𝑡 − 𝑠) (∇𝑢 (𝑡) − ∇𝑢 (𝑠) , ∇𝑢


(𝑡)) 𝑑𝑠

− ℎ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

∇𝑢


2

−
1

𝜌 + 1

× ∫

𝑡

0

𝑔


(𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠) ,

𝑢


𝜌

𝑢

) 𝑑𝑠

−
1

𝜌 + 1
∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

𝑢


𝜌+2

𝜌+2

:= 𝐼
1
+ 𝐼
2
+ ⋅ ⋅ ⋅ + 𝐼

5
− ℎ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

∇𝑢


2

−
1

𝜌 + 1
∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

𝑢


𝜌+2

𝜌+2
.

(48)

Now, we estimate the terms in the right hand side of (48).The
Young and Hölder inequalities and (22) give that

𝐼1 + 𝐼3
 ≤ (1 − ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)(𝜂𝑎 (𝑢, 𝑢) +
𝑙

4𝜂
𝑔◻𝜕
2
𝑢)

+ 𝑙𝑔◻𝜕
2
𝑢,

𝐼4
 ≤ ℎ𝜂


∇𝑢


2

+
ℎ

4𝜂
∫
Ω

(∫

𝑡

0

𝑔


(𝑡 − 𝑠) |∇𝑢 (𝑡) − ∇𝑢 (𝑠)| 𝑑𝑠)

2

𝑑Ω
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≤ ℎ𝜂

∇𝑢


2

−
𝑔 (0) 𝐶

𝑠
ℎ

4𝜂
𝑔

◻𝜕
2
𝑢,

𝐼5
 ≤

𝜂

𝜌 + 1


𝑢


2(𝜌+1)

2(𝜌+1)
+

1

4𝜂 (𝜌 + 1)

× ∫
Ω

(∫

𝑡

0

𝑔


(𝑡 − 𝑠) |𝑢 (𝑡) − 𝑢 (𝑠)| 𝑑𝑠)

2

𝑑Ω

≤
𝜂𝐶
2(𝜌+1)

𝜌 + 1


∇𝑢


2(𝜌+1)

−
𝑔 (0)

4𝜂 (𝜌 + 1)

× ∫
Ω

∫

𝑡

0

𝑔


(𝑡 − 𝑠) |𝑢 (𝑡) − 𝑢 (𝑠)|
2
𝑑𝑠 𝑑Ω

≤
𝑎
0
𝜂

𝜌 + 1


∇𝑢


2

−
𝑔 (0) 𝐶

𝑝

4𝜂 (𝜌 + 1)
𝑔

◻𝜕
2
𝑢,

(49)

where 𝑎
0
= 𝐶
2(𝜌+1)

(2ℎ
−1
𝐸(0))
𝜌
> 0. From Lemmas 1 and 2

and (22), we obtain

𝐼2
 =


(∫

𝑡

0

𝑔 (𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠)) 𝑑𝑠, [𝑢, V])


≤ 𝜂‖[𝑢, V]‖2 +
1

4𝜂


∫

𝑡

0

𝑔 (𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠)) 𝑑𝑠



2

≤ 𝜂(𝑐‖𝑢‖
𝐻
2
(Ω)
‖V‖
𝑊
2,∞
(Ω)
)
2

+
𝑙𝐶
𝑝

4𝜂
𝑔◻𝜕
2
𝑢

≤ 𝜂𝐶
0
𝑎 (𝑢, 𝑢) +

𝑙𝐶
𝑝

4𝜂
𝑔◻𝜕
2
𝑢.

(50)

Summarizing these estimates with (48), we deduce that

Φ


3
(𝑡) ≤ (ℎ𝜂 +

𝑎
0
𝜂

𝜌 + 1
− ℎ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

∇𝑢


2

+ (𝑙 +
𝑙

4𝜂
+
𝑙𝐶
𝑝

4𝜂
)𝑔◻𝜕

2
𝑢

+ 𝜂 (1 + 𝐶
0
) 𝑎 (𝑢, 𝑢) −

𝑔 (0)

4𝜂
(𝐶
𝑠
ℎ +

𝐶
𝑝

𝜌 + 1
)𝑔

◻𝜕
2
𝑢

−
1

𝜌 + 1
∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

𝑢


𝜌+2

𝜌+2
.

(51)

Since 𝑔 is continuous and positive, for any 𝑡 ≥ 𝑡
0
> 0 we have

∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠 ≥ ∫

𝑡
0

0

𝑔 (𝑠) 𝑑𝑠 := 𝑔
0
> 0. (52)

Thus, making use of (52) and combining (33), (37), (44), (47),
and (51), we obtain

𝐿


(𝑡) ≤ −((ℎ𝑔
0
− ℎ𝜂 −

𝜂𝑎
0

𝜌 + 1
) 𝛾
3
− ℎ𝛾
2
)

∇𝑢


2

+ (
𝑁

2
−
𝑔 (0)

4𝜂
(𝐶
𝑠
ℎ +

𝐶
𝑝

𝜌 + 1
) 𝛾
3
)𝑔

◻𝜕
2
𝑢

− [
𝑁

2
𝑔 (𝑡) + (1 − 𝜂 − ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) 𝛾
2

−(𝑔
𝛼
+
1

4𝛿
− 𝑔
0
) 𝛾
1
− 𝜂 (1 + 𝐶

0
) 𝛾
3
] 𝑎 (𝑢, 𝑢)

− 𝛼𝛾
1
Φ
1
(𝑡) − 𝛾

2
‖ΔV‖2

− [(1 − 𝛿𝑙) 𝛾
1
−
𝑙𝛾
2

4𝜂
− (𝑙 +

𝑙

4𝜂
+
𝑙𝐶
𝑝

4𝜂
) 𝛾
3
]𝑔◻𝜕

2
𝑢

−
1

𝜌 + 1
(𝑔
0
𝛾
3
− 𝛾
2
)

𝑢


𝜌+2

𝜌+2
, ∀𝑡 ≥ 𝑡

0
.

(53)

We first take 𝛾
2
> 0 and 𝛿 > 0 so small that

𝑔
0
𝛾
3
− 𝛾
2
> 0, 1 − 𝛿𝑙 > 0, (54)

respectively. And then, we choose 𝜂 > 0 and 𝛾
3
> 0 so small

that

(𝑔
0
− 𝜂 −

𝜂𝑎
0

(𝜌 + 1) ℎ
) 𝛾
3
− 𝛾
2
> 0,

1 − 𝜂 − ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠 > 0,

(55)

respectively. We then pick 𝛾
1
large enough so that

(1 − 𝛿𝑙) 𝛾
1
−
𝑙𝛾
2

4𝜂
− (𝑙 +

𝑙

4𝜂
+
𝑙𝐶
𝑝

4𝜂
) 𝛾
3
> 0. (56)

Finally, taking𝑁 > 0 large enough and by (53), we conclude
that

𝐿


(𝑡) ≤ −𝑐
2
(𝐹 (𝑡) + Φ

1
(𝑡)) , ∀𝑡 ≥ 𝑡

0
, (57)

for some 𝑐
2
> 0.

Our main result reads as follows.

Theorem 6. Suppose that 𝑔 satisfies (23) and (24). Then, for
each 𝑡

0
> 0, there exist two positive constants 𝐶

1
and 𝛽 such

that

𝐸 (𝑡) ≤ 𝐶
1
𝑒
−𝛽𝑡
, ∀𝑡 ≥ 𝑡

0
. (58)

Proof. From (38) and (43), we have

𝐿


(𝑡) ≤ −
𝑐
2

𝛼
2

𝐿 (𝑡) , ∀𝑡 ≥ 𝑡
0
. (59)

Integrating this over (𝑡
0
, 𝑡), we obtain

𝐿 (𝑡) ≤ 𝐿 (𝑡
0
) 𝑒
−𝛽(𝑡−𝑡

0
)
, ∀𝑡 ≥ 𝑡

0
, (60)

with 𝛽 = 𝑐
2
/𝛼
2
. Consequently, (34), (38), and (60) yield the

result in Theorem 6.
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system with nonlinear boundary dissipation,” Differential and
Integral Equations, vol. 9, no. 2, pp. 267–294, 1996.

[21] M. A. Horn and I. Lasiecka, “Uniform decay of weak solutions
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