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A restricted isometry property (RIP) condition 𝛿
𝐾
+√𝐾𝜃

𝐾,1
< 1 is known to be sufficient for orthogonal matching pursuit (OMP)

to exactly recover every K-sparse signal x from measurements 𝑦 = Φ𝑥. This paper is devoted to demonstrate that this condition is
sharp. We construct a specific matrix with 𝛿

𝐾
+ √𝐾𝜃

𝐾,1
= 1 such that OMP cannot exactly recover some K-sparse signals.

1. Introduction

Compressive sampling (compressed sensing, CS) is known
as a new type of sampling theory that one can reconstruct a
high dimensional spare signal from a small number of linear
measurements at the sub-Nyquist rate [1–3]. Nowadays, the
CS technique has attracted considerable attention fromacross
a wide array of fields like applied mathematics, statistics, and
engineering, including signal processing areas such as MR
imaging, speech processing, and analog to digital conversion.
The basic problem inCS is to reconstruct the unknown sparse
signal 𝑥 from measurements:

𝑦 = Φ𝑥, (1)

where Φ is an 𝑀 × 𝑁 (𝑀 ≪ 𝑁) sampling matrix. Suppose
Φ = (Φ

1
, Φ
2
, . . . , Φ

𝑁
), whereΦ

𝑖
denotes the 𝑖th column ofΦ.

Throughout the paper, we will assume that the columns of Φ
are normalized; that is, ‖Φ

𝑖
‖
2
= 1 for 𝑖 = 1, 2, . . . , 𝑁.

It is well understood that under some assumptions on
the sampling matrix Φ, the unknown sparse signal 𝑥 can be
reconstructed by solving the 𝑙

0
-minimization problem:

min ‖𝑥‖0 subject to 𝑦 = Φ𝑥, (2)

where ‖𝑥‖
0
denotes the number of nonzero entries of 𝑥. We

say a signal 𝑥 is𝐾-sparse when ‖𝑥‖
0
≤ 𝐾.

However, the optimization problem is NP-hard, so one
seeks computationally efficient algorithms to approximate the
sparse signal 𝑥, such as greedy algorithm, 𝑙

1
minimization,

and 𝑙
𝑝
(0 < 𝑝 < 1)minimization [4–6].

Orthogonal matching pursuit (OMP), which is a canoni-
cal greedy algorithm, has receive much attention in solving
the problem (2), due to its ease of implementation and
low complexity. Algorithm 1 can be described below. Until
recently, many popular generalizations of OMP are intro-
duced, for example, OMMP and KOMP; for details, see [7, 8].

The mutual incoherence property (MIP) introduced in
[9] is an important tool to analyze the performance of OMP.
The MIP requires the mutual coherence 𝜇 of the sampling
matrixΦ to be small, where 𝜇 is defined as

𝜇 = max
𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
Φ
𝑇

𝑖
Φ
𝑗

󵄨󵄨󵄨󵄨󵄨
. (3)

Tropp has shown that the MIP condition (2𝐾 − 1)𝜇 < 1 is
sufficient for OMP to exactly recover every 𝐾-sparse signal
[6]. This condition is proved to be sharp in [10].

The restricted isometry property (RIP) is also widely used
in studying a large number of algorithms for sparse recovery
in CS, which is introduced in [11]. AmatrixΦ satisfies the RIP
of order 𝐾 with the restricted isometry constant (RIC) 𝛿

𝐾
if

𝛿
𝐾
is the smallest constant such that

(1 − 𝛿
𝐾
) ‖𝑥‖
2

2
≤ ‖Φ𝑥‖

2

2
≤ (1 + 𝛿

𝐾
) ‖𝑥‖
2

2
(4)

holds for all 𝐾-sparse signal 𝑥. A related quantity of the
restricted orthogonality constant (ROC) 𝜃

𝐾,𝐾
󸀠 is defined as

the smallest quantity such that

󵄨󵄨󵄨󵄨󵄨
⟨Φ𝑥,Φ𝑥

󸀠
⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝜃
𝐾,𝐾
󸀠‖𝑥‖2 ⋅

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩2

(5)
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Input: Sampling matrix Φ, observation 𝑦

Output: Reconstructed sparse vector 𝑥∗ and index set
INITIALIZATION: Let the index setΩ

0
= ⌀ and the residual 𝑟

0
= 𝑦. Let the iteration counter 𝑡 = 1.

IDENTIFICATION: Choose the index 𝑖 subject to |Φ
𝑇

𝑖
𝑟
𝑡−1

| > max
𝑗 ̸= 𝑖

|Φ
𝑇

𝑗
𝑟
𝑡−1

|.

UPDATE: Add the new index 𝑖 to the index set:Ω
𝑡
= Ω
𝑡−1

∪ 𝑖, and update the signal and the residual
𝑥
𝑡
|
Ω𝑡

= argmin
𝑧

||𝑦 − Φ
Ω𝑡
𝑧||
2
, 𝑥
𝑡
|
Ω𝑡

= 0;
𝑟
𝑡
= 𝑦 − Φ𝑥

𝑡
.

If 𝑟
𝑡
= 0, stop the algorithm. Otherwise, update the iteration counter 𝑡 = 𝑡 + 1 and return to Step IDENTIFICATION.

Algorithm 1: Orthogonal matching pursuit—OMP (Φ, 𝑦).

holds for all disjoint support𝐾-sparse signal 𝑥 and𝐾
󸀠-sparse

signal 𝑥󸀠. It is first shown by Davenport and Wakin that the
RIP condition

𝛿
𝐾+1

<
1

3√𝐾
(6)

can guarantee that OMP will exactly recover every 𝐾-sparse
signal [12]. The sufficient condition is then improved to
𝛿
𝐾+1

< 1/(1 + 2√𝐾) [13], 𝛿
𝐾+1

< 1/√2𝐾 [14], 𝛿
𝐾+1

<

1/(1 + √𝐾) [7], and 𝛿
𝐾
+ √𝐾𝜃

𝐾,1
< 1 [15, 16]. By contrast,

Mo and Shen have given a counterexample, a matrix with
𝛿
𝐾+1

= 1/√𝐾 where OMP fails for some 𝐾-sparse signals
[17]. The main result of this note is to show that the sufficient
RIP condition

𝛿
𝐾
+ √𝐾𝜃

𝐾,1
< 1 (7)

is sharp for OMP.

2. Main Result

Theorem 1. For any given positive integer 𝐾 ≥ 1, there exist a
𝐾-sparse signal 𝑥 and a matrix Φ with the restricted isometry
constant

𝛿
𝐾
+ √𝐾𝜃

𝐾,1
= 1 (8)

for which OMP fails in 𝐾 iterations.

Proof. For any given positive integer 𝐾 ≥ 1, let

Φ = (Φ
𝑖𝑗
)
(2𝐾−1)×(2𝐾−1)

, (9)

where

Φ
𝑖𝑗
=

{{{{{{

{{{{{{

{

0 (𝑖 < 𝑗) ,

√
2𝐾

2𝐾 − 1
⋅ (−

𝑖

√𝑖 (𝑖 + 1)
) (𝑖 = 𝑗) ,

√
2𝐾

2𝐾 − 1
⋅

1

√𝑖 (𝑖 + 1)
(𝑖 > 𝑗) .

(10)

By simple calculation, we can get

󵄩󵄩󵄩󵄩󵄩
Φ
𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
=

2𝐾

2𝐾 − 1
⋅ (

𝑗
2

𝑗 (𝑗 + 1)
+

2𝐾−1

∑

𝑖=𝑗+1

1

𝑖 (𝑖 + 1)
)

=
2𝐾

2𝐾 − 1

⋅ (
𝑗

𝑗 + 1
+

1

𝑗 + 1
−

1

𝑗 + 2

+ ⋅ ⋅ ⋅ +
1

2𝐾 − 1
−

1

2𝐾
)

= 1,

⟨Φ
𝑙
, Φ
𝑗
⟩ =

2𝐾

2𝐾 − 1
⋅ (−

𝑗

𝑗 (𝑗 + 1)
+

2𝐾−1

∑

𝑖=𝑗+1

1

𝑖 (𝑖 + 1)
)

=
2𝐾

2𝐾 − 1

⋅ (−
1

𝑗 + 1
+

1

𝑗 + 1
−

1

𝑗 + 2

+ ⋅ ⋅ ⋅ +
1

2𝐾 − 1
−

1

2𝐾
)

= −
1

2𝐾 − 1

(11)

for any integers 1 ≤ 𝑙 < 𝑗 ≤ 2𝐾 − 1.
Thus, for any index set Λ whose cardinality is𝐾, we have

Φ
𝑇

Λ
Φ
Λ
= (

1 −
1

2𝐾 − 1
⋅ ⋅ ⋅ −

1

2𝐾 − 1
d

−
1

2𝐾 − 1
⋅ ⋅ ⋅ −

1

2𝐾 − 1
1

) .

(12)

It is obvious that the eigenvalues {𝜆
𝑖
}
𝐾

𝑖=1
ofΦ𝑇
Λ
Φ
Λ
are

𝜆
1
= ⋅ ⋅ ⋅ = 𝜆

𝐾−1
= 1 +

1

2𝐾 − 1
,

𝜆
𝐾
= 1 −

𝐾 − 1

2𝐾 − 1
.

(13)



Abstract and Applied Analysis 3

Therefore, the restricted isometry constant 𝛿
𝐾
of Φ is (𝐾 −

1)/(2𝐾 − 1).
Now, we turn to calculate the restricted orthogonality

constant 𝜃
𝐾,1

. In view of (11), we may, without loss of
generality, assume that 𝑥 = (𝑥

1
, . . . , 𝑥

𝐾
, 0, . . . , 0)

𝑇 and 𝑥
󸀠
=

(0, . . . , 0, 𝑥
󸀠

𝐾+1
0, . . . , 0)

𝑇. We have

𝜃
𝐾,1

= max
󵄨󵄨󵄨󵄨󵄨
⟨Φ𝑥,Φ𝑥

󸀠
⟩
󵄨󵄨󵄨󵄨󵄨

‖𝑥‖2 ⋅
󵄩󵄩󵄩󵄩𝑥
󸀠󵄩󵄩󵄩󵄩2

= max
󵄨󵄨󵄨󵄨⟨Φ𝑥,Φ

𝐾+1
⟩
󵄨󵄨󵄨󵄨

‖𝑥‖2

= max 1

2𝐾 − 1
⋅

󵄨󵄨󵄨󵄨󵄨
∑
𝐾

𝑖=1
𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨

‖𝑥‖2

=
√𝐾

2𝐾 − 1
.

(14)

The last equality holds when 𝑥
1
= ⋅ ⋅ ⋅ = 𝑥

𝐾
. It is easy to check

that

𝛿
𝐾
+ √𝐾𝜃

𝐾,1
=

𝐾 − 1

2𝐾 − 1
+ √𝐾 ⋅

√𝐾

2𝐾 − 1
= 1. (15)

Let 𝑥 = (1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾

, 0, . . . , 0)
𝑇
∈ R2𝐾−1; we have

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
⟨Φ𝑥,Φ

𝑗
⟩
󵄨󵄨󵄨󵄨󵄨
=

𝐾

2𝐾 − 1
, ∀𝑗 ∈ {1, 2, . . . , 2𝐾 − 1} .

(16)

This implies that OMP fails in the first iteration. The proof is
complete.

3. Discussion

In this paper, we showed that the RIP condition 𝛿
𝐾

+

√𝐾𝜃
𝐾,1

< 1 is sharp for orthogonal matching pursuit to
exactly recover every 𝐾-sparse signal 𝑥 from measurements
𝑦 = Φ𝑥. It is worth discussing the relations between our
sharp RIP condition and that in two relative papers [10, 17].
First of all, it follows from the facts that 𝛿

𝐾
< (𝐾 − 1)𝜇 and

𝜃
𝐾,1

< √𝐾𝜇 that the sharp RIP condition 𝛿
𝐾
+ √𝐾𝜃

𝐾,1
< 1

in this paper is weaker than the sharp MIP condition (2𝐾 −

1)𝜇 < 1 in [10]. Moreover, our result is also stronger than
the previous RIP condition. The condition 𝛿

𝐾
+ √𝐾𝜃

𝐾,1
< 1

in this paper is necessary and sufficient for OMP, while the
previous necessary RIP condition 𝛿

𝐾
< 1/√𝐾 in [17] is not

sufficient. Therefore, the result in the paper may guide the
practitioners to apply OMP properly in sparse recovery.
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